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ABSTRACT

Motivation: Next Generation Sequencing (NGS) technologies
generate large amounts of short read data for many different
organisms. The fact that NGS reads are generally short makes
it challenging to assemble the reads and reconstruct the original
genome sequence. For clustering genomes using such NGS
data, word-count based alignment-free sequence comparison is a
promising approach, but for this approach, the underlying expected
word counts are essential.

A plausible model for this underlying distribution of word counts

is given through modelling the DNA sequence as a Markov chain
(MC). For single long sequences, efficient statistics are available to
estimate the order of MCs and the transition probability matrix for
the sequences. As NGS data do not provide a single long sequence,
inference methods on Markovian properties of sequences based on
single long sequences cannot be directly used for NGS short read
data.
Results: Here we derive a normal approximation for such word
counts. We also show that the traditional Chi-square statistic has an
approximate gamma distribution, using the Lander-Waterman model
for physical mapping. We propose several methods to estimate the
order of the MC based on NGS reads and evaluate them using
simulations.

We illustrate the applications of our results by clustering genomic
sequences of several vertebrate and tree species based on NGS
reads using alignment-free sequence dissimilarity measures. We find
that the estimated order of the MC has a considerable effect on the
clustering results, and that the clustering results that use a MC of the
estimated order give a plausible clustering of the species.

*to whom correspondence should be addressed

Availability: Our implementation of the statistics developed here is
available as R package “NGS.MC” at http://www—rcf.usc.edu/
“fsun/Programs/NGS-MC/NGS-MC.html.

Contact: fsun@usc.edu

1 INTRODUCTION

NGS technologies generate large amounts of overlapping short
read data for many different organisms; for example a read is a
subsequence of less than 400 bps for Illumina and 700 bps for
454 sequencing technologies, and can sometimes be much shorter.
The fact that NGS reads are generally short makes it challenging to
reconstruct the original genome sequence.

Recently several word-count based alignment-free sequence
comparison methods have been applied to infer the relationship
among different species (Yi and Jin, 2013; Song er al., 2013)
and metagenomic samples (Jiang et al., 2012; Wang et al., 2014;
Behnam and Smith, 2014; Hurwitz et al., 2014) based on NGS
reads without assembly. Our alignment-free sequence dissimilarity
measures, d5 and dg (Song et al., 2013, 2014), and their variants
(Liu et al., 2011; Behnam et al., 2013; Ren et al., 2013) have
shown promise. These methods require the knowledge about
the approximate distribution of word counts in the underlying
sequences. While a model which assumes that all letters in the
sequence are equally likely is relatively straightforward to analyse,
see Reinert et al. (2009), a Markov model for the underlying
sequences is more realistic.

Markov chains (MC) have been widely used to model molecular
sequences (Almagor, 1983) with many applications including the
study of dependencies between the bases (Blaisdell, 1985), the
enrichment and depletion of certain word patterns (Pevzner et al.,
1989), prediction of occurrences of long word patterns from short
patterns (Hong, 1990; Arnold ez al., 1988), and the detection of
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signals in introns (Avery, 1987). Narlikar et al. (2013) studied
the effect of the order of MCs on several biological problems
including phylogenetic analysis, assignment of sequence fragments
to different genomes in metagnomic studies, motif discovery, and
functional classification of promoters. These applications showed
the importance of accurate specification of the order of MCs.
Reliable estimators for the order of the MC and the transition
probability matrix based on the sequence data are crucial.

Based on relatively long molecular sequences, for a general
finite state MC sequence of letters from a finite alphabet A =
{1,2,---, L} of size L, Hoel (1954) showed, under the hypothesis
that the long sequence follows a (k — 2)-th order MC, that twice
the log-likelihood ratio of the probability of the sequence under a
(k—1)-th order MC versus that under the (k—2)-th order MC model
follows approximately a x 2-distribution with df ,, = (L — 1)2L*~2
degrees of freedom under general conditions. He also approximated
the log-likelihood ratio by the Pearson-type statistic

_ 2
Sy = Z M7 1)

weAk Ew

which is also approximately x2-distributed with the same degrees
of freedom. Here, w = wjws - - - wi denotes a k-word formed of
letters w; € A, "W = wa- Wk, W = wiwsz-- - Wk—1, and

"W~ = wsz---wk_1; Nw denotes the count of the word w in the
N

N _ . .
— %= is the estimated expected count

of w if the sequence is genev;ated by a MC of order k — 2. Here
k > 3; see also Avery and Henderson (1999) for a detailed study,
Billingsley (1961a,b) for an an excellent exposition of statistical
issues related to MCs, as well as Waterman (1995); Reinert et al.
(2000, 2005); Ewens and Grant (2005) for applications to sequence
analysis.

The Chi-square statistic (1) and the log-likelihood ratio statistics
can be used to test the order of a MC, using all k-words
w € A*. When a particular order of MC is rejected, we can
identify particular word patterns that are exceptional, through the
approximate distribution of NV,,. The approximate distributions
of Ny in long sequences is well understood, see for example
Waterman (1995); Reinert et al. (2005, 2000). In particular, suppose
that the sequence follows a stationary (k — 2)-th order MC and let

A2 N*w Nw*
— By (1- 1— .
were () ()

Zw = = (2)

sequence, and Ey =

For

Theorem 6.4.2 in Reinert et al. (2005) gives that, as sequence length
goes to infinity, for all real values z, P(Zw < x) — ®(x), where ®
denotes the cumulative distribution function of a standard normal
variable. We also say that Zy, converges to the standard normal
distribution N (0, 1) in distribution. This asymptotic result can then
be used to find exceptional words in long sequences.

Given an NGS short read sample, it is tempting to use the test
statistic Sj, defined in (1) to test the order of a MC by simply
counting the number of the occurrences of words in short read
data. However, as the short reads from NGS data are sampled
randomly from the genome, some parts of the genome are possibly
not sampled and some parts are possibly sampled extensively. The

sampling process introduces additional randomness to the statistic,
and makes Sy deviate from its traditional x* -distribution. Similarly,
the approximate distribution of Z,, given in (2) will be different
from the standard normal distribution.

In this paper, we study these approximate distributions, both
theoretically and by simulations. First we extend the statistics Sy,
and Zy, for a MC sequence to S and ZE for the NGS read
data. Our underlying model for the distribution of reads along the
genome is the potentially inhomogeneous Lander-Waterman model
for physical mapping (Lander and Waterman, 1988). We discover
that for a set of short reads sampled from a (k — 2)-th order
MC sequence, the statistic Si® follows approximately a gamma
distribution with shape parameter df, /2 and scale parameter 2d,
where d is a factor related to the distribution of the reads along the
genome. We also show that, with the same factor d, the distribution
of the single word statistic ZZ /+/d tends to the standard normal
distribution. Based on the theoretical results, we introduce an
estimator for the order of the MC using NGS data. For practical
purposes, we also give an estimator for the factor d when the
underlying reads sampling distribution is unknown. To the best of
our knowledge, this is the first study of the Markovian properties of
molecular sequences based on NGS read data.

To illustrate our theoretical results and our estimators, we first
carry out a simulation study based on transition probability matrices
which are estimated from cis-regulatory module (CRM) DNA
sequences, and insert repeats. We simulate different read lengths,
numbers of reads, inhomogeneous sampling, as well as sequencing
errors, and we include a regime where the sampling rate depends on
the GC content. If the GC bias is not very strong or the sequencing
depth is not very low, then the simulation results agree with our
theoretical predictions despite the theoretical assumptions being
slightly violated.

Next we apply our methods to cluster 28 vertebrate species using
our alignment-free dissimilarity measures d3 and d5 under different
MC models which are estimated from NGS read samples. The
estimated orders based on NGS data without assembly are found
to be consistent with those inferred directly from the long genome
sequences. The clustering performs best when using MCs around
the estimated order. Applying the same analysis to 13 tropical tree
species whose genomes are unknown, based on their NGS read
samples, the most plausible clustering is achieved when using a MC
model of order close to the one estimated from the NGS reads.

The paper is organized as follows. The “Methods” section
contains the probabilistic models of generating the MC sequence
and sampling the short reads, as well as the theorem for the
approximate distributions of Sf¥ and ZI for NGS data. This
theorem is used to derive our estimators for the order of the MC and
for the factor d. In the “Results” section, we first provide extensive
simulation studies including the comparison of the theoretical
approximate distributions and the simulated results for S¥* and ZZ,
the effect of inhomogeneous sampling and sequencing errors, the
efficiency of the estimator of the factor d, and the evaluations of
the methods for estimating the MC order. Second, we estimate the
orders of the MCs for 28 vertebrate species based on the simulated
whole genome NGS samples. We then use our dissimilarity
measures d5 and d5 to cluster the NGS samples of the 28 species
under different MC orders to see the effect on the performance of the
clustering. The applications show that our new methods are effective
for the inference of relationships among sequences based on NGS

9T0Z ‘9 8uUnr Uo (99.1X) UepieD ealuelog [ea1dou | euuregBuenys!x T /B10'SeuInopiojx0'soiiewio juiold//:dny woij pepeojumod


http://bioinformatics.oxfordjournals.org/

reads. Finally, we use our methods to study the relationships among
13 tree species whose complete genomic sequences as well as their
phylogenetic relationships are unknown. Our clustering results are
consistent with the physical characteristics of the tree species. The
paper concludes with some discussion of the study.

2 METHODS

2.1 Probabilistic modeling of a MC sequence and
random sampling of the reads using NGS

In NGS, a large number of reads are randomly sampled from the
genome. Hence two random processes are involved in the generation
of the short read data: the generation of the underlying genome
sequence and the random sampling of the reads.

We use an r-th order homogeneous ergodic MC to model the
underlying genome sequence with each letter taking values in a
finite alphabet set A of size L. Since our study is based on genomic
sequences, L = 4. As in Lander and Waterman (1988); Zhang et al.
(2008); Zhai et al. (2012); Daley and Smith (2013); Simpson (2014),
we assume that the genome is continuous and that the distribution
of reads along the genome follows a potentially inhomogeneous
Poisson process with rate ¢(z) at position x. If ¢(x) = ¢ for all z,
we refer to the sampling of the reads as homogeneous. We assume
that all sampled reads have the same length of 5 bps. A total of M
reads are independently sampled from the genome of length G bps.

We extend the statistics Sy and Zy, in (1) and (2) to NGS short
read data accordingly. Let N be the number of occurrences of the
k-word w in the short read data, where the superscript R refers to
the “read” data, and define

R R\2
R _ (Nw — EW)
Sit = ;k e A3)
weAk
Ny — Eq
T = —E 4
w
where
NE NE_ NE NE_
R ~R\2 R
Ey = 7Nv§wj’ and (6w)” = Ey (1 ~NE Wf 1-— Nng7

We have the following theorem on the approximate distributions
of SE and ZE; the proof is given in the Supplementary Materials.
Note that for each read we discard the last £ — 1 positions as they
would lead to words of length less than k; the error made with this
approximation is asymptotically negligible when k is small relative

to 3.

THEOREM 1. Assume that the underlying genome follows a
(k — 2)-th order MC which assigns non-zero probability to every k-
word w. Let S ,f and ZE be defined as in (3) and (4), respectively.
Suppose that the genome of length G can be divided into (not
necessarily contiguous) regions with constant coverage r; for the
i-th region, so that every base is covered exactly r; times, based
on the first B — k + 1 positions of the reads. Let G; be the
length of the i-th region that changes with G in a way such that

limg_ oo Gi/G = fi > 0 for the i-th region, 1 = 1,2,---. Let

2

Then, as G — oo,

a) For each k-word w, in distribution, ZE //d — N(0,1).

b) The statistic S&/d has an approximate x*-distribution with
df,, = (L — 1)2L*72 degrees of freedom; equivalently, the
statistic ST has an approximate gamma distribution with shape
parameter df ;. /2 and scale parameter 2d.

If the M reads are sampled homogeneously along the genome
with coverage c based on the first 5 — k 4+ 1 positions of the
reads along the genome, i.e. ¢ = Méﬁ_;,:fll), the Lander-Waterman
formula (Lander and Waterman, 1988) shows that the fraction of
genome covered 7; = i times is f; = exp(—c)c’/i!. Under this
assumption, we obtain

d— 217,2]02 o A+e
E i ’Lfl C
The results in Theorem 1 continue to hold when taking d = ¢ + 1.

In the Lander-Waterman model for physical mapping (Lander and
Waterman, 1988), the factor ¢ = M§B s the coverage of the genome.
Hence we refer to d from (5) as the effective coverage of the reads
along the genome based on the first 5 — k4 1 positions of each read.

=c+1.

2.2 Estimating the order of the MC based on NGS
reads

Based on Theorem 1, we can estimate the order r of a MC sequence
using NGS reads. First, we test the null hypothesis that the sequence
follows an independent identically distributed (i.i.d; MC order = 0)
model. For a test at significance level «, if S3'/d is higher than the
1 — « quantile of the x?-distribution with df = (L — 1)* degrees
of freedom, the i.i.d hypothesis is rejected. If this null hypothesis is
rejected, then here we propose an estimator for the order of a MC; it
is an analog of a corresponding established estimator of MC orders
based on long sequences that has been shown to be effective. In the
Supplementary Materials we present four related estimators as well

" as estimators based on the AIC and BIC information criteria; the

one presented here has the best performance in simulation studies.

We assume that the word length £ > 2 and that the assumptions
of Theorem 1 are satisfied. Then, for &k > r + 2, Sff/d has
approximately a x2-distribution with (L — 1)2L*~2 degrees of
freedom. If k& < 7 + 2, then S&/d will typically be larger than
expected from this y2-distribution. For k > r + 2, the law of large
Sl?+1
LSE
the ratio will be much larger than 1 in the limit. Therefore we can
estimate r as follows:

numbers gives that — 1 for G — oo; if K < r 4 2 then

T .
5, = argminy, S . (6)
k

. Sk
In general, we want the value of miny, {%} to be very small,
k

e.g, less than 0.01.
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Using the law of large numbers it can be shown that under our
assumptions this estimator is consistent, in the sense that 7's, tends
to r in probability as G tends to infinity.

2.3 Estimating the effective coverage d

Often the effective coverage d is not known and we would like to
estimate the effective coverage d using NGS short read data. From
Theorem 1, we can see that, under the general conditions stated in
the theorem, (Z2)? /d follows a x>-distribution with one degree of
freedom. Since the median of the x2-distribution with one degree of
freedom is about 0.456, we can use the scaled median as a robust
estimator for d;

d = median{(Z5)?, w e A*}1/0.456. )

When we assume that the underlying long sequence follows a MC
of order at most m, we use (m + 2)-words to estimate d using (7).

Note that for an i.i.d. model sequence, the set of 2-words would
not yield meaningful results as there are only 16 different 2-words
and the median based on 16 numbers is generally not reliable. As
an underlying genome sequence following an r-th order MC can
also be seen as an (r + 1)-th, (r 4 2)-th, ..., and higher order MC
sequence, we can use k-words with relatively large & (> r + 2) to
estimate the factor d, if the maximum order of a MC is unknown
beforehand.

2.4 Simulation study

For the simulation study, we first generate MCs of different orders.
For realistic parameter values, the transition probability matrices
of the MCs are based on real cis-regulatory module (CRM) DNA
sequences in mouse forebrain from Blow ez al. (2010). We use CRM
sequences here because CRM sequences are often used to study
the effectiveness of alignment-free sequence dissimilarity measures
(Goke et al., 2012; Song et al., 2014; Ren et al., 2013). To take into
consideration that in real genomic sequences, many repeat regions
are present, we insert repeats into the generated MCs. We simulate
NGS data by sampling a varying number of reads of different
lengths from the MC, varying genome length as well as coverage.

We include homogeneous and inhomogeneous sampling of the
reads as well as sequencing errors. We also let the sampling rate of
the reads depend on the GC content of the fragments based on data
from the current sequencing technologies (Benjamini and Speed,
2012). We set the sequencing error rate at 10%, which is relatively
high compared to the true sequencing error rate in real sequencing
in order to clearly distinguish among the estimators with regards
to their robustness to sequencing errors. When a sequencing error
occurs at a position, the nucleotide base is changed to one of the
other three nucleotides with equal probability.

Once the NGS reads are generated, we calculate the statistics Si°
and Z‘,IE for each word w, the order estimator 75, and the estimator
for effective coverage d based on (7); each procedure is repeated
1000 times. In each repeat experiment, we let the order estimator
choose the model from 1st, 2nd, - - -, 5th order MCs; we estimate
the effective coverage d by (7), using 3-tuples for a first order MC,
and 4-tuples for a second order MC. The details are given in the
Supplementary Materials.

2.5 Applications to the study of relationships among
organisms

We test our methods on real and simulated NGS data from 28
vertebrate species whose complete genomic sequences are available
and that are comprehensively studied in (Miller et al., 2007;
Karolchik et al., 2008). We download the genomes of the 28
vertebrate species from UCSC Genome Browser, and then use
MetaSim (Richter et al., 2008) to simulate reads from each of the
28 vertebrate species. In simulations the accuracy of the order
estimation increases with read coverage. To reflect a worst-case
scenario, we set the read coverage to be 1 as a lower bound for
the performance although the current sequencing technology can
generate data with very high read coverage. We set MetaSim to
generate reads of length 62bp under the error rate which is estimated
by Illumina in our simulations.

To estimate the order of MC based on the NGS sample for each
of the 28 species, we apply the order estimator 75, in (6); there
is no sharp ratio transition found over £k = 2,--- , 14. Given that
real genomes consist of multiple types of regions (coding, non-
coding and regulatory regions) and each type may fit to different
MC models, the result indicates that no suitable MC model can
adequately fit all the patterns in the genome. Instead, we fit the
data with a MC model that can explain the majority (say 80%)
of the word patterns in the genome. Motivated by the normal
approximation of a particular word statistic in Theorem 1, we study
the fraction of k-words whose occurrences can be explained using
the statistic (Z%)?/d by comparison to a x>-distribution with one
degree of freedom with type I error 0.01. We estimate the order of
MC to be the smallest k — 2 under which more than 80% of k-words
can be explained by the (k — 2)-th order MC.

To cluster the organisms, we use the inferred MC models to
estimate the expected number of occurrences of word patterns
and then study the relationships among the organisms using
our dissimilarity measures d5 and d5. We briefly present their
definitions below, please see Song et al. (2013, 2014) for details.
Then we apply a similar approach to study the relationships among
13 tree species with NGS reads, for which neither the complete
genome sequences nor their relationships are known. To estimate
the unknown effective coverage d using k-words by (7), we let k to
be relatively large and use d as the value at which the estimated d
stabilizes as k increases.

2.6 Alignment-free sequence comparison dissimilarity
measures

Consider two sets of NGS reads from two genomes. We use
superscripts (1) and (2) to denote the first and the second read set,
respectively. Suppose that M () reads of length 3 () are in the i-th
data set. Since the reads can come from either the forward strand
or the reverse strand of the genome in NGS, we supplement the
observed reads by their complements and refer to the joint set of
the reads and the complements as the read set.

Let N’ be the count of the word w in the i-th data set. We
define EN&f) to be the expected number of occurrences of word
w based on either the i.i.d model or a Markov model, EN\gf) =
MD(BD — k+ 1) (P& + p), where M@ (B — k + 1) is the
total number of k-word in the i-th sample, W is the complement of
word w, and p&? is the probability of word w in the i-th genome
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under a specific model. Then we define D3 and D5 as follows,

RO R D R

D3 = —W W ___ andD5 =
weak \/ ENY END

where ]\7‘5\}) = N&,i) — EN&,i), i = 1, 2. Further, the dissimilarity
measures d5 and dQS , ranging from O to 1, are defined as,

* 1 D3
d2=5 1— = ]
(&) (v?)
a > e
weAk ENw weak BNy
dS:l 1_ D3
S N B 7 ) B
(F)2\| weak (FP)%+(x8P)?

= 2
we Ak (N\Evl) +

For comparison, we also use a simplistic dissimilarity measure
based on the non-centered correlation of the word frequencies
S NOND
k
defined as dy = % 1-— weA

2 2
JVEM (v JWZA (v2)

3 RESULTS
3.1 Summary of simulation results

Due to page limitations, we summarize the simulation results here;
details are given in the Supplementary Materials. Our extensive
simulations show that the simulated mean, standard deviation and
distributions of Sf and ZE are very close to their corresponding
theoretical approximations given by Theorem 1. Both the effective
coverage and the MC order can be estimated accurately under the
parameter settings of the current sequencing technologies.

3.2 The relationship among 28 vertebrate species

Table S4 shows the estimated orders of MCs for a group of 28
vertebrate species that are studied in (Miller ez al., 2007; Karolchik
et al., 2008) based on simulated NGS short reads. For each of the 28
species, we compute the fraction of the k-words that have (Z‘,}f)2 / d
within the 99% of a x2-distribution with one degree of freedom, for
k=28,9,...,14. Using 80% as a threshold, we estimate the order
of MC for each species to be the smallest & — 2 under which the
fraction of words that can be explained by the (k — 2)-th order MC
is greater than the threshold.

Comparing our results with the results in Narlikar ez al. (2013),
where the order of MCs for a selection of vertebrate genomes was
estimated by AIC and BIC criteria using whole genome sequences,
we find that the estimated order based on NGS read data are almost
the same as that estimated based on the whole genome sequences in
Narlikar et al. (2013). Our proposed methods of estimating the order
of MC based on short reads of NGS data achieve the same accuracy
as that based on whole genome sequences.

For a given value of k, we compute ds and d5 using an r-th order
MC, r = 0 (i.i.d model),..., (k — 2) for each pair of species,
yielding a 28 x 28 pairwise dissimilarity matrix under each MC
model. To evaluate the dissimilarity measures, we use the pairwise

wear /(WD) + (V2)?

distance matrix obtained from Figure S1 in Miller et al. (2007)
as the gold standard for the dissimilarity between each pair of the
28 species; the matrix is given as Table S5 in the Supplementary
Materials. Note that the estimated orders of the 28 species range
from 7 to 11, and the average order is 10. To study the performance
of the dissimilarity measures under different orders of MC, we
choose k£ = 14 such that we can study the results under the MC
model with orders up to 12.

Table 1 shows Spearman’s rank correlation coefficient (SPCC)
between the standard distance and the dissimilarity estimated by
the da-type measures under MC models of various orders; higher
SPCC indicates better performance. Both measures, d5 and ds,
achieve their best results of SPCC=0.92 when using a MC of order
12. Note that using a simplistic dissimilarity measure ds only gives
SPCC=0.08.

In general both d3 and d5 obtain higher SPCC with the standard
matrix as the order of MC increases, except for d5 at order 9. In
particular, the measure d3 has negative correlation coefficient with
the standard distance under the i.i.d model. The SPCC becomes
stable when the order of the MC used for the analysis is close to 11,
the maximum estimated MC orders over the 28 species. Here d5 is
less affected by the order of the MC than d5. When the appropriate
order of MC is used, d3 and d5 perform similarly and much better
than da.

da-type | order=0 | order=5 | order=9 | order=10 | order=11 | order=12
ds -0.21 -0.16 0.85 0.89 0.90 0.92
dS 0.86 0.87 0.85 0.88 0.90 0.92
Table 1. The Spearman’s rank correlation coefficient (SPCC) between the
true distance matrix and the dissimilarity matrix by da-type dissimilarity
measures under MC models with order 0 (i.i.d), 5, 9, 10, 11 and 12. The
length of the k-tuple word is 14.

3.3 The relationship among 13 tropical tree species
with unknown reference genomes

We also apply our method to the 13 tree species based on the
NGS shotgun read data sets in Cannon et al. (2010). The reference
genome sequences for the 13 tree species are unknown. Our
objective is to cluster these tree species using d3 and d5 with MCs
for the sequences.

The estimated order of the MC for all the 13 tree species is 8.
We use the dissimilarity measures dj and d5 under various orders
of MC as the background model to cluster the 13 tree species from
their NGS reads. We choose k = 11 so that we explore the MC
with order up to 9. We use the Unweighted Pair Group Method with
Arithmetic Mean (UPGMA) to cluster the tree species.

The 13 trees species can be generally classified into two groups:
5 tree species from Moraceae and 8 tree species from Fagaceae.
The two Moraceaes, Ficus altissima and Ficus microcarpa, should
cluster together because they are known to be closely related and
are both large hemiepiphytic trees while the other three Moraceae
species are small dioecious shrubs. Within the Fagaceae group,
the two Castanopsis species should cluster together, and the five
Lithocarpus species should also form a subgroup. Trigonobalanus
doichangensis (Fagaceae) is an ancestral genus that is very
divergent from the rest of the family and has undergone considerable
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sequence evolution. It should not group within the class of
Castanopsis and Lithocarpus in Fagaceae.

Figure 1 shows the clustering results of the 13 tree species using
d5 under MCs of order 0 (i.i.d), 4, 8 and 9. The trees are built based
on all the reads. From the results we can see, under the i.i.d model,
Lithocarpus mixes up with Castanopsis; T. doichangensis can not
be separated from the rest of Fagaceae, while under the MC of
order greater than 4, 7. doichangensis is successfully separated from
the rest of the Fagaceae. Moreover, within the Moraceae group,
Ficus fistulas and Ficus langkokensis form a subgroup under the i.i.d
model, and they are separated under the MC with order greater than
4. While F langkokensis is the closest Maraceae to the Fagaceae
under 4th order MC, F. fistulosa becomes the closest species to the
Fagaceaes under 8th and 9th order MCs.

In order to see whether the clustering of the tree species can be
correctly inferred using only a portion of the shotgun read data, we
randomly sample 10% of the total read data for each tree species to
cluster them. To study the variation of the clusters due to random
sampling of the reads, we repeat the sampling process 30 times and
calculate the frequencies of each internal branch of the clustering
using all the reads occurring among the 30 clusterings. The number
on the branch refers to the frequency of the branch occurring among
the 30 clusterings based on random sampled 10% reads. Three
branches of the tree under MC of order 9 have frequencies of
occurrence less than 30. When using the MC of a very high order,
the clustering becomes unstable.

For the clustering results using d5, see Figure S7. Under MC
with all four orders, the two Castanopsis and the five Lithocarpus
species are grouped separately, and F. altissima (Moraceae) and
Fmicrocarpa (Moraceae) are clustered together. Under the i.i.d
model, T.doichangenesis (Fagaceae) is successfully separated from
Lithocarpus, but it is not the most outside species in the Fagaceae
group. When the MC order is greater than 4, T.doichangenesis
(Fagaceae) gets separated from the rest of the Fagaceaes. It can
also be seen that when using the i.i.d model, or a MC with order 8
or greater, some of the branches becomes unstable.

In general, the results show that the clustering becomes more
accurate as the order of MC increases using both d5 and ds.
Under the i.i.d model, the clustering based on d5 does not correctly
separate Castanopsis from Lithocarpus, while the clustering based
on d5 groups the two types separately. With higher order
MCs, d3 successfully separates Castanopsis from Lithocarpus.
The general clustering structure among Lithocarpus, Castanopsis,
Trigonobalanus and Ficus stays correct when order is greater than
4 for both measures. When using the MC with order higher than
the estimated order, the clustering is unstable and indeed the branch
for L.Hancei (Fagaceae) is not supported on the last tree when using
only 10% of the data. With a large number of parameters to estimate,
10% of the data does not suffice to capture the information in the
data. The best clustering is achieved under a MC of order 8 and 9.

4 DISCUSSION

Next generation sequencing technologies provide large amount of
data in the form of short reads. Assembly of the millions of short
reads to recover the long sequence is challenging, because the
relative short length of the reads makes it difficult to resolve the
repeat regions, not all regions may be covered, and assembly is time
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Fig. 1. The clustering of the 13 tropical tree species using d; under MC with
order 0 (i.i.d), 4, 8 and 9. The number on the branch refers to the frequency
of the branch occurring among the 30 clusterings based on random sampled
10% reads. The letter ‘F’ at the beginning of the names represents Fagaceae;
similarly the letter ‘M’ represents Maraceae.

consuming. While multiple sequence alignment may be prohibitive,
we can use word-count based dissimilarity measures to cluster
the underlying species. These measures require an underlying
probability model for the sequences; Markov chains are a reasonable
model for such sequences. While transition probabilities can be
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estimated directly from count data, estimating the order of a MC
here is not straightforward.

Methods for estimating the order of a MC of a long sequence
have been developed since the 1950s, but estimating the order
of a MC directly from a set of short reads without assembly has
not been studied yet. In this paper, we develop two statistics Sf
and ZE and show that both S and ZZ have surprisingly simple
approximate distributions with only two parameters, one of them
depending on the order of the original long MC sequence, and
the other one depending on the distribution of the reads along the
sequence. Intriguingly, one of these parameters is d = ¢ + 1 under
homogeneous sampling, where c is the coverage of the reads along
the genome based on the first 3 — k + 1 positions of each read.

Based on the property of S¢* and Z, we develop an estimator for
the order of a MC as well as an estimator for the parameter d based
on NGS data. Extensive simulation studies are carried out to verify
the theorem and evaluate the estimator.

Finally, we apply the estimation methods to two NGS data sets.
Since the real genome sequences consist of coding, non-coding and
various regulatory regions, single standard MC models do not fit
the data well. Moreover, some enriched patterns, such as the motif
sequences, are widespread throughout the genomes and violate the
simple MC model for the whole genome sequence. Hence studying
the fraction of k-words whose occurrences can be explained using
the statistic (Z&)?/d by comparison to a x? distribution is a
more realistic way to determine the order of the MC for a real
genome sequence. The estimated orders are consistent with the
orders estimated directly from the full genome sequences using BIC
methods.

Our primary motivation for this study is alignment-free genome
comparison using NGS data. Further, we cluster the 28 species
based on the NGS data using MC models with various orders.
The results show that the clustering performs best and gives stable
results when using a MC model with order on and above the
estimated order. In addition, we apply the same analysis to 13
tropical tree species whose reference genomes are unknown; again
the best clustering is achieved under a MC with the order within the
estimated range.

When the sequence length is short or the sequencing depth is
low, the numbers of occurrences of some k-words become small
or even zero. Then the assumption of non-zero variance for all word
counts which underlies the gamma approximation for S no longer
holds and the gamma approximation may not work well. In such a
situation an exact test for the order of MCs in the spirit of Besag
and Mondal (2013) could be very helpful. In this paper we have
only made a start on the Markov chain modelling of NGS data.
An exhaustive study of errors in the data, in the form of power
studies, could help to further understand the application range of our
results. Finally, in this work we take the estimation of the transition
probabilities for granted, once the order of the MC is determined.
While the estimation of the transition probabilities of the MC model
of a long sequence has been studied by Anderson and Goodman
(1957) and Baum and Petrie (1966), it would be interesting to extend
these methods to NGS data.
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