Redefining the climate niche of plant species: A novel approach for realistic predictions of species distribution under climate change | |
Ferrarini, Alessandro; Dai, Junhu1; Bai, Yang2![]() | |
2019 | |
Source Publication | SCIENCE OF THE TOTAL ENVIRONMENT
![]() |
ISSN | 0048-9697 |
Volume | 671Issue:xPages:1086-1093 |
Abstract | Climate change is increasingly affecting plant species distributions, in ways that need to be predicted. Here, in a novel prediction approach, we developed the relevant climate niche (RCN) of plants, based on thorough selection of climate variables and implementation of a non-parametric Bayesian network for climate simulations. The RCN was conditionalized to project the fate of Silene acaulis in North America under moderate (Representative Concentration Pathway 4.5; RCP4.5) and extreme(RCP8.5) short-term (2011-2040) climate scenarios. We identified a three-variable climate hypervolume for S. acaulis. Within 20 years >50% of current locations of the species will be outside the defined climate hypervolume. It could compensate for climate change in 2011-2040 through a poleward shift of 0.97 degrees C or an upshift of 138 m in the RCP4.5 scenario, and 1.29 degrees C or 184 m in the RCP8.5 scenario. These results demonstrate the benefits of redefining the climate niche of plant species in the form of a user-defined, data-validated, hierarchical network comprising only variables that are consistent with species distribution. Advantages include realism and interpretability in niche modeling, and new opportunities for predicting future species distributions under climate change. (C) 2019 Elsevier B.V. All rights reserved. |
Keyword | SILENE-ACAULIS CUSHION PLANT IMPACTS ALPINE RESPONSES POPULATION MODELS |
Subject Area | Environmental Sciences & Ecology |
DOI | 10.1016/j.scitotenv.2019.03.353 |
Indexed By | SCI |
Language | 英语 |
WOS ID | WOS:000466090500110 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | https://ir.xtbg.ac.cn/handle/353005/11304 |
Collection | 2012年后新成立研究组 景观生态研究组 |
Affiliation | 1.Via G Saragat 4, I-43123 Parma, Italy 2.Chinese Acad Sci, Key Lab Land Surface Pattern & Simulat, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China 3.Chinese Acad Sci, Xishuangbanna Trop Bot Garden, Mengla 666303, Yunnan, Peoples R China 4.Alatalo, Juha M.] Qatar Univ, Coll Arts & Sci, Dept Biol & Environm Sci, POB 2713, Doha, Qatar 5.Alatalo, Juha M.] Qatar Univ, Environm Sci Ctr, POB 2713, Doha, Qatar |
Recommended Citation GB/T 7714 | Ferrarini, Alessandro,Dai, Junhu,Bai, Yang,et al. Redefining the climate niche of plant species: A novel approach for realistic predictions of species distribution under climate change[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2019,671(x):1086-1093. |
APA | Ferrarini, Alessandro,Dai, Junhu,Bai, Yang,&Alatalo, Juha M..(2019).Redefining the climate niche of plant species: A novel approach for realistic predictions of species distribution under climate change.SCIENCE OF THE TOTAL ENVIRONMENT,671(x),1086-1093. |
MLA | Ferrarini, Alessandro,et al."Redefining the climate niche of plant species: A novel approach for realistic predictions of species distribution under climate change".SCIENCE OF THE TOTAL ENVIRONMENT 671.x(2019):1086-1093. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Redefining the clima(1530KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment