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• Climate change is increasingly affecting
plant species distributions.

• We developed the relevant climate
niche (RCN) of plant species.

• Using RCN, we projected the fate of
Silene acaulis in North America.

• Within 20 years, N50% of current loca-
tions will be outside its climate
hypervolume.

• We detected the minimal geographical
shifts required for climate change
compensation.
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Climate change is increasingly affecting plant species distributions, in ways that need to be predicted. Here, in a
novel prediction approach, we developed the relevant climate niche (RCN) of plants, based on thorough selection
of climate variables and implementation of a non-parametric Bayesian network for climate simulations. The RCN
was conditionalized to project the fate of Silene acaulis in North America under moderate (Representative Con-
centration Pathway 4.5; RCP4.5) and extreme (RCP8.5) short-term (2011–2040) climate scenarios.We identified
a three-variable climate hypervolume for S. acaulis. Within 20 years N50% of current locations of the species will
be outside the defined climate hypervolume. It could compensate for climate change in 2011–2040 through a
poleward shift of 0.97 °C or an upshift of 138 m in the RCP4.5 scenario, and 1.29 °C or 184 m in the RCP8.5
scenario. These results demonstrate the benefits of redefining the climate niche of plant species in the form of
a user-defined, data-validated, hierarchical network comprising only variables that are consistent with species
distribution. Advantages include realism and interpretability in niche modeling, and new opportunities for
predicting future species distributions under climate change.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Climate is the primary factor regulating the geographical distribu-
tion of plant species (Davis and Shaw, 2001; Doak and Morris, 2010;
Loarie et al., 2009; Pearson and Dawson, 2003). There is already
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evidence that the changing climate of the past century has resulted in a
globally consistent fingerprint of poleward and/or upward shifts in
species distributions (Parmesan and Yohe, 2003; Root et al., 2003;
Walther et al., 2002).

Understanding the climate niches of plant species and projecting
their potential future shifts in spatial distributions are therefore neces-
sary to assess the vulnerability of plant species under a rapidly changing
climate (Bakkenes et al., 2006; Ferrarini et al., 2019) and to develop
adaptive management strategies, including assisted migration
(Ferrarini et al., 2016; Isaac-Renton et al., 2014). Climate niches consti-
tute the climate component of Hutchinson's fundamental niche
(Hutchinson, 1957; Pearson and Dawson, 2003). As they are built
upon the observed distribution of plant species, niche models reflect
an actual climate niche (Holt, 2009), as opposed to the fundamental
niche, which is based on the environmental requirements of plant
species (Hutchinson, 1957). Models of this form are typically referred
to as climate niche models, bioclimatic envelope models, or ecological
niche models.

Themain theoretical assumptions behind climate nichemodels have
widely been discussed (Nogués-Bravo, 2009; Pearman et al., 2008).
With regard to the methodological issues, several authors have criti-
cized and proposed solutions to the choice of climate-relevant variables
(Ferrarini et al., 2019; Thuiller et al., 2005) and the most appropriate
niche model (Ferrarini et al., 2019; Wiens et al., 2009).

We believe that definition of the climate niche of plant species could
be further upgraded to offer new desirable information for interpreta-
tive and projective purposes. First, it could encompass a user-defined
graphical structure to explicitly represent causes, and test assumptions,
in a series of conditional relationships that can be easily understood.
Second, it could thoroughly and strictly select only those climate vari-
ables that actually govern (i.e. most influence) the presence/absence
of plant species in a certain region (the n-dimensional climate
hypervolume; Hutchinson, 1957), thus excluding all climate variables
that add unwanted noise in modeling and simulation work. Third,
besides forward climate simulations (i.e., anticipating climate change
effects on species locations), it could permit meaningful reverse simula-
tions. This would provide the opportunity to detect a) the climate
conditions that can lead to species extinction and b) the magnitude of
poleward and elevation shifts that can compensate for climate change.

To this end,we propose a new theoretical and operative definition of
the climate niche of plant species, which we call the relevant climate
niche (RCN). In this study, we applied it in the case of Silene acaulis L.
in North America to: 1) project the fate of this species under climate
change, 2) detect theminimal amount of climate change that will likely
lead to species extinction; and 3) detect the minimal amount of geo-
graphical shifts that can compensate for the effects of climate change
in the short term (2011–2040).

2. Methods

2.1. Study area and study species

The study areawasNorth America (USA andCanada),which extends
over 14,300 km in longitude and 6600 km in latitude (Fig. S1). Locations
of Silene acaulis (moss campion) were determined from the online
Global Biodiversity Information Facility atlas. We chose locations
recorded and confirmed in the period 1981–2010, which were consis-
tent with the baseline climate conditions available for North America.
Overall, 401 S. acaulis locations were available. A digital elevation
model (1-km resolution) of the study area was used to assign the eleva-
tion (m above sea level, m a.s.l.) to each S. acaulis location (Fig. S1).

Silene acaulis L. (Caryophyllaceae) is a herbaceous cushion plant
characteristic of alpine and arctic-tundra habitats. It has a circumpolar
distribution and is found in Asia, Europe, Greenland, and North
America. In Europe, the southernmost populations are found in the
Alps, Balkans, British Isles, Carpathian mountains, Cantabrian
Mountains, and Pyrenees. Cushion plants such as S. acaulis play a key
role in alpine ecosystems, where they function as facilitator species
and nurse plants (Antonsson et al., 2009). They also play an important
function in determining the resilience of alpine and high-latitude eco-
systems to global climate change (Reid and Lortie, 2012).

2.2. Creation of pseudo-absence points

Wenoted a clear relationship between latitude and elevation,which
were significantly and inversely correlated, at the 401 S. acaulis loca-
tions (Fig. S2). However, we found no clear relationship between longi-
tude and elevation, or between longitude and latitude, at the 401
S. acaulis locations (Figs. S3 and S4). This suggested that two (latitude
and elevation) distal variables out of three influence S. acaulis presence
in the study area, and that these two variables have a combined effect
on this species.

Our strategy for creation of pseudo-absence points had three goals:
1) to systematically sample the study area; 2) to place pseudo-
absences with probability directly proportional to their distance from
themean distal (latitude and elevation) attributes of S. acaulis presence;
and 3) to take into account the variances/covariances of distal variables,
whichwas necessary as they showed a joint effect on S. acaulis presence
in the study area (Fig. S2).

To fulfill these goals, we used Mahalanobis distance (Mahalanobis,
1936) and random number generation. Mathematically, the
Mahalanobis distance was computed as:

D2 ¼ x−mð ÞTC‐1 x−mð Þ

where m is the mean b latitude, elevation N vector of S. acaulis locations
in North America, x is the blatitude, elevation N vector of the generic lo-
cation in the study area, C−1 is the inverse covariancematrix of latitude
and altitude calculated at S. acaulis locations, and the T superscript de-
notes the transpose operator.

Mahalanobis distance is approximated by the χ2 distributionwith n-
1 degrees of freedom (n= 2 in our study). Using this approximation, it
was possible to assign corresponding p-values to any point in the study
area. The p-value reflects the probability of obtaining aMahalanobis dis-
tance as large or larger than the actual Mahalanobis distance. P-values
close to 0 reflect high Mahalanobis distance for areas that are therefore
very dissimilar to the mean b latitude, elevation N vector of S. acaulis
locations in North America, while p-values close to 1 reflect low
Mahalanobis distance for areas very similar to themean b latitude, eleva-
tion N vector of S. acaulis.

In order to place pseudo-absence points in the study area, we first
generated one sampling point for every degree latitude and longitude.
We then assigned a random number in the [0–1] interval to each
point, which was considered as pseudo-absence if, and only if, the ran-
dom number was higher than theMahalanobis distance p-value associ-
ated with that point. Thus, parcels of land with p-values close to 0 (i.e.
far distant from the mean vector of Silene presence) had a very high
probability of becoming pseudo-absence points, while parcels with
Mahalanobis distance p-values close to 1 had a very low probability.

2.3. Baseline climate conditions

To represent baseline climate conditions, we used climatological
data for 1981–2010, calculated using the ClimateNA v5 package
(Wang et al., 2016), which extracts and downscales climate data from
PRISM (Daly et al., 2008) and WorldClim (Hijmans et al., 2005). The
downscaling is achieved through a combination of bilinear interpolation
and dynamic local elevation adjustment. In total, the available climate
dataset consisted of 247 climate variables (Table S1) for each of the
S. acaulis presence/pseudo-absence points.
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2.4. Selecting the relevant climate variables

We employed a stringent variable selection procedure to a) reduce
the amount of data needed to achieve learning, b) improve predictive
accuracy, c) produce more compact and easily understood information,
and d) reduce execution time.

To predict S. acaulis presence/pseudo-absence, we used the
correlation-based feature selector (CFS) method (Hall, 1999), which
seeks a subset that contains variables highly correlated with the class,
yet uncorrelated with each other. Given a starting set S of K climate var-
iables, the algorithm seeks the variable subset s ⊂ S that maximizes

CFS ¼ k � r1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ k � k−1ð Þ � r2

q

where k b K is the number of variables in the subset s, r1 is the average
variable-class correlation, and r2 is the average variable-variable inter-
correlation. The numerator can be considered as providing an indication
of the predictive accuracy of a set of predictors (here climate variables)
for the class (here S. acaulis presence/pseudo-absence). The denomina-
tor indicates the level of redundancy among the variables.

Because the CFS algorithm is computationally very demanding, we
coupled it with genetic algorithms (Holland, 1992) in order to shorten
its search for the best subset of climate variables. We first applied CFS
separately to annual, seasonal, and monthly climate variables. We
then used a second round of selection, applied to the three (annual, sea-
sonal, and monthly) reduced datasets of the first round, as a means to
detect the overall optimal subset of climate variables.

To validate the reduced subset of climate variables, we used six clas-
sification algorithms: naïve Bayes (Bayes et al., 1763), classification
trees (Breiman et al., 1984), logistic regression (Cox, 1958), MLP neural
network (Rumelhart et al., 1985), random forests (Breiman, 2001), and
SVM (Cortes and Vapnik, 1995). If the six algorithms accurately classi-
fied S. acaulis presence/pseudo-absence using the CFS subset as input,
the highly reduced dataset of climate variables would be correct, i.e., it
would contain the relevant climate drivers of S. acaulis in the study
area. We measured classification performance using area under the
curve (AUC), i.e., the probability that, when a site with the species pres-
ent and a site with the species absent are drawn at random, the former
will have a higher predicted value than the latter. We also used classifi-
cation accuracy (CA), i.e., the proportion of correct predictions (true
positives plus true negatives, divided by the total number of instances).
Models were validated using stratified 10-fold cross-validation (out-of-
sample datasets used 10 times). Stratification ensured that each class
was (approximately) equally represented across each test fold, and
was necessary because the two categories to be recognized (S. acaulis
presence and pseudo-absence) were unbalanced. We also employed
kernel density plots (Rosenblatt, 1956) for visual inspection of the dis-
criminative power of the CFS dataset, choosing the bandwidth thatmin-
imized the mean integrated squared error (Silverman, 2018).

2.5. Modeling the relevant climate niche (RCN)

The RCN was conceived as an interacting network comprising distal
and proximal variables actually ruling the presence/absence of the plant
species under study. These variables have statistical (marginal) distri-
butions that can be computed from GIS data. Changes to each variable
propagate through the network and produce (direct and indirect)
effects on all the other variables. The strength of the effects depends
on how much the variables influence each other. These influences can
be computed from GIS data as well.

For modeling, we used the non-parametric Bayesian network (NP-
BN) methodology (Hanea et al., 2006, 2010). A NP-BN is a directed acy-
clic graph that combines a graphical structure of the variables involved
in a system and the relationships between them. The nodes represent
univariate random variables (X1, X2, …, Xn) which can be discrete,
continuous, or both. The arcs represent direct influences, i.e., cause-
effect assumptions articulated in a series of conditional correlations
among variables.

When using a NP-BN, an empirical marginal distribution for each
variable and a conditional correlation for each arc must be specified
(Hanea et al., 2015). Here, the marginal distribution of each variable
was computed from GIS data using pre-defined statistical distributions,
while the conditional correlation was calculated using the normal cop-
ula (Nelsen, 2007). A copula is the joint distribution of n uniform vari-
ables. The heart of the copula application in dependence modeling lies
in Sklar's theorem (Sklar, 1959), which states that any joint cumulative
distribution function (here denoted F1…n) of variables X1…Xn can be
rewritten in terms of the corresponding copula C as:

F1…n x1…xnð Þ ¼ C F1 X1ð Þ…Fn Xnð Þð Þ

where Fi(Xi) denotes the marginal distribution of the i-th variable.
The normal copula is expressed as:

CR u1…unð Þ ¼ ΦR Φ−1 u1ð Þ…Φ−1 unð Þ
� �

whereΦ−1 denotes the inverse cumulative distribution of an univariate
standard normal distribution, and ΦR denotes the joint cumulative dis-
tribution of a multivariate normal distribution with zero mean and cor-
relation matrix R.

We manually built the NP-BN, using arcs between nodes to indicate
potential relationships between variables. We then populated the
model with GIS data on S. acaulis presence and pseudo-absence points.
The model was validated by testing whether joint normal copulas ade-
quately represented the original data by comparing the empirical corre-
lation structures to correlation structures using the normal copula
(Hanea et al., 2015). The empirical correlation structures were calcu-
lated using Spearman's rho correlation coefficient:

rhos ¼ 1− 6 �
Xn
i¼1

d2i = n3−n
� � !

where n is the number of S. acaulis presence and pseudo-absence points,
and di is the rank of the ith point in the first variable minus the rank of
the ith point in the second variable. The Spearman's rho correlation coef-
ficient was deemed more appropriate than Pearson's r correlation coef-
ficient, since the variables did not follow a normal distribution.

Climate simulations were performed by conditionalization, i.e., by
setting the value of one or more variables to infer how it/they affect
the state of other variables. Conditionalizing one (or more) variables
allowed the other (unconditionalized) variables to vary, based on the
influences defined within the NP-BN. We used the UninetEngine COM
library (Cooke et al., 2017) for Matlab.

2.6. Climate projections

The RCNwas conditionalized to project the fate of S. acaulis in North
America under moderate (Representative Concentration Pathway
(RCP) 4.5) and extreme (RCP8.5) short-term (2011–2040) climate sce-
narios. We gathered values (using the ClimateNA v5 package) of only
the relevant climate variables that were selected through the filtering
procedure described above. We used climate datasets from the recent
Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment
Report (IPCC, 2013) and employed ensemble projections averaged
across 15 Coupled Model Intercomparison Project Phase 5 (CMIP5)
models (CanESM2, ACCESS1.0, IPSL-CM5AMR, MIROC5, MPI-ESM-LR,
CCSM4, HadGEM2-ES, CNRM-CM5, CSIRO Mk 3.6, GFDL-CM3, INM-
CM4, MRI-CGCM3, MIROC-ESM, CESM1-CAM5, GISS-E2R) to account
for the uncertainty in the climate predictions.

Besides the standard forward simulation (i.e., anticipating climate
change effects on S. acaulis locations), the RCN allowed for two kinds
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of reverse climate simulations, identifying: a) the minimal amount of
climate change that likely leads to extinction of S. acaulis in North
America and b) the minimal geographical (poleward and elevation)
shifts that can compensate for the effects of climate change on S. acaulis.

3. Results

The procedure used to generate the pseudo-absence points (Fig. 1;
Fig. S5) led to the creation of 1938 points (Fig. S6). TheMahalanobis dis-
tance from themean blatitude, elevationN vector of S. acaulis locations in
North America was significantly higher (unequal variance independent
two-sample t = −19.94; p b 0.001) for pseudo-absence points (mean
± S.D. 6.74 ± 7.06, n = 1938) than for presence points (1.95 ± 1.39,
n = 401).

The first-round variable selection isolated 20 climate variables (out
of 247; 8.09% selection) that strongly influence the presence of
S. acaulis in North America (Table S2). Nineteen of these 20 variables
(all except Hargreaves reference evaporation) relate to temperature.
The presence of S. acaulis in the study area proved to be highly influ-
enced by maxima of temperature and by degree-days above 5 °C
(DD5; growing degree-days). Both these variables act at all temporal
scales studied, i.e., annual, seasonal, and monthly (Table S2).

The second-round variable selection detected three climate vari-
ables (out of 20; 15% selection) that rule S. acaulis presence in the
study area. These were: summer DD5 (DD5_sm), mean warmest
month temperature (MWMT), and extreme maximum temperature
over 30 years (Tmax_30y) (Table S2).

The three-variable climate dataset was successfully validated by the
six classification algorithms (Table S3). The 10-fold cross-validated ac-
curacy was higher than 0.8 for all algorithms employed, and for both
area under the curve (AUC) and classification accuracy (CA).

Visual inspection, through kernel density plots, of the discriminative
power of the reduced climate dataset (Figs. S7–S9) confirmed that
S. acaulis presence-absence in the study area was well discriminated
by the selected climate variables. Absence of S. acaulis was most
Fig. 1. Probability (p-) values associated with the Mahalanobis distance of each portion of the
magenta indicate recorded locations of S. acaulis in the period 1981–2010.
common in the study area for DD5_sm = (mean ± S.D) 1042.8 °C ±
597.5, MWMT = 17.48 °C ± 6.69, and Tmax_30y = 34.60 °C ± 6.51.
Presence of S. acaulis was most common for DD5_sm = 388.4 °C ±
189.1, MWMT = 10.21 °C ± 2.43, and Tmax_30y = 27.08 °C ± 2.66.

The zero-order Spearman's correlation matrix revealed: a) strong
negative correlations between latitude and the selected climate vari-
ables, b) weaker negative correlations between elevation and climate
variables, c) negative correlations between S. acaulis presence/absence
and climate variables, and d) positive correlations between S. acaulis
presence/absence and geographical variables (i.e., latitude, elevation)
(Fig. 2).

The resulting non-parametric Bayesian network (NP-BN) (Fig. 3)
shows marginal distributions fitted from data (Table S4) and condi-
tional correlations among variables calculated using normal copulas.
As correlation matrices revealed maximum (element-wise) differences
in the order of ±0.06, we concluded that the correlation matrix using
the normal copula assumptions provided an adequate approximation
of the empirical (Spearman's) correlation matrix (Fig. 2).

The resulting RCN (Fig. 3) presents the distal variables (latitude and
elevation) on the first layer (root nodes), the selected climate variables
(DD5_sm,MWMT and Tmax_30y) on the secondone (parent nodes), and
the species under study on the third one (child node). Latitude and ele-
vation resulted negatively correlated, as an increase/decrease in latitude
of species locations has to be compensated for by a decrease/increase in
elevation, and vice versa, in order to keep suitable climate conditions for
the species unchanged. The distal variables resulted negatively corre-
lated with the selected climate variables, as an increase/decrease in
the elevation or latitude of species locations is expected to produce a
correspondent decrease/increase in the T° values. The selected climate
variables resulted to act synergistically, as an increase/decrease in
MWMT is expected to determine an increase/decrease in DD5_sm and
Tmax_30y, which in turn act upon S. acaulis presence/absence. All the
climate variables resulted to act negatively upon the species, because
S. acaulis presence is negatively correlated to T°. However the selected
climate variables resulted unequally important. DD5_sm showed to be
study area from the mean blatitude, elevationN vector of Silene acaulis locations. Spots in



Fig. 2. Correlations (Spearman's rho) between distal (geographical) and proximal (climate) variables and Silene acaulis presence/absence in North America. Correlations refer to 2339
points (401 presences, 1938 pseudo-absences), with negative correlations in reddish tones and positive correlations in bluish tones. The narrower the ellipse, the higher the correlation
between variables. Perfect positive correlations are represented by diagonal lines.

Fig. 3. Relevant climate niche (RCN) of Silene acaulis in North America (2339 points; 401 presences and 1938 pseudo-absences). Distal (geographical) variables are in blue, proximal (cli-
mate) variables are in red. For each variable, marginal distribution (nodes) and influences (arrows) on the other variables were computed fromGIS data. The variable S. acaulis is discrete,
with presence probability equal to 17.1% (= 401/2339). DD5_sm=summer degree-days above 5 °C;MWMT=meanwarmest month temperature; Tmax_30years=maximum temper-
ature over 30 years.

1090 A. Ferrarini et al. / Science of the Total Environment 671 (2019) 1086–1093



1091A. Ferrarini et al. / Science of the Total Environment 671 (2019) 1086–1093
the most influential variable (influence = −0.28), followed byMWMT
(influence = −0.24) and then Tmax_30y (influence = −0.14).

In order to conditionalize the NP-BN for climate projections, we
fitted the statistical distributions of the three climate variables for
both the moderate and extreme IPCC scenarios (IPCC, 2013)
(Tables S5 and S6) and entered the fitted distributions into the NP-BN.
Under the moderate climate scenario (RCP4.5), average increments of
97 °C in DD5_sm, 1.4 °C in MWMT, and 0.9 °C in Tmax_30y at the 401
S. acaulis occurrence points are predicted (Fig. S10). Under these climate
conditions, S. acaulis was predicted to lose 56.10% of its occurrence
points (i.e., 225 out of 401) due to unfavorable climate conditions.
Under the extreme climate scenario (RCP8.5), average increments of
106 °C in DD5_sm, 1.5 °C in MWMT, and 1.0 °C in Tmax_30y at the 401
S. acaulis occurrence points are predicted. Under these climate condi-
tions, S. acaulis was predicted to lose 60.84% of its occurrence points
(i.e., 244 out of 401) due to unfavorable climate conditions (Fig. S10).

The climate conditions that would lead to local extinction of
S. acaulis in North America were very different from those expected
for 2011–2040 (Fig. S11). Even with respect to the extreme scenario
(RCP8.5), further increments of 50 °C in DD5_sm, 0.9 °C in MWMT, and
0.6 °C in Tmax_30y would be required. These increments would cause
a further 39.16% decrease in S. acaulis presence in the study area, after
the 60.84% reduction expected due to the RCP8.5 scenario.

In the RCP4.5 scenario, expected climate change in the period
2011–2040 could still be compensated for at the current S. acaulis loca-
tions by: a) an average increment of 0.97 °C in latitude (with no incre-
ment in elevation) or b) an average increment of 138 m in elevation
(with no increment in latitude) (Fig. S11). Of course, combined incre-
ments in latitude and elevation are also possible (e.g., 100m in elevation
and 0.266° in latitude; or 50m in elevation and 0.615° in latitude). In the
RCP8.5 scenario, the expected climate change in 2011–2040 could be
compensated for by: a) an average increment of 1.29 °C in latitude
(with no increment in elevation); b) an average increment of 184 m
in elevation (with no increment in latitude); or c) combined increments
in latitude and elevation (e.g. 100 m in elevation and 0.587° in latitude;
or 50 m in elevation and 0.937° in latitude) (Fig. S11).

4. Discussion

Silene acaulis proved to have a three-dimensional climate
hypervolume (sensu Hutchinson, 1957). Our simulation results, vali-
dated through six classification algorithms and visual inspection of
kernel plots, indicated that the spatial distribution of this species in
North America is largely influenced by temperature-related variables.
Among these, our results demonstrated the crucial importance of tem-
perature extremes and growing-degree days (accumulated warmth)
for the species. In contrast, climate factors linked to rainfall, humidity,
frost period, chilling days, solar radiation, and evaporation proved to
be irrelevant. We expect this outcome to be species-specific, with
other plant species influenced by different sets of climate variables.

Our projections suggest that, in the next 20 years, S. acauliswill lose
N50% of its climatically suitable presence points, even in a moderate
climate change scenario. This is in good agreement with findings for
the British Isles (Ferrarini et al., 2019), although our projections here
were less extreme and also more reliable, because they relate to the
exact locations of the species, rather than to 10 km × 10 km squares
as in that study. Our results are also in linewith previous empirical find-
ings that southern populations of S. acaulis in North America have lower
survival rates than northern populations, and thatmortality increases in
the warmest years (Doak and Morris, 2010). Experimental work has
shown that, after an initial positive response to experimental warming
and nutrient addition, S. acaulis has declined over the medium term in
sub-arctic Sweden (Alatalo and Little, 2014). Experimental warming
has been shown to increase seed production by S. acaulis, but this
seems to be insufficient to compensate for increased mortality due to
increased frequency of warmer years (Alatalo and Totland, 1997).
Heat damage has been observed in S. acaulis under natural conditions
at an air temperature of only 21 °C (Gauslaa, 1984). Several studies
have found that the leaf temperature of S. acaulis cushions is 15–24.5
°C warmer than the air temperature (Salisbury and Spomer 1964).
This heat-trapping feature was later observed to cause the leaf temper-
ature of an S. acaulis cushion to reach 45 °C at an Arctic site (Körner and
De Moraes, 1979).

The three-variable climate change vector detected in this study
(bDD5_sm= 156 °C,MWMT=2.4 °C, Tmax_30y= 1.6 °CN) represents
the set of climate changes that exclude the presence of S. acaulis in the
study area, i.e., the minimal amount of climate change that likely leads
to negative intrinsic growth rate in all current locations. This outcome
can thus be interpreted as the climate bounds of the three-
dimensional climate hypervolume of this species in North America.
However, loss of suitable climate conditions does not necessarily
mean immediate disappearance of this species, as S. acaulis is long-
lived, with individuals potentially living N200 years (Morris and Doak,
1998). Therefore loss of suitable climate conditions will more likely
involve a decrease in reproductive success and recruitment, which
will bring the species towards local extinction over time. In addition,
although evidence of evolution of plant species in response to climate
change remains sparse at best (Franks et al., 2007), phenotypic plasticity
may temporarily counteract the negative effect of climate change on
S. acaulis, but may not confer long-term persistence as conditions fall
outside its climate bounds (Nicotra et al., 2010).

Under the implicit assumption that the current climate
hypervolume limits will not change for future climates, the minimal
latitude and elevation shifts identified here suggest that this species
requires an upshift velocity of at least 4.5 m yr−1 in the moderate
scenario and 6.1m yr−1 in the extreme scenario in order to compensate
for climate change in the period 2011–2040. These results are in good
agreement with predicted compensation velocities of b10 m yr−1 on
steep slopes (Loarie et al., 2009). Alternatively, compensation can be
achieved through a poleward velocity of 0.033° yr−1 in the moderate
scenario and 0.043° yr−1 in the extreme scenario. Combined latitude-
elevation shifts are also possible, through a simple linear combination
of latitude and elevation shifts. An increment in elevation (with no
increment in latitude) is possible in all mountain areas where
S. acaulis is currently present. A poleward shift (with no increment in
elevation) is possible in northernmost areas where S. acaulis is present
in almost flat areas at sea level.

The question is whether plant species can actually keep up with the
predicted velocity of climate change (Loarie et al., 2009). Human-
assisted colonization could help plant species in achieving combined
latitude-elevation shifts, and also poleward-only or elevation-only com-
pensations, for which the required degree of magnitude can be com-
puted using RCN.

In this study, we used the western hemisphere populations of this
circumboreal species for analyses and modeling. The application of
RCN to the eastern hemisphere could be useful to further support our
results on this species.

4.1. Methodological issues and conclusions

Our relevant climate niche (RCN) of plant species approach involves
identifying a network of interacting (distal and proximal) variables that
are the relevant drivers of species presence/absence in an area. This
network allows the static and flat representation of the zero-degree
Spearman's correlations to be disentangled, and the overall influences
among variables to be split into (direct and indirect) hierarchical influ-
ences. This in turn provides the opportunity to dynamically simulate
changes to any variable and predict the direct and indirect effects
expected for all the other variables.

The main advantage of this stringent operational definition of the
climate niche of plant species is that it makes it possible to:
a) formulate a clear hypothesis on the network of relevant variables
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that actually determine the spatial distribution of a certain species,
b) build a custom network-like model to represent this hypothesis,
and c) validate or reject the hypothesis by comparing empirical (i.e.
data-based) correlation structures with correlation structures of the
non-parametric Bayesian network.

The RCN also provides new opportunities for climate predictions, in
terms of reverse simulations. Here, we exploited the opportunity to
determine: a) the bounds of the plant climate hypervolume, and
b) the minimal rate of geographical shifts required for climate change
compensation. These outcomes are important in achievingfitter conser-
vation of plant species in the face of climate change.

In addition, while niche modeling is commonly conceived in flat
terms (i.e. two variables levels in the form X1…Xn → Y), our definition
of a relevant climate niche allows the researcher to build hierarchical
niche models with potentially an arbitrary number of levels (i.e. L1 →
L2→…→ Ln→ Y) and influences amongvariables. The simplest network
structure is the three-levels form used here, with distal variables in the
first layer (root nodes), proximal variables in the second (parent nodes)
and the study species in the third (child nodes). This network structure
follows an easily defensible rationale and resulted in an adequate
approximation of the empirical (Spearman's rho) correlation matrix.
However, in theory RCNcan allow formore complexnetwork structures
if the candidate network does not properly fit real-world data. For
example, plant communities with strong interactive effects among
species might partly overcome direct effects induced by climate change
(Alatalo et al., 2016; Ferrarini et al., 2017). At the same time, experimen-
tal work has shown that competitive interactions may change, and this
will likely affect the community assemblies and dominance hierarchies
(Alatalo et al., 2014; Baruah et al., 2017). Biotic interactions with other
plant species could be included into the RCN as covariates at the same
network level of the plant species under study.

The non-parametric Bayesian network (NP-BN) methodology
proved to be well-suited to our purposes. Bayesian networks with
only discrete random variables (D-BNs) have recently become quite a
popularmodeling tool (Sander et al., 2017). They can be seen as the sim-
plest case of probabilistic networks, but are associated with consider-
able drawbacks, such as subjectivity in the discretization of continuous
variables and high computational load, which grows exponentially
with the number of network variables. In addition, D-BNs cannot handle
ecologicalmodels inwhich someor all randomvariables can take values
in a continuous range. The NP-BN used here allowed these serious
methodological limitations to be surmounted.

Construction of the RCN for S. acaulis in North America required
stringent selection of meaningful climate predictors. Climate data and
projections are increasingly available, but results about the major
climate drivers governing species presence/absence and their degree
of influence are still lacking. Moreover, while good data availability
represents a substantial advantage for niche modeling purposes, it
also leads to serious modeling drawbacks such as redundancy,
overfitting, and oversize (Ferrarini et al., 2019; Parolo et al., 2008). In
our study, the available climate dataset (247 climate variables) was
highly oversized (many climate variables had little predictive power),
overfitted (the number of climate predictors was too high), and redun-
dant (many climate predictors were correlated in a significant manner,
and not correlated enough with the class to predict). Overfitting lowers
model performance (Guyon and Elisseeff, 2003), redundancy causes
multicollinearity (Tabachnick and Fidell, 2007), and oversize makes it
awkward to build realistic niche models because too many combina-
tions of variables and interactions are possible. Here we employed a
solution based on dimensionality reduction, which transformed highly
multidimensional data into a reduced climate hypervolume (sensu
Hutchinson, 1957) actually governing the presence/absence of
S. acaulis in North America. Our approach focused on strongly reducing
the overall number of variables in input to the RCN, so as to produce an
automatic reduction in the overall correlation in the niche model. This
reduced model oversize and overfitting by 98.78% (from 247 to only
three variables) and model redundancy by 99.98% (from 2472 to 32

correlations, when also considering self-correlations), while simulta-
neously improving cross-validation accuracy.

This study demonstrates the advantages of redefining the climate
niche of plant species in terms of user-defined, data-validated, hierar-
chical and interactive networks including only variables relevant for
species distribution. The parsimony and realism of the niche model,
the reliability and interpretability of results, and the new opportunities
provided for climate predictions are the main rewards of this new
approach.
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