
Seed Science Research
http://journals.cambridge.org/SSR

Additional services for Seed Science Research:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

A critique of current trends in the statistical analysis of seed germination 
and viability data

Gudeta W. Sileshi

Seed Science Research / Volume 22 / Issue 03 / September 2012, pp 145 ­ 159
DOI: 10.1017/S0960258512000025, Published online: 06 March 2012

Link to this article: http://journals.cambridge.org/abstract_S0960258512000025

How to cite this article:
Gudeta W. Sileshi (2012). A critique of current trends in the statistical analysis of seed germination and viability data. Seed 
Science Research, 22, pp 145­159 doi:10.1017/S0960258512000025

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/SSR, IP address: 150.108.161.71 on 21 Mar 2013



RESEARCH OPINION

A critique of current trends in the statistical analysis of seed
germination and viability data

Gudeta W. Sileshi*

World Agroforestry Centre (ICRAF), SADC-ICRAF Agroforestry Programme, PO Box 30798, Lilongwe, Malawi

(Received 18 July 2011; accepted after revision 17 January 2012; first published online 6 March 2012)

Abstract

Statistical analysis is increasingly used in seed
germination/viability studies across different disci-
plines. The objective of this opinion piece is to assess
current trends in statistical analysis of such data, and
draw attention of readers to the limitations of the usual
inferential statistics in controlling error rates. The
assessments are based on a survey of 429 papers
published in 139 peer-reviewed journals in the past
11 years. My intention is to identify areas of concern
across a wide range of studies. Accordingly, the areas
of greatest concern found in the analysis of percentage
seed germination and viability data were: (1)
pseudoreplication and/or use of a few replicates; (2)
ignoring assumptions of ANOVA and non-parametric
tests (NPARTs); (3) uncritical data transformation; (4)
arbitrary choice of multiple comparison tests; and
(5) lack of emphasis on effect sizes. Given the pre-
valence of these problems, in my opinion we would
be building a body of knowledge on a shaky ground.
The discussions that follow will: (1) describe situations
where germination data violate assumptions of ANOVA
and NPARTs; (2) highlight the implications of the
various problems to Type I and Type II error rates; and
(3) indicate remedial measures based on the recent
statistical literature.

Keywords: ANOVA, conservation, false discovery rate,
generalized linear mixed models, generalized linear
models, invasive aliens, pseudoreplication

Introduction

Germination studies are conducted to answer a wide
range of questions in plant ecology and management.
Such studies can provide objective criteria to aid
decision-making in conservation of endangered or
threatened species, and management of invasive
aliens and weeds. For example, studies on seed
germination and viability provide much needed
information on the quality of seed collections in
ex situ conservation facilities (Godefroid et al., 2010).
In such studies, the final germination, germination
time, rate, homogeneity and synchrony (Ranal and
De Santana, 2006; Onofri et al., 2010) may be analysed.
However, the final germination is commonly pre-
sented as a percentage value (or proportion) for a
sample of seeds, and this is subjected to statistical
tests (Ranal and De Santana, 2006). However, analyses
are often undertaken without consideration of the
appropriateness of particular tests and the associated
assumptions. The use of appropriate statistical tests
will enable the researcher to judge how well the
apparent patterns in samples reflect real patterns in
the population being studied.

When analysing data, researchers need to take
the necessary precaution to guard against two types
of errors: Type I (false positive) and Type II (false
negative) errors. Type I error is the error of rejecting a
true null hypothesis or declaring differences statisti-
cally significant when they occurred only due to
chance. For example, a researcher commits Type I error
by declaring that treatment A prolongs the viability of
seeds in storage more than treatment B, when in fact
there is no difference between A and B. On the other
hand, Type II error is declaring that treatment A is not
different from B, when in fact it is. Type I error must be
guarded against at all costs because pursuing false
leads can result in the wastage of time and scarce
resources. Such errors can also lead to loss of
irreplaceable genetic material if ineffective treatments
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are erroneously declared effective for prolonging seed
viability in conservation facilities. Because of the
prejudice in reporting only significant results, once
made, Type I errors are also very difficult to correct
(Keselman et al., 1999). The result of Type II error is
the exclusion of important factors that influence the
response because non-significant results appear
definitive and tend to discourage further investigation.

The objective of this opinion piece is to present an
objective assessment of current trends in statistical
analysis and to draw the attention of readers to the
limitations of the usual inferential statistics in control-
ling error rates. The opinions expressed here are based
on a survey of studies published in the past 11 years
(January 2000 to December 2010). The review is
deliberately limited to studies that performed statistical
tests on final percentage (or proportional) germination
and/or viability using either discrete or continuous
explanatory variables. Studies that entirely focused on
germination progress and survival analysis were not
considered in this review because powerful modelling
approaches already exist (Hara, 2005; Onofri et al.,
2010). Such studies include those that look at the effect
of one or more continuous explanatory variables (e.g.
time, temperature or concentration) and data other than
the final germination are of interest. In total, 429
publications were found through this focused search.
The studies were published in 139 peer-reviewed
journals dealing with divergent disciplines. In some
papers several species were studied. Thus the review
covered over 1200 species of seed-producing plants.
The diversity of journals and species covered in this
survey obviously provides a good representation of the
current trends in the statistical analysis of such data.

To demonstrate the various analyses, I will use
an example dataset (Table 4 in Piepho, 2003) from
a laboratory experiment performed by S. Gruber
(Universität Hohenheim, Germany). The main objec-
tive of the study was to compare seed dormancy in
genetically modified (GM) with that in near isogenic
varieties of oil-seed rape (Piepho, 2003). Four of the
varieties had GM and corresponding near isogenic
counterparts, while the fifth variety was the control.
For each variety, seeds were placed on four Petri
dishes, which were allocated to containers, and the
experiment was replicated three times. After each
experiment, the proportion of dormant seeds was
determined. There were two datasets for the isogenic
line of variety 4 as it was propagated in two locations.
For the present analyses, the two datasets were
combined. This was chosen as a good example because
it had unequal sample sizes, a missing value (e.g. in
the control) and a large number of treatments typical
of datasets from germination studies. The other
advantage of this dataset is that it was statistically
analysed elsewhere (Piepho, 2003) and its properties
are known. I will use the proportion of germinated

seeds (labelled Germ) to demonstrate the various tests
using the SAS system (SAS Institute Inc., Cary, North
Carolina, USA). Germ was calculated as n/T where
n is the number of germinated seeds and T is total
number of seeds per container (cont). For the benefit
of readers, I have presented the SAS codes in
supplementary appendices (see supplementary
appendices 1–5, available online only at http://
journals.cambridge.org/).

Current trends in statistical analyses

Most of the papers reviewed here have analysed final
germination and viability datasets concurrently. There
were also cases where germination and viability
had been compared. Therefore, any reference to data
hereafter strictly means percentage (or proportional)
germination and/or viability datasets. To elucidate
the trends, I conducted a simple linear regression of
the number of publications against year on a log-log
scale. I used the coefficient of variation (CV in %) to
determine inter-annual variability in the reported use
of the various tests. I also conducted a one-sample
binomial test of the proportion of researchers who
applied ANOVA and tests to evaluate violation of
its assumptions. For brevity, I will only report the
coefficient of determination (R 2), binomial pro-
portions (BP) and their 95% confidence limits (95%
CL) based on exact tests and significance (P value)
wherever I have done statistical analyses.

Based on the core issue they addressed, the studies
fall under four broad areas: (1) conservation of
endangered/threatened species; (2) management of
invasive alien species; (3) control of arable weeds;
and (4) general ecological studies on species of
agricultural, horticultural, forestry and pasture value
(Fig. 1a). Across the various disciplines the total
number of studies that analysed germination data
increased significantly (R 2 ¼ 0.924; P , 0.001) from
2000 to 2011 (Fig. 1a). The methods used in data
analysis fall under five broad categories: (1) ANOVA;
(2) distribution-free or non-parametric tests (NPARTs);
(3) linear mixed models (LMMs); (4) generalized linear
models (GLMs); and (5) generalized linear mixed
models (GLMM). Figure 1b shows the trends in the
use of each of these methods in the past 11 years.

For brevity, I will discuss the t- and F-tests under
the broad term of ANOVA, since both tests are derived
based on the same set of assumptions, and the t-test
produces P values identical to the F-test when applied
to two-sample tests for equal variance (Kikvidze and
Moya-Laraño, 2008). Overall, the largest proportion
of studies have used ANOVA (0.70) with very small
inter-annual variability (CV ¼ 11.5%). The proportion
of studies that used GLMs was 0.13 (CV ¼ 50.4%),
NPARTs was 0.11 (CV ¼ 30.6%) and GLMMs was
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0.04 (CV ¼ 80.2%). The proportion of studies that
used LMMs was the smallest (0.02) and had very
high inter-annual variability (CV ¼ 118. 3%). While
various tests appropriate for binary data are readily
available in most statistical packages, ANOVA
continues to be the test of choice in the analysis
of final germination (Fig. 1b). According to the
one-sample binomial test, a small proportion
(BP ¼ 0.32; 95% CL ¼ 0.27–0.37) of researchers have
used methods other than ANOVA; a significantly
(P , 0.0001) larger proportion of researchers have
used ANOVA. The popularity of ANOVA is probably
an indication of the orthodoxy (adherence to tradition)
in the choice of statistical tests rather than its
superiority over others. Some researchers used
NPARTS when their data failed to meet ANOVA
assumptions. These included the Kruskal–Wallis
H (28 studies), Mann–Whitney U (12 studies) and
chi-square (10 studies) tests. The reasoning was
that NPARTs require few, if any, assumptions. This
misconception is not surprising because the virtues
of NPARTs are overstated while their deficiencies are
often overlooked (Johnson, 1995).

Major areas of concern

The review revealed a number of issues that are likely
to affect error rates. However, for economy of space the
various issues will be discussed under the following
broad categories.

Pseudoreplication and use of a few replicates

In 15 out of the 429 studies the number of replicates
used was not clear. Therefore, the following analysis is
based on the remaining 414 studies. In germination
studies it is possible to replicate at different levels, e.g.
blocks, experimental units (Petri dish, tray, plot), seed,
etc. If significance tests are to be employed, replication
is mandatory at the level of the experimental unit.
The treatment should be applied to each experimental
unit independently to allow estimation of the
population response to the treatment. If only a single
replication is used, even if the treatment is applied
to a number of seeds, any particular of that single
application would affect all the seeds, and this could
be confused with a treatment effect. A single
replication per treatment was used in 4.4% of the
studies reviewed (Fig. 2a). This problem was recorded
in 17.4% of the studies that conducted logistic
regression. In those studies treatments were applied
to a single experimental unit (e.g. Petri dishes) and
each seed was treated as a replicate. In such cases, the
treatment is unreplicated, while the observational
units nested within that single application have been
replicated, and the Petri dishes/trays are functioning
solely as independent replicates of the variability in
germination response within the seed batch used
(Morrison and Morris, 2000). This is a form of
pseudoreplication (Hurlbert, 1984; Morrison and
Morris, 2000). Any observed difference in germination
may be due to the germination treatment but,
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Figure 1. Trends in the number of published studies in different disciplines (a) and the statistical models used (b) for analysis of
percentage seed germination and viability data.
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potentially, it could also be due to any chance event
affecting the treated sample (Morrison and Morris,
2000). True replication would require that each
replicate experimental unit be treated on separate
occasions. Morrison and Morris (2000) describe this
problem in detail in the context of studies that involve
heat, smoke and charcoal.

In the course of this review I have come across
pseudoreplication in a number of studies involving
gut passage. The most common situation is where
researchers subdivided seeds from the same faecal
samples (e.g. animal dropping, scats, etc.) into several
Petri dishes and used these as replicates. This
obviously constitutes another example of pseudo
replication because seeds from the same faecal sample
do not constitute independent samples (Figuerola et al.,
2002). For clarity, pseudoreplication (sensu Hurlbert,

1984) is defined here as the use of inferential statistics
to test for treatment effects with data from experiments
where either treatments are not replicated (though
observational units such as seeds may be) or replicates
are not statistically independent. In terms of ANOVA,
this represents testing for treatment effects with an
error term inappropriate to the hypothesis being
considered (Hurlbert, 1984).

Another critical question in germination studies is
the number of replicates required to detect significant
differences between the groups compared. If too few
replicates are used, there may be little chance to detect
a meaningful effect even when it exists. By contrast, if
the sample size is very large, even trivial differences
between independent proportions may become stat-
istically significant (Tryon and Lewis, 2009). There is
no particular number of replicates that fits all studies
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because this usually depends on the resources
available to the researcher (seeds, labour, time,
funding, etc.), the model used for analysis and the
variability in the data. More observations are needed if
a model has many parameters, or if a maximum
likelihood estimation method is used than otherwise.
The number of replicates needed will also be higher if
variability in germination is high. Nevertheless, in the
majority of the studies reviewed there was a tendency
to use 3–5 replicates (Fig. 2a). There were also cases
where the control was replicated twice and the other
treatments replicated three or more times. Depending
on variance heterogeneity, ANOVA results can be
invalid if the number of replicates is small. The
NPARTs are also not appropriate if replicate obser-
vations are fewer than five (Khan and Rayner, 2003).
However, over 60% of the studies that performed
NPARTs have used fewer than five replicates.
Simulation studies show that for normally distributed
data, ANOVA is better than the Kruskal–Wallis test for
smaller sample sizes (Khan and Rayner, 2003). The
Kruskal–Wallis test performs better than the ANOVA
if the sample sizes are large and kurtosis is high. Even
if more than five replicates are used, errors could still
be large for ANOVA and NPARTs if other assumptions
are violated. According to simulation studies by
Warton and Hui (2011), Type I error for logistic
regression and GLMMs is higher with small sample
sizes (n , 6) than for larger sizes.

The number of replicates in most studies seems to be
chosen arbitrarily. It does not seem to be related to the
number of groups being compared as there was very
weak association between the two variables (Spearman
r ¼ 20.042; P ¼ 0.415; n ¼ 388). The majority (61%) of
studies also compared 2–6 groups (Fig. 2b). Although
the number of replicates was significantly associated
with the number of seeds per replicate (Spearman
r ¼ 0.147; P ¼ 0.007; n ¼ 334), shortage of seeds does
not adequately explain the tendency to choose 3–4
replicates. Obviously, the availability of seed, especially
for some endangered or threatened species, could be
a constraint. In the majority of studies, 20–50 seeds
were allocated to each replicate (Fig. 2d). A key
question in such situations is whether to allocate a small
number of seeds in more replicates or more seeds in
fewer replicates. For example if one has only 150 seeds
available for each treatment, much better power may
be obtained by using six replicates of 25 seeds than
three replicates of 50 seeds per replicate.

Ignoring test assumptions

There is no doubt that the t- and F-test and their non-
parametric counterparts will continue to be the
cornerstones of hypothesis testing in germination
studies. However, application of these tests is now so

widespread that some researchers seem to have
forgotten that data should meet certain assumptions.
In a recent paper, Valcu and Valcu (2011) show how
widespread this problem is in the application of the
t-test. ANOVA will provide a powerful test of null
hypotheses only if the following assumptions are met in
the data being analysed: (1) the errors are normally
distributed; (2) the variances are approximately equal
(homoscedastic); (3) the error terms are independent or
uncorrelated; and (4) the treatment and error terms are
additive. Most multiple comparison tests were also
derived under the restriction that these assumptions are
satisfied and the design is balanced. However, these
assumptions can be violated in many more ways than
they can be satisfied (Khan and Rayner, 2003). Therefore,
it is crucial to evaluate violation of one or more of these
assumptions before conducting ANOVA and post-
ANOVA tests. Nevertheless, there was no indication in
a significantly (P , 0.0001) large proportion of the
studies that normality (BP ¼ 0.80; 95% CL ¼ 0.75–0.85)
or homoscedasticity (BP ¼ 0.81; 95% CL ¼ 0.76–0.85)
were evaluated at all. Like ANOVA, the Kruskal–Wallis
and Mann–Whitney U-test assume that samples are
random, variances are homogeneous, observations are
mutually independent and the shape of the data
distribution is the same in each group. Nevertheless, in
most studies these tests appear to have been performed
as if they do not make any assumption at all. For
example, only a small proportion (,0.18) of researchers
have reported evaluating the data for normality or
homoscedasticity before conducting NPARTs. In almost
all studies there was no evidence that violations of
additivity and independence of errors have been
evaluated. In the following sections, I will describe
situations where germination data violate assumptions
of ANOVA and NPARTs and highlight the implications
of such problems to Type I and Type II error rates.

Non-normality

ANOVA has often been claimed to be robust to
violations of the normality assumption based on the
Central Limit Theorem. The robustness of t- and F-tests
increases with sample size (Miller, 1986). There are two
different aspects of normality (kurtosis and skewness of
the error distribution) that can affect conclusions drawn
from ANOVA and its non-parametric counterparts
(Khan and Rayner, 2003; Zimmerman, 2004). For both
the t- and F-tests to be valid, not the original data but the
errors must be independently and identically distrib-
uted normal variates. Otherwise, the probabilities
provided in the t- and F-distribution tables will not be
accurate. Many biologists have presented evidence
indicating that non-normality is prevalent in ecological
data (Potvin and Roff, 1993). For example, Ahrens et al.
(1990) found non-normality in 50–75% of 82 weed-
control datasets and in 29–100% of 62 winter wheat
survival datasets. Non-normality is probably the rule

Statistical analysis of seed germination data 149



rather than the exception in percentage germination
and viability datasets. Such data are expected to strictly
fit the binomial distribution since the response of each
seed can only take one of two possible values, 1 for
germination or 0 for failure (Onofri et al., 2010;
Thompson and Ooi, 2010). Only a small percentage
(19.5%) of the studies that performed ANOVA has
reported using either graphical diagnostics or formal
tests to evaluate the residuals for normality. In the
remaining 80% of the cases tests may not have been
carried out at all or, if carried out, were not reported. Of
the studies evaluating residuals for normality 42.1%
did not specify the type of test, while 33.3% mentioned
using residual plots. The remaining studies performed
either Kolmogorov–Smirnov (14.0%) or Shapiro–Wilk
(10.5%) tests. Each of these tests has its own strengths
and limitations, and may give widely differing results.
For example, for the rape seed germination dataset, the
residuals of the untransformed germination percen-
tages were approximately normal according to the
Shapiro – Wilk test (P ¼ 0.2135) but non-normal
(P , 0.05) according to the other tests (Table 1). The
Kolmogorov–Smirnov statistic has poor power to
detect non-normality if the sample size is less than
2000. According to a simulation study by Razali and
Wah (2011), the power of Kolmogorov–Smirnov,
Shapiro–Wilk and Anderson–Darling tests is very
low for sample sizes smaller than 50. Only the Shapiro–
Wilk test was powerful enough to detect departures
from normality in data with sample sizes of 50–100
(Razali and Wah, 2011). Judging from the number of
replicates used (Fig. 2a) and groups compared (Fig. 2b)
typical germination studies have analysed data with
sample sizes of less than 50. The various tests also seem
to be chosen arbitrarily, and the aim of testing for
normality was often not clear. It must be noted that
detecting statistically significant departures from
normality is not the same as detecting departures
from normality that are serious enough to distort
results. Even statistically non-significant departures

may seriously distort results. Considering the nature of
germination data and the small sample size used, it is
doubtful that assuming normality is meaningful and
testing for normality is worth the trouble.

Heteroscedasticity

Heteroscedasticity is said to exist when the standard
deviation (s1) of one group is larger than the standard
deviations (s2,. . .,sn) of the other groups. Empirical
studies show that violations of this assumption are
very common in percentage data (Ahrens et al., 1990;
Sileshi, 2007). For example, Ahrens et al. (1990) found
violations in 60–90% of 144 percentage datasets. Such
data are expected to have unequal variance for a
number of reasons. First, the variance of binomial
proportions is a quadratic function of the mean, i.e.
variances tend to be small at both ends of the range of
values (close to 0 and 100%) but larger in the middle
(around 50%). This is because the most ineffective
treatments typically yield replicate observations with
no germination and zero variance, while the most
effective treatments yield closer to 100% germination
and variances close to 1. Treatments with low to
medium efficacy will vary quite widely. In addition,
considerable variability and asynchrony is known to
exist in seed germination. This is often related to
dormancy over multiple delays, which has been the
major premise of Cohen’s classic model of diversifica-
tion bet-hedging (Simons and Johnston, 2006). Viable
seeds that have not germinated at the end of an
experiment can also result in censored observations if
assays are terminated before germination is complete,
due to resource constraints (Onofri et al., 2010).

It has long been known that robustness of ANOVA
to heteroscedasticity depends critically on the sampling
design; the less balanced the design, the less robust is
ANOVA (Miller, 1986). More recent studies show that
under combined violations of normality and homo-
scedasticity, the true significance level and power of the
tests depend on a complex interplay of factors,

Table 1. Tests of normality of errors, homogeneity of variance and additivity of
effects in the germination proportion of rape seed, calculated from Table 4 of
Piepho (2003)

P value

Assumption Test
Before

transformation
After

transformation

Normality Shapiro–Wilk 0.2135 ,0.0001
Kolmogorov–Smirnov 0.0112 ,0.0100
Cramer–von Mises 0.0314 ,0.0050
Anderson–Darling 0.0489 ,0.0050

Homogeneity Leven ,0.0001 0.1413
Bartlett ,0.0001 ,0.0001
Brown–Forsythe ,0.0001 0.0221
O’Brien ,0.0001 0.1901

Additivity Tukey ,0.0001 0.0026
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including the number of replicates used, the number of
groups compared and balance in the study design
(Fagerland and Sandvik, 2009). Heteroscedasticity may
affect both Type I and II error rates, and when sample
sizes are unequal there is an additional effect on the
error rate (Day and Quinn, 1989). The t-test can result in
severely biased Type I or Type II error rates when
variances are unequal (Cribbie and Keselman, 2003).
Even the Welch–Satterthwaite modification of the t-test
for unequal variance has inflated error rates if the data
are skewed and sample sizes are unequal (Kikvidze and
Moya-Laraño, 2008). Based on simulation studies
Rasch et al. (2011) recommend that the t-test should
not be used if variances are heterogeneous. The
standard F-test was originally designed for balanced
designs (samples of equal size). For moderate to large
heteroscedasticity, the empirical Type I error rate for F-
test is far beyond the nominal, even with balanced
designs (Moder, 2010). The situation gets more
complicated when samples of unequal size are
combined with unequal variance (Kikvidze and
Moya-Laraño, 2008; Moder, 2010). When sample sizes
are unequal or small (e.g.,5 replicates per group) and/
or the number of groups to be compared is large, even
small departures from homoscedasticity may increase
the error rates in the F-test (McGuinness, 2002; Moder,
2010). For example, when the smaller sample is
associated with the smaller of the variances, ANOVA
showed very low Type I error but very high Type II error
rates (Kikvidze and Moya-Laraño, 2008).

Uncritical literature, especially some writings on
the Internet, often recommend the use of NPARTs
when group variances are heterogeneous. However, a
number of critical studies (Day and Quinn, 1989;
Wang and Zhou, 2005; Fagerland and Sandvik, 2009;
Moder, 2010; Rasch et al., 2011; Zimmerman, 2011)
show that heteroscedasticity can lead to incorrect
inference using NPARTs. Recent studies demonstrate
that the significance levels of the Kruskal–Wallis and
Mann–Whitney tests are substantially biased by
heteroscedasticity among treatment groups. Accord-
ing to a simulation study by Rasch et al. (2011), for
various combinations of non-normal distribution
shapes and heteroscedasticity, the Type I error
probability of the Mann–Whitney U-test was biased
to a far greater extent than that of its parametric
counterpart, the Student t-test. Fagerland and Sandvik
(2009) demonstrated that small differences in var-
iances and moderate degrees of skewness can produce
large deviations from the nominal Type I error rate
for the U-test. The U-test was also strongly affected
by unequal variance in large samples (Kikvidze
and Moya-Laraño, 2008). Type I error rates for the
Kruskal–Wallis test also become severely inflated
when variances are unequal (Cribbie and Keselman,
2003). A study by Moder (2010) similarly demonstrated
that the Kruskal–Wallis test has high Type II error

under moderate to large heteroscedasticity if the
sample size is small (,5 replicates) or equal to the
number of factor levels. The majority of the studies
that applied ANOVA and NPARTs had fewer than
five replicates (Fig. 2a); some with unequal number
of replicates (Fig. 2c) and compared a large number of
means (Fig. 2b, Table 1). In such cases, even moderate
heteroscedasticity can lead to increased error rates.

In the majority (.80%) of the studies that
performed ANOVA or NPARTs, violations of hom-
moscedasticity were not apparently evaluated; even
where evaluation has been claimed to be made,
arbitrarily chosen tests of homoscedasticity were used.
Among those that performed ANOVA, graphical
diagnostics (i.e. residual plots) were used in 41% of
the studies. Leven’s test was most frequently used
(25.6% of studies that performed ANOVA) followed by
Cochran’s (20.5%), Bartlett’s (7.7%) and Brown–
Forsythe (5.1%) tests. Leven’s test has a lower power
when sample size is small, so it is less likely to indicate
a problem with unequal variances. Leven’s test was
subsequently modified by Brown and Forsythe to
make it more robust (McGuinness, 2002). O’Brien’s test
is another modification of Leven’s test. Both Leven’s
and Brown–Forsythe tests may yield inaccurate
results when the design is unbalanced. In contrast to
Leven’s and Brown–Forsythe tests, Bartlett’s test is
sensitive to departures from normality resulting in too
many significant results, especially with data from
skewed distributions. Simulation studies by McGuin-
ness (2002) showed that Cochran’s test performs better
than Bartlett’s in many cases.

Obviously, each test has its own limitations. Besides,
even non-significant departures from homoscedasticity
can result in inflated error rates if the data are non-
normal, the design is unbalanced and the sample
sizes are small. Therefore, it makes little sense to
recommend any of the formal tests for all kinds of
data. As emphasized by McGuinness (2002), to conduct
a formal test of homoscedasticity is rather like putting
to sea in a rowing boat to find out whether conditions
are sufficiently calm for an ocean liner to sail.

Non-independence

Correlations across levels of analysis are pervasive in
natural processes. Likewise, violation of the assump-
tion that error terms are independent is common in
germination studies since observations are often
clustered or repeated. It must be noted that violations
of the independence assumption have a greater impact
on results than non-normality and heteroscedasticity
in ANOVA. This problem can be serious in studies
that analyse germination progress, and this has been
discussed in other publications. Since the focus of this
research opinion is not on germination progress, I will
limit my discussion to a few relevant examples.
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Germination tests are generally conducted on
replicate experimental units (e.g. Petri dishes, trays,
pots, plots, etc.) containing several clustered observa-
tional units (e.g. seeds) that may be more or less
correlated (Morrison and Morris, 2000; Onofri et al.,
2010). Recent studies have demonstrated that seeds are
able to sense each other and influence the germination
of a neighbouring seed (Tielbörger and Prasse, 2009).
The numbers of seeds counted on different dates from
the same experimental unit will be serially correlated
(Onofri et al., 2010). Repeated observations on the same
experimental unit at succeeding times may also result
in autocorrelation of the errors. Pseudoreplication is
another cause of non-independence in germination
studies (Morrison and Morris, 2000).

Non-additivity

ANOVA assumes that the treatment and error terms
are additive in randomized and replicated exper-
iments. This implies that the magnitude of differences
among treatments remains the same in all replicates,
i.e. there is no interaction between treatments and
replicates. However, violations of this assumption are
common in percentage datasets. For example, Ahrens
et al. (1990) found lack of additivity in 23–70% of 82
weed-control datasets and 52–76% of 62 winter wheat
survival datasets. In germination studies, additivity
can be achieved by allocating seeds to treatments
randomly and, after treatment, arranging the repli-
cates (e.g. Petri dishes, trays, etc.) randomly in the
incubation area. If violations of this assumption are
expected in the data, it is important to check this using
Tukey’s test (see supplementary appendix 2, available
online only at http://journals.cambridge.org/) before
interpreting the results. However, in none of the
studies have researchers tested for additive effects.

Uncritical data transformation

When researchers suspect that their data do not satisfy
ANOVA assumptions, they simply transformed the
data and conducted the t- or F-test. A significantly
(P , 0.0001) large proportion (BP ¼ 0.67; 95%
CL ¼ 0.62–0.73) of the studies have employed some
form of data transformation. A small proportion of
those who transformed their data have indicated that
they tested for normality (0.18) and homoscedasticity
(0.17). In the literature, several transformations (i.e.
arcsine or arcsine–square root, square root, logarith-
mic, logit, Box–Cox, Guerrero–Johnson and Aranda–
Ordaz) have been suggested for binomial data
presented as proportional (or percentage) values
(Piepho, 2003). All of the transformations (except
arcsine) fail when the value is equal to 0 or 1 (i.e.
100%). Piepho (2003) proposed the folded exponential
transformation which allows 0 and 1 values. Arcsine

transformation was performed in the majority (87.6%)
followed by the square root (6.2%), logarithmic (4.7%)
and rank (1%) transformations.

The studies reviewed give an indication that arcsine
transformation is being used carelessly. For example,
studies involving several species used the same
transformation function disregarding differences
between species in their germination response to the
same treatment. While data transformation in itself
does not guarantee non-violations of ANOVA assump-
tions, only 9.6% of those who transformed their data
have checked to see whether the desired effect has been
achieved or not. Data transformation can have
undesirable effects. For example, in a study of 144
percentage datasets, arcsine or square-root transform-
ations resulted in non-normality in 9–20% of normal
datasets, heteroscedasticity in 33–100% of homosce-
dastic datasets and non-additivity in 6–22% of additive
datasets (Ahrens et al., 1990). In addition, a transform-
ation that corrects violation of one assumption may
result in violation of another (Sileshi, 2007). For
example, arcsine transformation of the example
dataset improved homoscedasticity (Table 1; see also
Piepho, 2003). However, the residuals became less
normal after transformation, as indicated by the
various tests (Table 1). Recent work demonstrates that
data transformation can even lead to increased rates of
Type I or Type II errors (Jaeger, 2008; Valcu and Valcu,
2011; Warton and Hui, 2011). Indeed, Warton and Hui
(2011) recommended that the arcsine transformation
should not be used at all for binomial data.

Arbitrary choice of multiple comparison tests

When analysing data, comparison of specific pairs or
groups of means is of greater interest than the ANOVA
test. Therefore, researchers routinely conduct multiple
comparison tests (Shaffer, 1995). A binomial test
indicated that such tests were conducted in a
significantly (P ¼ 0.004) large proportion (0.57; 95%
CL ¼ 0.52–0.62) of the studies reviewed here. When
those studies that performed ANOVA alone were
considered, a much larger proportion (0.78; 95%
CL ¼ 0.73–0.83) of studies involved multiple compari-
son tests. In the statistical literature, there are many
types of multiple comparison tests, all based on
different assumptions and for different purposes. In
total 16 different tests were used in those studies that
performed ANOVA; those used most frequently are
presented in Table 2. The entry labelled ‘Others’ in
Table 2 included the Dunnett’s test, used in three
studies; Ryan–Einot–Gabriel–Welch (REGW) test,
used in two studies; and Games–Howell and Scott–
Knott tests, each used in one study. In almost all studies
there was no explanation for the choice of the particular
procedure. While the assumptions of normality and
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homoscedasticity are preconditions for post-ANOVA
multiple comparison tests (Day and Quinn, 1989), a
very small proportion of researchers has evaluated data
for violations of these assumptions (Table 2).

In the majority of studies, unplanned ( post-hoc or a
posteriori) multiple comparison tests were applied,
while only a small proportion of studies (five out of
228) has applied planned (a priori) comparisons. Two
out of the four studies that performed multiple
comparisons have used orthogonal contrasts while
the remaining three used Dunnett’s procedure, which
is designed to compare treatment groups with the
control group. Unplanned tests may be regarded more
as an afterthought. These are relevant when the
researcher does not have any clear hypothesis about
which means might differ from which others. When
performing unplanned comparisons, researchers are
faced with the problem of how best to control the
probability of committing a Type I error. Selecting
the statistically significant mean from a larger pool of
means that also contain non-significant findings is
problematic (Day and Quinn, 1989; Shaffer, 1995;
Keselman et al., 1999). This is because when multiple
tests of significance are computed, the probability that
at least one will be significant by chance alone
increases with the number of groups compared. The
experiment-wise (family-wise) approach deals directly
with the multiplicity problems by setting a level of
significance for an entire experiment (family) of related
hypotheses, while the comparison-wise approach
ignores the multiplicity issue by setting the error rate
on each individual contrast (Keselman et al., 1999).

Some of the tests in Table 2 control comparison-
wise error rates while others control experiment-wise
error rates. The majority of studies used Fisher’s least
significant difference (LSD) (Table 2) despite its
limitations. LSD controls the Type I comparison-wise

error rate but not the experiment-wise error rate. This
test is not appropriate where the design is unbalanced
and/or variances are unequal. It was also originally
developed for orthogonal and planned comparisons.
However, it has been used for making all possible pair-
wise comparisons that look interesting. This misuse
has led to the recommendation that Fisher’s LSD be
used after the F-test has been shown to be significant.
This revised approach is often referred to as Fisher’s
protected LSD test. Both forms of LSD are more liberal
than all other tests. The rest are more conservative and
declare fewer significant differences than the LSD
(Fig. 3). The more conservative a test is, the less
powerful it is, and the lower the risk of making a Type I
error. However, reducing the risk of making a Type I
error increases the chance of making a Type II error.

The other popular methods used in the studies
reviewed are Tukey’s, Duncan’s Multiple Range
(DMRT), Student – Newman – Keul’s (SNK) and
Scheffé’s tests (Table 2). Tukey’s honestly significant
difference (HSD) and SNK control the Type I
experiment-wise error rate. DMRT was developed as
a modification of the SNK and as a compromise
between LSD and Tukey’s HSD. DMRT controls the
comparison-wise error rate, and it is especially
protective against Type II error at the expense of
having a greater risk of making Type I errors. The SNK
provides protection against both Type I and II errors.
However, SNK is not appropriate where the design is
unbalanced and/or variances are unequal. Scheffé’s
test was designed for all possible comparisons
including pair-wise contrasts (Day and Quinn, 1989).
Scheffé’s test can be used for either unplanned or
planned multiple comparisons. The advantage of
Scheffé’s test is that it can be used where the design
is unbalanced. However, it is the most conservative of
the multiple comparison tests, and it is widely

Table 2. Multiple comparison test used in the studies that performed ANOVA, the median number of groups compared (range in
parenthesies) and the proportion of studies where more than five replicates were used, and normality and homoscedasticity
were reported to have been evaluated

Multiple comparison test
Number

of studies*
Number

of groups
More than

five replicates
Checked for
normality†

Checked for
homoscedasticity†

Fisher’s LSD 85 (0.38) 6 (3–20) 0.09 0.18 0.18
Tukey’s multiple range 45 (0.20) 5 (3–18) 0.29 0.27 0.24
Tukey’s HSD 24 (0.11) 4 (3–13) 0.09 0.33 0.38
Duncan’s multiple range 15 (0.07) 6 (3–13) 0.07 0.13 0
Bonferroni 16 (0.07) 5 (3–10) 0.31 0.19 0.19
Student–Neuman–Keul 10 (0.04) 4 (3–17) 0.10 0.20 0.30
Scheffé’s 7 (0.03) 5 (3–10) 0.40 0 0.14
Tukey–Kramer 7 (0.03) 5 (3–9) 0.14 0.14 0.14
Waller–Duncan 6 (0.03) 5 (3–7) 0.67 0 0
Others 13 (0.06) NA NA NA NA
Overall 228 5 (2–20) 0.18 0.19 0.19

LSD, least significant difference; HSD, honestly significant difference; NA ¼ not applicable.
* Figures in parentheses represent the proportion of studies.
† This may be due to either lack of reporting or not carrying out these tests at all.
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criticized for resulting in a higher than desired Type II
error rate (Shaffer, 1995). Among the less frequently
used tests, REGW has generally a lower Type II error
rate than Tukey’s HSD. Games–Howell test does
better than the Tukey HSD if variances are unequal or
if the number of replicates is fewer than five. From the
review above, it is clear that each multiple comparison
test has a built-in bias towards the type of error to
be controlled. As a result, the different tests may
group treatments slightly differently, thus giving rise
to ambiguous interpretations. The analysis of the oil
seed germination dataset clearly reveals these differ-
ences (Table 3). A multiple comparison test that is
universally applicable is still not available since factors
such as the degrees of variance heterogeneity, extent of
sample size imbalance and the shape of the population
can influence the error rate (Keselman et al., 1999).

In most of the studies that conducted multiple
comparisons, there is no indication that the multi-
plicity problem has been addressed. If several repeated
pair-wise tests are made, then the conventional alpha
value (0.05) is not acceptable due to the increased
risk of Type I error (Bender and Lange, 2001). It is
well established that with repeated testing, one will
inevitably find something statistically significant
(false-positives) due to random variability, even if no
real effects exist. This has been called the multiplicity
problem in multiple comparison tests (Bender and
Lange, 2001; Feise, 2002). Standard practice, which
is entirely arbitrary, commonly establishes a cutoff
point to distinguish statistical significance from non-
significance at 0.05 (Feise, 2002). A common practice
for addressing the multiplicity problem has been that
of adjusting the P values. The adjustment could be the
very conservative (e.g. Bonferroni–Dunn, Sidak) or
less conservative (e.g. Hochberg). Sidak’s procedure
is a refinement of the Bonferroni–Dunn procedure,
but the latter is less conservative. Both Bonferroni
and Sidak control the Type I experiment-wise error
rate, but they generally have higher Type II error rate
than Tukey–Kramer for all pair-wise comparisons.

Generally, P value adjustments reduce the chance of
making Type I errors, but they increase Type II error
rates (Feise, 2002). Recently, concerns have been
expressed about possible misunderstanding and
misuse of Bonferroni correction (Garcı́a, 2004). Some
critics also contend that too many unwary researchers
have adopted it in the name of scientific rigour even
though it often does more harm than good (Waite and
Campbell, 2006). A more sophisticated method for
tackling multiplicity is the Tukey–Kramer adjustment,
which considers the statistical distributions associated
with systematic repeated testing. With balanced
designs, the Tukey–Kramer is now the most accep-
table method for all pair-wise comparisons because
its adjusted P values are exact (Hsu, 1996).

A better alternative to post-hoc tests is provided by
planned comparisons, which are driven by theory or
past data. Planned tests require that the choice of the
groups to be compared is part of the experimental
design. Therefore, one focuses attention on a few
theoretically sensible comparisons rather than every
possible comparison. For example, planned compari-
son of treatments with a control group can be
conducted. Dunnett’s test is designed for this situation.
It is possible to adjust P values to overcome the
multiplicity problem in such tests. The advantage of
planned comparisons is the increase in the statistical
power because of the focus on a limited number of
comparisons. This kind of comparison is sensible
because it can be related to a clear hypothesis about
the magnitude and direction of differences or the effect
size. In Table 4 the example datasets were used to
demonstrate estimation of effect sizes using Dunnett’s
method, and adjustment of P values using the
Bonferroni–Dunn and Sidak procedures.

Lack of emphasis on effect size

Most of the studies focused on hypothesis testing,
and little effort was made to estimate the effect size.

Most liberal test Decreasing power Most conservative test

LSD
Protected Waller

LSD Duncan
DMRT SNK REGW Tukey Tukey-Kramer Scheffe

Highest Type I
error; Lowest
Type II error

Highest Type II
error; Lowest
Type I error

Bonferroni corrections

Figure 3. Ranking of multiple-comparison procedures in order of decreasing power. DMRT, Duncan’s Multiple Range; LSD, least
significant difference; REGW, Ryan–Einot–Gabriel–Welch; SNK, Student–Newman–Keul’s.
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The way one interprets treatment results usually
depends upon the effect size and sensitivity of the test.
With very large sample sizes, it is possible to obtain
statistically significant differences that are trivial in
reality (Tryon and Lewis, 2009). On the other hand,
measures of effect size take into consideration both the
size of the difference and the variability of sample
values. As argued by Johnson (1995) estimation of
the differences between means, along with their
confidence interval, is more meaningful than null
hypothesis testing and comparing means. Using
the example data, I demonstrate this approach in
Tables 4 and 5. Information on the magnitude of
differences can have an important bearing on decision-
making. That is the reason why several authors have
argued in favour of supplementing null hypothesis
testing with confidence intervals (Tryon and Lewis,
2009). Without such information even a well-
conducted experiment will be a mere list of statistically
significant differences that do not make biological
sense. In future more emphasis should be placed on

the magnitude of differences and their variability,
rather than the mere detection of significance.
Researchers also need to ask, for example, what is
the acceptable increase due to the treatment over the
control or another treatment? Investment in a
particular treatment will be justified if only there is
an acceptable increase over the control.

Alternatives to ANOVA and NPARTs

Among the more powerful and flexible alternatives to
ANOVA and NPARTs are LMMs, GLMs and GLMMs.
LMMs extend the ANOVA model by allowing for both
correlation and heterogeneous variances and inclusion
of both fixed and random effects in the model. Thus
LMMs are more appropriate for analysis of longi-
tudinal and correlated data than ANOVA or NPARTs.
They are also more appropriate than ANOVA for
unbalanced design matrices that may result from
losses of replicates during the course of an experiment.

Table 3. Comparison of the commonly used unplanned tests applied to the germination proportion of rape seeds,
calculated from Table 4 of Piepho (2003)

Transformation Variety Sample size Mean* LSD Bonferroni† DMRT SNK Tukey Scheffé

Before 2GM 12 0.99 A a a a a a
3Iso 12 0.95 A ab a a ab ab
2Iso 12 0.94 A ab a a ab ab
3GM 12 0.93 A ab a a ab ab
1GM 12 0.85 B b b b b bc
4Iso 24 0.72 C c c c c cd
4GM 12 0.69 C c c c c de
Control 11 0.56 D d d d d ef
1Iso 12 0.42 E e e e e f

After 2GM 12 1.44 A a a a a a
2Iso 12 1.31 B ab b b ab ab
3Iso 12 1.26 Bc b bc bc b ab
3GM 12 1.19 Cd b cd bc b bc
1GM 12 1.14 D bc d c bc bcd
4Iso 24 0.97 E cd e d cd cde
4GM 12 0.93 E d e d d de
Control 11 0.80 F de f e de ef
1Iso 12 0.67 G e g f e f

Wilcoxon 2GM 12 110.7 A a a a a a
3Iso 12 89.0 B b b b b ab
2Iso 12 87.8 B b b b b ab
3GM 12 85.5 B b b b b ab
1GM 12 63.1 C c c c c bc
4Iso 24 42.3 D cd d d d cd
4GM 12 37.6 De d de d d cd
Control 11 27.6 E de e d de de
1Iso 12 11.3 F e f e e e

Wilcoxon represents Wilcoxon’s rank values; Tukey is Tukey HSD; DMRT, Duncan’s Multiple Range; LSD, least
significant difference; SNK, Student–Newman–Keul’s.

Means followed by the same letters in a column are not significantly different.
* Least square means: actual germination proportions and arcsine transformed germination proportions are presented
for before transformation and after transformation, respectively.
† Bonferroni–Dunn and Sidak adjustments gave similar results. Therefore, results of the latter are not presented.
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In addition to more robust estimates of the effect sizes,
LMMs also now allow adjustment of P values using
various methods. Table 5 presents P values corrected
using the Tukey–Kramer and Bonferroni adjustment
options. Although LMMs have several advantages
over standard ANOVA, they are the least used in
germination studies (Fig. 1b). It must be noted that
LMMs assume normality of errors and random effects
(Littell, 2002). Therefore, they should be used where
data satisfy these assumptions.

Generalized linear models (GLMs) unify various
statistical models, including linear, logistic and
Poisson regression. The term ‘generalized’ refers to
non-normal distributions for the response variable,
and GLMs have now superseded ANOVA for such
datasets (Dobson, 2001; McCulloch and Searle, 2001;
Hardin and Hilbe, 2007). Binary logistic regression is a
special case of GLMs that extends the linear model by
assuming the data are binomial. Recently, Warton and
Hui (2011) demonstrated that logistic regression
provides a significant gain in power over ANOVA.
Logistic regression calculates the probability of
germination by assuming that each seed in the
population is a statistically independent experimental
unit. However, this does not mean that a single
replication of treatments is adequate. Application of
the treatment to replicate batches of seeds is necessary
to estimate the average response given the background
variability due to other sources in the population.

Logistic regression is a large-sample method, and it
can result in lower power for small sample sizes (n , 4
seeds per replicate). Logistic regression is also not
appropriate when data are overdispersed because this
can lead to underestimation of standard errors and
overestimation of statistical significance (Warton and
Hui, 2011).

In the case of significant overdispersion, the more
appropriate method is to add a normally distributed
random intercept term to the model. The subsequent
model is a mixed effects logistic regression, which is a
special case of GLMMs (Bolker et al., 2009; Warton and
Hui, 2011). GLMMs allow modelling of responses with
non-normal distribution or heterogeneous variance
and inclusion of both fixed and random effects. This
makes them appropriate for modelling hierarchical or
correlated data in germination studies (Harrison et al.,
2007). Recent simulation studies reveal that GLMMs
have higher power than untransformed or arcsine
transformed ANOVA as well as logistic regression
(Warton and Hui, 2011). However, GLMMs assume
normally distributed random effects. Therefore, it is
important to check that the random effects component
of the model (e.g. block, Petri dish, etc.) has no
evidence of a systematic trend (Warton and Hui, 2011).
Although GLMMs are very powerful, and now
available in many software packages, they may be
challenging to fit. Maximum likelihood estimation of
LMMs for small samples is problematic and in certain

Table 4. Pair-wise comparisons of treatment means with the control mean (CM) using simultaneous 95%
confidence limits (CL) and P values adjusted for multiplicity using Dunnett’s, Sidak’s and Bonferroni–
Dunn methods in ANOVA and NPART of germination proportion of rape seeds, calculated from Table 4
of Piepho (2003)

Least square
difference†

P values

Method Contrasts 95% CL* Dunnett Sidak Bonferroni

ANOVA 2GM vs CM 0.44 0.30, 0.57 ,0.0001 ,0.0001 ,0.0001
3Iso vs CM 0.39 0.26, 0.53 ,0.0001 ,0.0001 ,0.0001
2Iso vs CM 0.39 0.25, 0.52 ,0.0001 ,0.0001 ,0.0001
3GM vs CM 0.37 0.24, 0.51 ,0.0001 ,0.0001 ,0.0001
1GM vs CM 0.29 0.16, 0.43 ,0.0001 ,0.0001 ,0.0001
4Iso vs CM 0.16 0.04, 0.27 0.0026 0.0030 0.0030
4GM vs CM 0.13 20.004, 0.26 0.0605 0.0812 0.0842
1Iso vs CM 20.14 20.27, 20.001 0.0363 0.0471 0.0481

NPART 2GM vs CM 83.1 65.0, 101.2 ,0.0001 ,0.0001 ,0.0001
3Iso vs CM 61.4 43.3, 79.5 ,0.0001 ,0.0001 ,0.0001
2Iso vs CM 60.2 42.2, 78.3 ,0.0001 ,0.0001 ,0.0001
3GM vs CM 57.9 39.8, 75.9 ,0.0001 ,0.0001 ,0.0001
1GM vs CM 35.5 17.4, 53.6 ,0.0001 ,0.0001 ,0.0001
4Iso vs CM 14.7 21.0, 30.5 0.0768 0.1046 0.1098
4GM vs CM 10.0 28.0, 28.1 0.5306 0.7004 1.0000
1Iso vs CM 216.3 234.3, 1.8 0.0961 0.1327 0.1411

* For economy of space 95% confidence limits are presented only for Dunnett’s test. The difference
between the treatment and control is not significantly different if it is close to 0 (95% CL includes 0).
† This represents the least square differences between treatment means and the control mean. Negative
sign (2) indicates a decrease in germination proportion relative to the control.
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situations produces inconsistent estimates (Piepho,
2003). For details of application of GLMMs, readers are
encouraged to consult Bolker et al. (2009).

Conclusions

The main conclusion from the discussion above is that
ANOVA and NPARTs and unplanned comparison
tests are widely performed while test assumptions
may be violated. Although unambiguous ways do not
exist for assessing violations of more than one
assumption in a dataset, checking the residuals using

diagnostic plots (or formal tests with expert help) can
reveal obvious departures. Plotting the residuals on
the vertical axis and the independent variable on the
horizontal axis can reveal clear trends indicating that
the model being used is inappropriate. Figure 4
presents residual plots from ANOVA, LMM and GLM
of the rape seed germination dataset. The GLM
appears to perform better than the other models as
the points are randomly dispersed around the
horizontal line representing Y ¼ 0 (Fig. 4d). A second
conclusion is that NPARTs are being applied as if they
are assumption-free. NPARTs are not always accep-
table substitutes for the t- and F-tests when parametric

Table 5. Pair-wise comparison of all means using simultaneous 95% confidence limits (CL) and P values
from the linear mixed models (LMM), logistic and generalized linear mixed models (GLMM) of the
germination proportion of rape seeds, calculated from Table 4 of Piepho (2003). Least square differences and
their Tukey–Kramer adjusted 95% CL were generated using LMM. P values were adjusted for multiplicity
using Tukey–Kramer (in LMM and GLMM) and Bonferroni (in LMM) methods, and presented to aid
comparison

Least square
differences

P values

Contrasts 95% CL LMM Bonferroni Logistic GLMM

1GM vs. 1Iso 0.43 0.33, 0.53 ,0.0001 ,0.0001 ,0.0001 ,0.0001
1GM vs. 2GM 20.14 20.24, 20.05 0.0008 0.0010 ,0.0001 ,0.0001
1GM vs. 2Iso 20.09 20.19, 0.004 0.0701 0.1186 ,0.0001 0.0211
1GM vs. 3GM 20.08 20.18, 0.02 0.1573 0.3138 0.0001 0.0438
1GM vs. 3Iso 20.10 20.20, 20.002 0.0409 0.0639 ,0.0001 0.0095
1GM vs. 4GM 0.16 20.08, 0.41 0.3964 1.0000 ,0.0001 0.0193
1GM vs. 4Iso 0.13 20.10, 0.37 0.6270 1.0000 ,0.0001 0.0032
1GM vs. Control 0.29 0.04, 0.53 0.0110 0.0151 ,0.0001 0.0002
1Iso vs. 2GM 20.57 20.67, 20.48 ,0.0001 ,0.0001 ,0.0001 ,0.0001
1Iso vs. 2Iso 20.52 20.62, 20.43 ,0.0001 ,0.0001 ,0.0001 ,0.0001
1Iso vs. 3GM 20.51 20.61, 20.42 ,0.0001 ,0.0001 ,0.0001 ,0.0001
1Iso vs. 3Iso 20.53 20.62, 20.43 ,0.0001 ,0.0001 ,0.0001 ,0.0001
1Iso vs. 4GM 20.27 20.51, 20.03 0.0210 0.0305 ,0.0001 0.0035
1Iso vs. 4Iso 20.30 20.53, 20.06 0.0058 0.0076 ,0.0001 0.0218
1Iso vs. Control 20.15 20.39, 0.10 0.5653 1.0000 ,0.0001 0.2994
2GM vs. 2Iso 0.05 20.05, 0.15 0.7460 1.0000 0.0006 0.0029
2GM vs. 3GM 0.06 20.04, 0.16 0.5072 1.0000 0.0003 0.0019
2GM vs. 3Iso 0.04 20.05, 0.14 0.8645 1.0000 0.0015 0.0058
2GM vs. 4GM 0.31 0.06, 0.55 0.0052 0.0068 ,0.0001 ,0.0001
2GM vs. 4Iso 0.28 0.40, 0.51 0.0125 0.0173 ,0.0001 ,0.0001
2GM vs. Control 0.43 0.19, 0.67 ,0.0001 ,0.0001 ,0.0001 ,0.0001
2Iso vs. 3GM 0.01 20.09, 0.11 1.0000 1.0000 0.6753 1.0000
2Iso vs. 3Iso -0.01 20.10, 0.09 1.0000 1.0000 0.6814 1.0000
2Iso vs. 4GM 0.26 0.02, 0.50 0.0303 0.0457 ,0.0001 ,0.0001
2Iso vs. 4Iso 0.23 20.01, 0.46 0.0681 0.1146 ,0.0001 ,0.0001
2Iso vs. Control 0.38 0.14, 0.62 0.0003 0.0004 ,0.0001 ,0.0001
3GM vs. 3Iso 20.02 20.11, 0.08 0.9994 1.0000 0.4129 0.9992
3GM vs. 4GM 0.25 0.004, 0.49 0.0438 0.0691 ,0.0001 ,0.0001
3GM vs. 4Iso 0.22 20.02, 0.45 0.0961 0.1718 ,0.0001 ,0.0001
3GM vs. Control 0.37 0.12, 0.61 0.0005 0.0006 ,0.0001 ,0.0001
3Iso vs. 4GM 0.26 0.02, 0.51 0.0241 0.0354 ,0.0001 ,0.0001
3Iso vs. 4Iso 0.23 20.003, 0.47 0.0548 0.0892 ,0.0001 ,0.0001
3Iso vs. Control 0.39 0.14, 0.63 0.0003 0.0003 ,0.0001 ,0.0001
4GM vs. 4Iso 20.03 20.11, 0.05 0.9569 1.0000 0.2426 0.9974
4GM vs. Control 0.12 0.02, 0.22 0.0068 0.0090 0.0005 0.5207
4Iso vs. Control 0.15 0.07, 0.24 ,0.0001 ,0.0001 ,0.0001 0.0062
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assumptions are not satisfied. The validity of each test
depends on fulfilment of test assumption, which also
depends on a combination of factors including sample
size, balance in design and the number of groups
compared. If sample sizes are unequal, exact multiple
comparison procedures may not be available. It must
be noted that post-hoc tests also do not apply to every
problem. Indeed, they are a very poor substitute for
formulating a clear hypothesis to conduct planned
comparisons. More flexible and modern methods such
as LMMs, GLMs or GLMMs should be preferred over
standard ANOVA and NPARTs. For binary data, I
strongly recommend the use of GLMs and GLMMs,
depending on availability of software and expertise.
In any case, researchers should always make an effort
to consult a statistician during both the design and

analysis stages because the result is more likely to be
satisfactory with expert help.
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