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Abstract

Main conclusion The 1.5 kb JcAP1 promoter from the

biofuel plant Jatropha curcas is predominantly active in

the inflorescence buds of transgenic plants, in which the

21313/21057 region is essential for maintaining the

activity.

Arabidopsis thaliana APETALA1 (AP1) is a MADS-do-

main transcription factor gene that functions primarily in

flower development. We isolated a homolog of AP1 from

Jatropha curcas (designated JcAP1), which was shown to

exhibit flower-specific expression in Jatropha. JcAP1 is

first expressed in inflorescence buds and continues to be

primarily expressed in the sepals. We isolated a 1.5 kb

JcAP1 promoter and evaluated its activity in transgenic

Arabidopsis and Jatropha using the b-glucuronidase
(GUS) reporter gene. In transgenic Arabidopsis and Jat-

ropha, the inflorescence buds exhibited notable GUS

activity, whereas the sepals did not. Against expectations,

the JcAP1 promoter was active in the anthers of Ara-

bidopsis and Jatropha and was highly expressed in Jat-

ropha seeds. An analysis of promoter deletions in

transgenic Arabidopsis revealed that deletion of the

-1313/-1057 region resulted in loss of JcAP1 promoter

activity in the inflorescence buds and increased activity in

the anthers. These results suggested that some regulatory

sequences in the -1313/-1057 region are essential for

maintaining promoter activity in inflorescence buds and

can partly suppress activity in the anthers. Based on these

findings, we hypothesized that other elements located

upstream of the 1.5 kb JcAP1 promoter may be required

for flower-specific activation. The JcAP1 promoter char-

acterized in this study can be used to drive transgene

expression in both the inflorescence buds and seeds of

Jatropha.

Keywords Anther � APETALA1 � Flower � Physic nut �
Promoter � Seed

Introduction

As a potential oilseed plant for renewable biodiesel pro-

duction, Jatropha curcas (hereafter referred to as Jat-

ropha), a member of the Euphorbiaceae family, has been

studied for decades (Heller 1996; Sujatha et al. 2008;

Divakara et al. 2010; de Argollo Marques et al. 2013).

Considering the low genetic diversity of Jatropha (Tati-

konda et al. 2009; Cai et al. 2010), transgenic breeding is a

highly promising approach for directionally modifying

characteristics of Jatropha in a short time, without the

limitation of germplasm resources. To accelerate the pro-

cess of the transgenic breeding of Jatropha, many efforts

have been made to establish a genetic transformation sys-

tem (Li et al. 2008; Joshi et al. 2010; Kumar et al. 2010;

Pan et al. 2010) to analyze gene expression patterns (Chen

et al. 2011; Sato et al. 2011; Li et al. 2015) and functions

(Tang et al. 2011; Qu et al. 2012; Wei et al. 2012; Li et al.

2014). However, few studies have evaluated promoters in
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Jatropha. The CURCIN promoter (CP1) and curcin-L

promoter (CP2) isolated from Jatropha have been char-

acterized in tobacco, in which CP1 is specifically active in

the seeds (Qin et al. 2009a), and CP2 is a leaf-specific

promoter induced by stresses (Qin et al. 2009b). The

JcNAC1 promoter is active in the roots, stems and leaves of

seedlings, and JcNAC1 promoter activity can be induced in

guard cells by drought (Qin et al. 2014). The JcSDP1

promoter is only active in Jatropha seeds, especially in the

endosperm (Kim et al. 2014). The JcMFT1 promoter is

highly active in transgenic Arabidopsis seeds and can be

induced by ABA in germinating seeds (Tao et al. 2014).

The JcUEP promoter could serve as an alternative to the

CaMV35S promoter for driving the constitutive overex-

pression of transgenes in Jatropha (Tao et al. 2015). It

needs more efforts to characterize more promoters in Jat-

ropha, which is one of the crucial regulation factors for

efficient expression of transgenes in Jatropha.

In this study, we focused on isolating a reproductive

tissue-specific promoter in Jatropha because the seed yield

can be improved by modifying the flowering trait (Pan and

Xu 2011; Chen et al. 2014; Pan et al. 2014). APETALA1

(AP1) is a MADS-domain transcription factor gene that

specifies floral meristem identity and functions as an

A-class gene involved in floral organ formation (Mandel

et al. 1992; Mena et al. 1995; Berbel et al. 2001; Litt and

Kramer 2010; Chi et al. 2011). In Arabidopsis, AP1 acts a

hub that mediates the switch from floral initiation to flower

formation (Kaufmann et al. 2010). Overexpression of

Arabidopsis AP1 in tomato and citrus results in early

flowering and a reduction of the generation time in trans-

genic plants (Pena et al. 2001; Ellul et al. 2004). As

expected, the Arabidopsis AP1 promoter is active in floral

primordia and young floral buds produced from primary

and secondary inflorescences (Chou et al. 2001; Guan et al.

2002); thus, it has been used as a flower-specific promoter

to analyze gene function in flowers or to modify flower

traits. The AP1 promoter directs the expression of the floral

regulatory gene SUPERMAN (SUP) in Arabidopsis and

tobacco, and the flowers of transgenic plants of both spe-

cies exhibit fewer floral organs, consistent with an effect of

SUP on cell proliferation (Yun et al. 2002). Expression of

the cytokinin synthesis gene IPT4 driven by the AP1 pro-

moter in Arabidopsis results in an increased flower number

(Li et al. 2010). In the horticultural plant torenia,

AP1:MYB24-SRDX transgenic plants produce open flowers

with wavy petals and normal leaves, whereas 35S:MYB24-

SRDX transgenic plants exhibit unopened flower buds and

glossy dark green leaves with curled margins (Sasaki et al.

2011). The use of flower-specific promoters has the

advantage of defining modifications in flowers rather than

other organs.

Here, we isolated the Jatropha curcas APETALA1

(JcAP1) promoter and characterized its activity in Ara-

bidopsis and Jatropha. In Arabidopsis, the JcAP1 promoter

was active only in inflorescence buds and anthers, and we

found that the -1313/-1057 region was essential for

promoter activity in inflorescence buds. However, in

addition to the inflorescence buds, the JcAP1 promoter was

also highly active in Jatropha seeds.

Materials and methods

Plant materials

Jatropha curcas plants cultivated in Xishuangbanna,

Yunnan Province, China, were used as previously descri-

bed (Pan and Xu 2011). The Arabidopsis thaliana Col-0

ecotype, employed for transformation was grown at 22 �C
with a 16 h light/8 h dark photoperiod.

qRT-PCR analysis in Jatropha

A cDNA sequence (GenBank accession no. KM610239) of

the APETALA1 (AP1) gene was identified from our Jat-

ropha flower cDNA library (Chen et al. 2014). Quantitative

reverse transcription-polymerase chain reaction (qRT-

PCR) was performed to examine the expression levels of

JcAP1 in various organs of adult Jatropha plants, including

the roots, stems, leaves, inflorescence buds, female flowers,

male flowers, pericarps and seeds at 42 days after polli-

nation (DAP). Total RNA was isolated (Ding et al. 2008)

and reverse transcribed using the PrimeScript� RT reagent

kit with gDNA Eraser (TAKARA). qRT-PCR was per-

formed with SYBR� Premix Ex TaqTM II (TAKARA)

using the Roche 480 real-time PCR detection system

(Roche Diagnostics). All of the gene expression data

obtained via qRT-PCR were normalized to the expression

of JcGAPDH. The primers used for qRT-PCR are listed in

Table 1.

Cloning of the 50 flanking region and determination

of the transcription start site of JcAP1

The 50 flanking region upstream of the translation start

codon of JcAP1 was isolated from Jatropha genomic

DNA through genome walking (Siebert et al. 1995). For

nested PCR, the JcAP1 gene-specific primers GSP1 and

GSP2 and the adaptor primers AP1 and AP2 were used.

The JcAP1 promoter was amplified via PCR and cloned

into the pGEM-T Easy vector for sequencing. The puta-

tive cis-acting elements of the JcAP1 promoter were

analyzed using the PLACE database (Higo et al. 1999).
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To identify the transcription start site of JcAP1, rapid

amplification of 50-cDNA ends (50-RACE) was performed

with total RNA from Jatropha male flowers using the

SMARTer� RACE 50/30 Kit (Clontech). The primers

employed for genome walking and 50-RACE are listed in

Table 1.

Construction of promoter-GUS fusions

To generate the JcAP1:GUS plasmid, XbaI and BamHI

were used to digest pBI101 (Jefferson et al. 1987) and the

pGEM-T Easy vector containing the 1.5 kb JcAP1 pro-

moter. The two fragments were linked using T4 ligase

(Promega). The resulting construct, JcAP1:GUS (Fig. 3b),

was transferred to Agrobacterium tumefaciens EHA105

and LBA4404 via electroporation (GenePulser Xcell, Bio-

Rad). Strain EHA105 harboring the construct was

employed to transform Arabidopsis; strain LBA4404 har-

boring the construct and pBI101 (promoterless, negative

control, NC) was employed to transform Jatropha.

Plant transformation

Jatropha transformation was performed as described by Fu

et al. (2015). After sterilization with 75 % (v/v) ethanol for

30 s, the mature seeds of Jatropha were sterilized with

10 % (v/v) sodium hypochlorite for 20 min. The embryos

were removed from the seeds, and cotyledon explants were

cut from the base of the cotyledons, leaving 3/4 of the

papery cotyledons for co-cultivation with Agrobacterium.

In co-cultivation experiments, 50 lM acetosyringone was

added to the MS-Jc1 medium (Pan et al. 2010). After

2 days of co-cultivation, the explants were cultured in MS-

Jc1 medium with 100 mg/L timentin for a 10-day recovery

period and then subcultured in shoot-inducing medium

(SIM, MS-Jc1 medium with 40 mg/L kanamycin and

100 mg/L timentin). After selection, the regenerated shoots

were transferred to rooting medium [RM, half strength (1/

2) MS medium with 0.2 mg/L IBA, 0.1 mg/L NAA and

100 mg/L timentin]. Finally, the putative Jatropha trans-

formants were examined via TAIL-PCR, and positive

Table 1 Sequences of the primers used in this study

Name Sequence (from 50 to 30) Feature

AP1 GTAATACGACTCACTATAGGGC Adaptor primer for genome walking

AP2 ACTATAGGGCACGCGTGGT Adaptor primer for genome walking

GSP1 TCAACTGAACCCTACCTCTACCCATT JcAP1 gene-specific primer for genome walking

GSP2 ACAGCCAAAACCCAAGAAAATACCGA JcAP1 gene-specific primer for genome walking

XB989 CAATCAAAGCAACCTCAGCATCACACA JcAP1 gene-specific primer for 50-RACE

XT95 GCTGCTAAGGCTGTTGGGAA JcGAPDH gene primer for qRT-PCR

XT96 GACATAGCCCAATATTCCCTTCAG JcGAPDH gene primer for qRT-PCR

XK714 GGGTTATTTTGAGGAAAGAAGAGGA JcAP1 gene primer for qRT-PCR

XK715 AAACAATCAAAGCAACCTCAGCATC JcAP1 gene primer for qRT-PCR

XT409 TGCTCTAGACTGTTACATATTACTATTA For cloning the full-length promoter and construction of JcAP1:GUS, added XbaI

site was underlined

XT412 CGCGGATCCTTCAACAAATATGTATAAAT For cloning the full-length promoter and construction of JcAP1:GUS, added BamHI

site was underlined

XK93 TGCTCTAGATTCCGTAAAACCTTTCCAA For construction of D1:GUS, added XbaI site was underlined

XK94 TGCTCTAGATTTTACGATGACGTGTAT For construction of D2:GUS, added XbaI site was underlined

XK95 TGCTCTAGACATTGTATTTGGCACTAA For construction of D3:GUS, added XbaI site was underlined

XK96 TGCTCTAGAAGTAAATGCTAAACGAAC For construction of D4:GUS, added XbaI site was underlined

XK97 TGCTCTAGAAATCCTATTTATAACCCTT For construction of D5:GUS, added XbaI site was underlined

XK314 GGATACCGAGGGGAATTTATGGAA For TAIL-PCR amplifying the T-DNA right flanking sequence

XK315 TGACCTTAGGCGACTTTTGAACG For TAIL-PCR amplifying the T-DNA right flanking sequence

XK316 CAGTTCCAAACGTAAAACGGCTTG For TAIL-PCR amplifying the T-DNA right flanking sequence

AD1 ASCWGNTSAGNTSAGG For TAIL-PCR amplifying the T-DNA right flanking sequence

AD2 TGNCASTCWGNANTCG For TAIL-PCR amplifying the T-DNA right flanking sequence

AD3 GWANCTNASTCGNGTT For TAIL-PCR amplifying the T-DNA right flanking sequence

AD4 TGNWCWGNTSANSACT For TAIL-PCR amplifying the T-DNA right flanking sequence

Planta (2016) 244:467–478 469

123



transgenic plants were cultivated in soil. Arabidopsis

transformation was performed through the floral dip

method (Clough and Bent 1998).

TAIL-PCR analysis

Thermal asymmetric interlaced PCR (TAIL-PCR) was

performed with genomic DNA isolated from the leaves of

the putative Jatropha transformants. The procedure was

conducted as described by Liu et al. (1995). Three specific

primers were designed based on the right border sequences

of the T-DNA of pBI101. Four arbitrary degenerate (AD)

primers (AD1, AD2, AD3 and AD4) and the T-DNA-

specific primers XK314, XK315 and XK316 were

employed to examine JcAP1:GUS transformants. The pri-

mers used for these assays are listed in Table 1. After the

tertiary reaction, the TAIL-PCR products were sequenced

and analyzed using the Jatropha Genome Database (http://

www.kazusa.or.jp/jatropha/).

Histochemical and fluorometric GUS assay

For histochemical GUS staining, various tissues of trans-

genic Jatropha and Arabidopsis were incubated in GUS

assay buffer with 50 mM sodium phosphate (pH 7.0),

0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6�3H2O, 0.5 %

Triton X-100 and 1 mM X-Gluc at 37 �C overnight, then

cleared in 70 % ethanol (Jefferson et al. 1987). The sam-

ples were examined via stereomicroscopy (Leica M80).

To examine the activity of the JcAP1 promoter in dif-

ferent tissues, a fluorometric GUS assay was performed

following the protocol described by Jefferson et al. (1987),

which was modified by adding 2 mM MUG to the reaction

buffer. Fluorescence was examined with a Gemini XPS

Microplate Spectrofluorometer (Molecular Devices Cor-

poration). The protein concentrations of the plant extracts

were measured using the Bradford method (1976).

Results

The expression pattern of JcAP1 in Jatropha

We identified a cDNA of AP1 (GenBank accession no.

KM610239) from our Jatropha flower cDNA library (Chen

et al. 2014). JcAP1 encodes a MADS-box transcription

factor that contains two conserved regions: a MADS-domain

and a K domain (Fig. 1a). JcAP1 is highly similar to AP1

homologs from other plant species, and it is most closely

related to PtAP1 from Populus trichocarpa (Fig. 1b).

To explore the expression pattern of JcAP1 in Jatropha,

qRT-PCR was performed with total RNAs extracted from

various tissues. The results indicated that JcAP1 is a

flower-specific gene that is predominantly expressed in

floral tissues, especially in inflorescence buds (Fig. 2).

Because most AP1 genes are involved in the development

of floral organs, we also examined JcAP1 expression in

each organ of male and female Jatropha flowers. As shown

in Fig. 2, JcAP1 was highly expressed in the sepals, while

the levels in the petals and stamens were low in male

flowers; in female flowers, the highest level was also found

in the sepals, which was approximately two times that in

the petals, and the expression level in the pistils was very

low. The expression pattern of JcAP1 in floral organs was

consistent with that of A-class genes in other plants (Coen

and Meyerowitz 1991; Litt and Kramer 2010).

Isolation and sequence analysis of the JcAP1

promoter

On the basis of expression data, a 1.5 kb JcAP1 promoter

fragment (-1313/?150) (GenBank accession no.

KM610240) was isolated from Jatropha by genome walking

(Siebert et al. 1995).The transcription start site, determined by

50-RACE, was located 150 nucleotides upstream of the

translation start codon of JcAP1 (Fig. 3a). The putative cis-

acting elements were analyzed using the PLACE database

(Higo et al. 1999). The JcAP1 promoter sequence and putative

plant regulatory elements are shown in Fig. 3a. The analysis

revealed that the JcAP1 promoter contains aCArGbox,which

acts as a binding site for MADS-box proteins and is an

important element mediating the regulatory effect onMADS-

boxgenes (Tilly et al. 1998).Another important element of the

promoter is a binding site (CCAATGT) for the LEAFY pro-

tein, which is a transcriptional factor that activates AP1

expression inArabidopsis (Wagner et al. 1999). This promoter

also contained some pollen-specific elements, including the

POLLEN1LELAT52 motif and the GTGANTG10 motif,

which are essential for the pollen-specific expression of

tomato LAT52 and tobacco g10, respectively (Twell et al.

1991; Muschietti et al. 1994; Rogers et al. 2001).

Characterization of JcAP1 promoter activity

in transgenic Arabidopsis

To test the activity of the promoter, JcAP1:GUS was

transformed into Arabidopsis for preliminary analysis.

GUS staining was examined in the T2 generation of five

independent transgenic lines. The results showed that GUS

activity was first detectable in the inflorescence buds and

then in the anthers where pollen staining was intense

(Fig. 4). The staining results in transgenic Arabidopsis

indicated that the activity of the JcAP1 promoter was

confined to flowers; however, the observed activity was not

consistent with JcAP1 expression in Jatropha, which was

abundant in the sepals rather than the stamens (Fig. 2).
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This result led us to hypothesize that the pollen-specific

elements present in the JcAP1 promoter region may be

hyperactive in the heterogeneous expression system.

Deletion analysis of the JcAP1 promoter

in transgenic Arabidopsis

A series of 50 deletions of the JcAP1 promoter (Fig. 5a)

were generated to analyze the regulatory effect of different

regions of the promoter. After a histochemical GUS assay,

we found that compared with the full-length promoter,

GUS activity could not be detected in the inflorescence

buds of all five deletions (D1–D5), whereas staining was

still observed in the anthers, except in the D5 (Fig. 5b).

The disappearance of GUS activity in the inflorescence

buds of plants transformed with the D1 construct indicated

that the -1313/-1057 region is essential for inflorescence

bud specificity.

Fig. 1 A comparison of JcAP1

and its homologs. a Alignment

of the deduced amino acid

sequence of JcAP1 (accession

No. KM610239) with that of

Arabidopsis thaliana AP1

(accession No. CAA78909),

FUL (accession No.

NP_568929) and AP3

(accession No. BAA04665);

Vitis vinifera VvAP1 (accession

No. NP_001268210) and

VvAP3 (accession No.

ABN71371); Citrus sinensis

CsAP1 (accession No.

NP_001275828); Populus

trichocarpa PtAP1 (accession

No. XP_002311353); and

Populus tomentosa PtAP3

(accession No. AAQ83493).

Identically and partially

conserved amino acid sequences

are shown in black and gray,

respectively. The conserved

regions, MADS-domain and K

domain of JcAP1 are indicated

with overlining. b Phylogenetic

analysis of JcAP1 and its

homologs. The tree was

constructed using MEGA 5.0

software and the neighbor-

joining (N-J) method. The

unrooted N-J dendrogram was

generated from an alignment of

the deduced amino acids with

the ClustalW program. One

thousand replicates were used

for the bootstrap analysis. The

scale bar indicates the average

number of substitutions per site
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To further investigate the regions of the JcAP1 promoter

involved in the regulation of anther-specific activity, we

detected GUS expression in the anthers of plants trans-

formed with constructs containing the full-length sequence

and deletions of the JcAP1 promoter. As shown in Fig. 5a,

removing the -1313/-1057 region resulted in an increase

in GUS expression for all of the deletions except for the

shortest (D5), and D1 exhibited the highest expression

level. This result indicated that the -1313/-1057region

represses the activity of the JcAP1 promoter in anthers.

Deletion of the -1057/-796 region from D1 to produce

D2 led to a reduction of the GUS expression level, while

further deletion to position -521 (D3) resulted in almost

the same expression level observed for D2. Removal of the

-521/-242 fragment from D3 to produce D4 caused a

further decrease in the GUS expression level. Consistent

with the GUS staining results, a fluorometric GUS assay

revealed very low GUS activity for D5 (Fig. 5a, right

panel). These results suggested that the -1057/-796 and

-521/?19 regions are capable of inducing JcAP1 pro-

moter activity in anthers, while the -796/-521 region

shows no significant effects.

Characterization of JcAP1 promoter activity

in transgenic Jatropha

Following evaluation in Arabidopsis, the JcAP1:GUS

construct was transformed into Jatropha to characterize the

activity of the JcAP1 promoter. Transformed plantlets were

generated via kanamycin selection and validated through

PCR amplification. Then, the PCR-positive transformants

were examined via TAIL-PCR to confirm stable transgene

integration. The T-DNA right border insert from pBI101

was used for integration analysis. The sequences of the

T-DNA integration sites (i.e., the T-DNA/Jatropha geno-

mic DNA junction regions) obtained from four transfor-

mant events (B1, B5, B12, and B14) selected randomly are

listed below the sequence of the T-DNA right border of

pBI101 in Table 2. The results showed that either the entire

T-DNA right border sequence (B1 and B5) or part of it

(B12 and B14) had been lost and that the transgenes were

integrated into the genome of Jatropha transformants. In

addition, the integration sites in the Jatropha genome were

different between different insertion events, indicating that

the plants were independent lines for the transformation

event. The transgenic plantlets were grown in soil for

further analysis.

A histochemical GUS assay was first performed on

regenerated transgenic shoots, and no GUS staining was

observed (data not shown). After the transgenic plantlets

had grown into the adult plants, various tissues, including

roots, stems, young and mature leaves, shoot apices,

inflorescence buds, female and male flowers, fruits at 12

DAP and seeds at 25 DAP, were collected for histochem-

ical GUS assay. The results (Fig. 6) showed that GUS

staining was strong in the shoot apices, inflorescence buds,

male flowers and seeds; weak in the stems and female

flowers, and absent from the roots, leaves and pericarps. No

GUS staining was detected in the negative control. In male

flowers, the anther was also stained (Fig. 6), which is

consistent with the results from transgenic Arabidopsis

(Fig. 4c). Thus, the activity of the JcAP1 promoter in

anthers was not caused by the previously described

heterogeneous expression. This result demonstrated that

the JcAP1 promoter isolated here is active in anthers.

Furthermore, the JcAP1 promoter is active in shoot apices

and seeds, differing from the expectation of expression

restricted to inflorescence buds and flowers.

Next, we compared JcAP1 promoter activity in different

tissues of adult Jatropha plants via a fluorometric GUS

assay. Tissues from five independent lines of the T0 gen-

eration were used for detection, including the roots, stems,

young and mature leaves, shoot apices, inflorescence buds,

female and male flowers, fruits at 12 DAP, pericarps, and

seeds at 25 DAP. As shown in Fig. 7, the highest GUS

expression level was detected in inflorescence buds, fol-

lowed by the seeds at 25 DAP. The expression levels in

shoot apices and male flowers were approximately equal

but were less than half of the levels observed in seeds at 25

DAP. Although all four tissues exhibited clearly visible

GUS staining, activity differed from the tissues. Consistent

with the GUS staining results, fluorometric GUS activity in

the stems, female flowers and fruits (12 DAP) was lower

than in the shoot apices and male flowers. These results

Fig. 2 Expression pattern of JcAP1 in Jatropha. Samples from adult

plants: roots (R), stems (S), young leaves (YL), mature leaves (ML),

inflorescence buds (IB), female flowers (FF), male flowers (MF),

pericarps at 42 DAP (Pp 42 d), seeds at 42 DAP (Sd 42 d), male

sepals (MS), male petals (MP), stamens (St), female sepals (FS),

female petals (FP) and pistils (Pi). Equivalent qRT-PCR results were

obtained from duplicate biological replicates. The error bars denote

the SD from three technical replicates. The values were normalized to

the expression of the reference gene JcGAPDH (Zhang et al. 2013)
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Fig. 3 JcAP1 promoter

sequence and promoter reporter

gene construct. a Nucleotide

sequence of the JcAP1

promoter. The transcription start

site (?1) is in bold and italic.

The start codon ATG is in bold

and boxed. Putative regulatory

elements on both strands are

shown in bold and underlined.

b Schematic representation of

the T-DNA regions of the

JcAP1:GUS binary vector used

for transformation

Fig. 4 Histochemical GUS staining of transgenic Arabidopsis harboring the JcAP1:GUS fusion. a, b Inflorescence buds, c flowers. AI apical

inflorescence buds, LI lateral inflorescence buds, An anthers. All bars are 0.5 mm
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indicated that the JcAP1 promoter is primarily active in

inflorescence buds and seeds (25 DAP).

Discussion

AP1 is a MADS-box transcription factor that plays an

important role in the initiation of flowering and floral organ

formation (Kotoda et al. 2002; Murai et al. 2003; Huang

et al. 2014). AP1 is first expressed in floral meristems and

continues to be expressed in the outer whorls of the flower.

In maize, ZAP1 expression is restricted to the inflores-

cences and non-reproductive organs of male and female

flowers (Mena et al. 1995). Similar to ZAP1, a high

expression level of JcAP1 was first detected in inflores-

cence buds and then in male and female sepals (Fig. 2).

However, the expressions of other AP1 orthologs exhibit

different patterns. CsAP1 from Citrus sinensis is expressed

not only in the outer whorls of the sepal and petal, but also

in the inner whorls of the stamen and carpel (Pillitteri et al.

2004). A hybrid aspen LAP1 was found to be expressed at a

high level in the apex and may function mainly in seasonal

growth rather than flowering (Azeez et al. 2014). In this

study, because JcAP1 was shown to be flower-specific, we

isolated its 50-flanking region as a tissue-specific promoter

and characterized this region in transgenic Arabidopsis and

Jatropha.

The JcAP1 promoter showed marked activity in inflo-

rescence buds in both transgenic Arabidopsis (Fig. 4) and

Jatropha (Fig. 7), which was consistent with the JcAP1

expression pattern in Jatropha (Fig. 2). Through deletion

analysis, we found that the -1313/-1057 region is

Fig. 5 Deletion analysis of the

JcAP1 promoter. a Schematic

representation of different

JcAP1 promoter deletions (left

panel) and the fluorometric

assay of GUS activity in the

anthers (right panel). FL full-

length JcAP1 promoter, D1–D5

five deletions. GTGA:

GTGANTG10 motif (black

vertical bars); AGAAA:

POLLEN1LELAT52 motif

(gray vertical bars). The

presented GUS activity values

are the averages from five

independent transgenic lines

from the T2 generation, and the

error bars denote the SD. The

GUS activities are expressed as

nmol of 4-MU produced per

min per mg of protein and were

measured three times.

b Histochemical GUS staining

of transgenic Arabidopsis

harboring deletions. If

inflorescences, F flowers. All

bars are 1 mm

Table 2 Sequence analysis of the T-DNA right border (underlined) and Jatropha genomic DNA (bold)

Plasmid No.* Right boundary T-DNA/ plant genomic DNA junctions

pBI101 --CAGTTTAAACTATCAGTGTTTGACAGGATATATTGGCGGGTAAAC--

pJcAP1:GUS B1 --TCGTTTCCCGCCTTCAGTTTAAAGAAGAGCCGGACTGAAACCGGCTAACTGCCA--

B5 --TGGCTCCTTCAACGTTGCGGTTCCCTTACCACTCGACTCATCGCAAGAGAAAAAT--

B12 --CAGTTTAAACTATCAGTGTTTGAGTATGTATCTTCCTTTACACTTCCTAGTTCCTA--

B14 --CAGTTTAAACTATCAGTGTTTGATCTTTATGTACGTAAAGTCATTAAGCATTCCTTT--

* Serial number of transgenic Jatropha plants transformed with JcAP1:GUS
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essential for JcAP1 promoter activity in inflorescence buds.

In addition, we identified a CArG box in this region, which

is an important element mediating the regulatory effect of

MADS-box proteins. In Arabidopsis, APETALA3 (AP3) is

a MADS-box gene that functions in the control of petal and

stamen development (Kramer et al. 1998). Three CArG

boxes in the AP3 promoter mediate both positive and

negative effects on the establishment and maintenance of

the AP3 expression pattern (Tilly et al. 1998). Therefore,

the absence of the CArG box in deletion constructs of the

JcAP1 promoter (D1–D5, Fig. 5a) may completely abolish

inflorescence bud activity. In floral organs, JcAP1 was

expressed highly in sepals but was expressed at low levels

in stamens. However, GUS staining was not observed in

either Arabidopsis (Fig. 4c) or Jatropha sepals (Fig. 6); on

the contrary, the anthers were stained, and Arabidopsis

pollen showed intense staining (Fig. 4c). We also noted

that the JcAP1 promoter contained some pollen-specific

elements, including six POLLEN1LELAT52 motifs and

five GTGANTG10 motifs, and promoter activity in the

anthers decreased with the step-down numbers of these

elements. In particular, deleting the -1057/-796 region,

containing two GTGANTG10 motifs, and the -521/?19

region, containing five POLLEN1LELAT52 motifs, caused

considerable loss of activity in the anthers (Fig. 5). Thus,

we assumed that these elements confer the pollen-specific

activity of the JcAP1 promoter. Moreover, when the

-1313/-1057 region was removed, JcAP1 promoter

activity in the anthers increased until the pollen-specific

elements had been completely deleted; suggesting that the

CArG box in the -1313/-1057 region repressed the pol-

len-specific elements. Similarly, the third CArG box

(CArG3) in the Arabidopsis AP3 promoter is required to

maintain a low level of gene expression during early floral

stages, and the GUS expression level was found to increase

when CArG3 was mutated (Tilly et al. 1998).

Fig. 6 Histochemical GUS staining in various tissues of adult

transgenic Jatropha plants (T0) harboring JcAP1:GUS and pBI101

(NC non-transgenic control). R roots, St stems, YL young leaves, ML

mature leaves, SA shoot apices, IB inflorescence buds, FF female

flowers, MF male flowers, Ft fruits at 12 DAP, Sd seeds at 25 DAP.

All bars are 2 mm

Fig. 7 Fluorometric assay of GUS activity in adult transgenic

Jatropha plants (T0). R roots, St stems, YL young leaves, ML mature

leaves, SA shoot apices, IB inflorescence buds, MF male flowers, FF

female flowers, Ft fruits at 12 DAP, Pp pericarps at 25 DAP, Sd seeds

at 25 DAP. The presented values are the averages from five

independent transgenic lines, and the error bars denote the SD.

GUS activities were measured three times

Planta (2016) 244:467–478 475
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In addition, the JcAP1 promoter was unexpectedly

active in regions beyond the flowers, showing a high

expression level in the seeds of transgenic Jatropha. This

result is consistent with seed-specific elements being pre-

sent in this promoter, such as the E box (Kawagoe and

Murai 1992; Stålberg et al. 1996), the DOF core sequence

(Yanagisawa and Schmidt 1999), and the SEF motif

(Lessard et al. 1991). The JcAP1 expression, however, was

not detected in Jatropha seeds (Fig. 2). Similarly, the

920 bp potato ubi3 promoter was shown to be insufficient

to achieve wound- and ethylene-dependent activation

although native ubi3 expression in tubes is induced by

wounding and ethylene treatments (Garbarino and Belknap

1994). Moreover, the gene internal sequences may also

take part in the regulation of gene expression. The parsley

4CL-1 gene expression was developmentally regulated by

light and stresses, such as pathogen infection, UV-irradia-

tion and wounding. But the 4CL-1 promoter alone was only

sufficient to direct gene cell-specific expression. Actually,

the exonic sequences were required, in addition to the

promoter, for the 4CL-1 gene expression induced by fungal

elicitor or light treatment (Douglas et al. 1991). The Ara-

bidopsis ACT2 promoter could not confer the strong

expression of ACT2 throughout the vegetative tissues

unless it was associated with the first intron (Jeong et al.

2009). Hence, because an isolated promoter may not reveal

the full expression pattern of a gene, it is necessary to

evaluate promoter activity in target plant species.

Taken together, our findings indicate that the coopera-

tion of multiple cis-acting elements in the JcAP1 promoter

is required to confer accurate activity in transgenic plants.

Although the 1.5 kb JcAP1 promoter did not exhibit the

same expression pattern in transgenic Arabidopsis and

Jatropha as was observed for JcAP1 mRNA in Jatropha

plants, this region could be used as a reproductive tissue-

specific promoter in transgenic studies of Jatropha.
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