Changes in soil properties and carbon fluxes following afforestation and agriculture in tropical forest | |
Ahirwal, Jitendra1,2; Kumari, Sneha2; Singh, Ashutosh Kumar3; Kumar, Adarsh4; Maiti, Subodh Kumar2 | |
2021 | |
Source Publication | ECOLOGICAL INDICATORS
![]() |
ISSN | 1470-160X |
Volume | 123Issue:-Pages:- |
Abstract | Anthropogenic land use change (LUC) affects soil quality and the global carbon (C) pool. Such LUC is a potential threat for forest ecosystems because it can alter soil biome and increases the emission of greenhouse gasses (GHGs). Here, we investigated the changes in soil quality and CO2 emission following afforestation of reclaimed coal mine land and agriculture land created in a tropical dry deciduous forest of Jharkhand, India. Soil samples were collected from afforested mined soil (AMS), agriculture soils (AGS), and the natural forest soils (NFS) and analyzed for physicochemical and biological properties. Soil infiltration rate and CO2 efflux were recorded in situ, and C balance and emission coefficient (Ci) were calculated to determine soil C dynamics. Our results demonstrated significant alteration in soil quality parameters (decreases/increases based on the individual parameter) in converted land use. Compared to NFS, soil organic carbon (SOC) stocks decreased by 84% in AMS and 50% in AGS, soil CO2 efflux increased by 35% in AGS and decreased by 43% in AMS, attributed to differences in vegetation and microbial activities among sites. Principal component analysis showed soil infiltration rate, total nitrogen, and clay content were highly influenced by the LUC and explicitly indicate soil quality. The 4-year old AMS was C negative and had a greater Ci value than AGS and NFS, probably due to the lesser vegetation cover and adverse soil properties. We concluded that the conversion of tropical forests to different lands altered soil quality that can be assessed using indicator parameters like soil infiltration rate, total nitrogen, and clay content. Such LUC tends to switch the forest from a sink to a source of CO2 whether the end use is afforestation or agriculture. However, land degradation due to surface mining activities had a greater impact on soil quality and C sequestration potential than agriculture. |
Keyword | Land use change CO2 emission Soil quality indicator Carbon balance Infiltration |
Subject Area | Biodiversity & Conservation ; Environmental Sciences & Ecology |
DOI | 10.1016/j.ecolind.2021.107354 |
Indexed By | SCI |
Language | 英语 |
WOS ID | WOS:000615942100009 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | https://ir.xtbg.ac.cn/handle/353005/12141 |
Collection | 2012年后新成立研究组 |
Affiliation | 1.Mizoram Univ, Dept Forestry, Aizawl 796004, India 2.Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China 3.Indian Sch Mines, Indian Inst Technol, Dept Environm Sci & Engn, Ecol Restorat Lab, Dhanbad 826004, Jharkhand, India 4.Chinese Acad Sci, Xishuangbanna Trop Bot Garden, CAS Key Lab Trop Forest Ecol, Menglun 666303, Yunnan, Peoples R China 5.Ural Fed Univ, Inst Nat Sci & Math, Lab Biotechnol, Ekaterinburg 620002, Russia |
Recommended Citation GB/T 7714 | Ahirwal, Jitendra,Kumari, Sneha,Singh, Ashutosh Kumar,et al. Changes in soil properties and carbon fluxes following afforestation and agriculture in tropical forest[J]. ECOLOGICAL INDICATORS,2021,123(-):-. |
APA | Ahirwal, Jitendra,Kumari, Sneha,Singh, Ashutosh Kumar,Kumar, Adarsh,&Maiti, Subodh Kumar.(2021).Changes in soil properties and carbon fluxes following afforestation and agriculture in tropical forest.ECOLOGICAL INDICATORS,123(-),-. |
MLA | Ahirwal, Jitendra,et al."Changes in soil properties and carbon fluxes following afforestation and agriculture in tropical forest".ECOLOGICAL INDICATORS 123.-(2021):-. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Changes in soil prop(7856KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment