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‘To grow or not to grow’ is a central question in developmental

biology and is nowadays tackled wonderfully by cell-biological

approaches in various species. The rigid plant cell wall is a neat

evolutionary invention for sessile organisms, which require form

stability in the face of an ever-changing natural environment.

However, this cellular packaging places special constrains on

mechanisms that guide cellular growth. Considering the largely

non-reversible, man-made environmental changes and our

dependency on plant products, further insights into plant-

specific growth regulation are highly desirable. Here we provide

our personal, current view on cellular growth regulation in

plants, highlighting the mutual importance of extra- and

intracellular processes.
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A scientific torch relay
Scientific progress can be viewed as a torch relay, where

knowledge is passed on and current progress hinges on

outstanding research achievements from the past. When

in 1665 the scientist and architect Robert Hooke im-

proved the performance of a light microscope, he also

shed first light on a plant tissue [1]. He unearthed a

completely new world, and, seeing structures that resem-

bled the tiny, dark rooms that monks inhabit in monas-

teries, he called the observed forms ‘cells’. Hooke may

never have realized the importance of this particular

discovery, but he was the first — though almost forgot-

ten — ancestor in an increasingly long line of (plant) cell

biologists. Looking today at his drawing, the cork tissue

he sketched fairly resembles a brick building [Figure 1a–
c]. This very concrete impression of a plant cell which

remains today is also reflected in the terminology of its
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extracellular matrix — the so-called ‘cell wall’. A central

question in plant cell biology has always been how this

very rigid cellular construction is able to grow. The cell

wall not only provides plant cells with their shape, but it

also keeps them in place, rendering them completely

immobile. Hence, from this theoretical point of view, it

is self-evident that a mobile growth regulator, rather than

cellular migration (as seen for example in animals) con-

trols plant patterning.

Historically, the mobile phytohormone auxin has aided

plant growth researchers as a very beneficial tool, because

it compels plant cells to grow or not to grow. In 1913, the

Danish scientist Peter Boysen-Jensen confirmed Charles

and Francis Darwin’s hypothesis of a mobile growth regu-

lator substance in plants. By observing the transport be-

haviour of what he named phototropic stimulus in

coleoptile tips, he could show that a chemical signal

(termed ‘Wuchsstoff’ at that time) prompts bending to-

wards the light [2]. Approximately a decade later, the Dutch

botanist Frits Warmolt Went proposed that the underlying

substance is a growth-promoting hormone and the term

‘auxin’ (from the Greek ‘auxein’: to enlarge/grow) was

coined [3]. Eventually, the chemical structure of auxin

was identified as indole 3-acetic acid (IAA) in 1934 [4].

Ever since, research on the phytohormone auxin has been

central to plant biology, not least because it is implicated

in the vast majority of plant development processes, in-

cluding embryogenesis and organogenesis, as well as pho-

totropism and gravitropism [5]. In performing its versatile

developmental effects, auxin impacts at single cell level,

steering cell division, cell expansion, and cell differentia-

tion [6]. Without doubt, the auxin-dependent regulation of

cellular growth is among the most examined and best-

studied processes in plant biology and has provided us with

a mechanistic understanding of how plant cells grow.

The lead tissue concept
As the cell wall sticks plant cells together it appears obvious

that the regulation of plant tissue or organ growth is above

the level of single cells. The plant hormone auxin is central

to this supra-cellular growth and its perception in particular

cells or tissue types is sufficient to impact on the growth

behaviour of entire organs. To characterize those tissue

responses that can feedback on the growth of entire organs,

we would like to introduce the term ‘leader tissue’. Auxin is

not alone in controlling plant growth; other hormones also

appear to steer plant architecture in a lead tissue aspect.

The epidermis, particularly, seems to control organ size
Current Opinion in Plant Biology 2015, 28:55–59

http://crossmark.crossref.org/dialog/?doi=10.1016/j.pbi.2015.08.009&domain=pdf
mailto:juergen.kleine-vehn@boku.ac.at
http://www.sciencedirect.com/science/journal/13695266/28
http://dx.doi.org/10.1016/j.pbi.2015.11.001
http://dx.doi.org/10.1016/j.pbi.2015.08.009
http://www.sciencedirect.com/science/journal/13695266


56 Cell biology
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Cells and the lead tissue concept. (a) Detail of Robert Hooke’s drawing of cork tissue. For him, the patterning resembled the tiny chambers

monks inhabit in monasteries, consequently he termed the structure ‘cells’. (b) The picture shows a cell section of the layout for the Disentis

monastery (modified from http://www.sueddeutscher-barock.ch). (c) Hooke’s drawings are reminiscent to a wall of bricks. The plant cell

surrounding cell wall provides the shape stability and is also an important factor in cellular growth/enlargement processes. (d) Leader tissues,

such as the root epidermis and endodermis, steer organ size and growth in a phytohormone-dependent fashion. The integration of auxin,

brassinosteroid and gibberellin signals permits the regulation of growth promotion and repression.
in an auxin and brassinosteroid-dependent manner

[7–10,11��], while the endodermis appears to determine

organ growth in a gibberellin-dependent fashion [12–14]

[Figure 1d], possibly allowing external (rhizosphere) and

internal (stele) derived signals to steer organ growth.

The acid growth theory
Since cellular shape is upheld by the cell wall, it has

remained puzzling for a long time how plant cells can

actually expand. Auxin research, roughly 45 years ago,

paved the way for a better mechanistic understanding of

this fundamental question. Ever since, the so-called acid

growth theory has served as a model to explain cellular

expansion [15-17] and largely stood the test of time.

According to this hypothesis, auxin activates the plasma

membrane (PM) H+-ATPases. As a result, protons are

extruded into the apoplast and consequently acidify the

extracellular matrix. This acidification, in turn, activates

expansins and other cell wall remodelling enzymes.

Through their action, the network of cellulose and addi-

tional cell wall components is loosened, which together,

with water uptake into the cell, providing the required

turgor pressure, causes cells to enlarge [17,18,6] [Figure 2].

In principle, two distinct auxin receptors have been

asserted as activating the acid growth pathway. On the
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one hand, the single copy gene AUXIN BINDING

PROTEIN1 (ABP1) binds auxin and has been proposed

to mediate fast, non-genomic (non-transcriptional) auxin

responses as well as to contribute to the TIR1/AFBs-

dependent genomic (transcriptional) responses in Arabi-
dopsis [19,20]. Auxin rapidly induces growth and, hence,

non-transcriptional, ABP1-dependent mechanisms were

assumed to contribute to the acid growth theory [21]. By

contrast to the assumed importance of ABP1 in this

pathway, it has been recently shown that the full

knock-out of ABP1 does not affect A. thaliana develop-

ment under standard conditions, currently questioning

the developmental importance of ABP1 [22�]. Apoplastic

acidification has not been experimentally addressed in

the newly available abp1 null alleles and it remains to be

seen whether ABP1 has only a modulatory, but non-

essential role. Alternatively, other still uncharacterised

factors may act fully redundantly with ABP1.

Unlike the currently unclear situation for ABP1, the

nuclear localized TRANSPORT INHIBITOR RESIS-

TANT1/AUXIN SIGNALING F-BOX proteins (TIR1/

AFBs) have unequivocally been shown to bind auxin and

to function as genomic auxin receptors [23,24]. TIR1/

AFBs act together with the transcriptional repressors

AUXIN RESISTANT/AUXIN INDOLE 3-ACETIC
www.sciencedirect.com
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Molecular basis for the acid growth mechanism. Auxin promotes

SAUR activity resulting in PP2C-D phosphatase inhibition. Thereby,

PM H+-ATPases are activated and extrude protons into the apoplast.

The cell wall is consequently acidified and subsequently loosened by

pH-dependent activity of expansins and other cell wall remodeling

enzymes (depicted as red dots), thus enabling cellular enlargement.

Non-genomic responses rely on fast non-transcriptional mechanisms,

whereas genomic responses depend on TIR1/AFBs-reliant

transcriptional output.
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Auxin promotes and inhibits growth in a tissue-dependent manner. At

a given concentration (see dashed line), auxin induces growth in aerial

parts of the plant (shoot) while it represses growth in hypogeal tissue

(roots).
ACID INDUCIBLE (Aux/IAAs) as a co-receptor system.

Auxin binding to TIR1/AFBs targets Aux/IAAs for degra-

dation in the 26S proteasome, causing the release of

AUXIN RESPONSE FACTORS (ARFs) transcription

factors and thereby controlling auxin-dependent gene

expression [25–27]. TIR1/AFBs emerged recently as prime

candidate receptors for mediating auxin-dependent acid

growth responses via the regulation of fast gene expression

[28��]. Spartz and colleagues show that the rapidly auxin-

induced SMALL AUXIN UP-RNA (SAUR) genes, par-

ticularly SAUR19, stimulate PM H+-ATPase activity,

thereby promoting cellular expansion. The proposed

mechanism comprises the negative regulation of PP2C-

D phosphatases by auxin-induced SAUR genes, thereby

modulating PM H+-ATPase phosphorylation status and

subsequently its activity. This is a very elegant mode of

action, but so far this model relies on the examination of

SAUR gain-of-function mutants. The characterization of

possibly multiple SAUR loss-of-function mutants will fur-

ther define its developmental importance.

Nevertheless, a previous study suggests that the phosphor-

ylation of PM H+-ATPases does not require transcriptional

and, hence, TIR1/AFBs-dependent auxin responses [29].
www.sciencedirect.com 
Their model, however, disregards a secondary, slower

elongation phase requiring auxin-dependent gene expres-

sion and only accounts for rapid elongation occurring

within a 10 minute time frame [28��]. Therefore, it is

conceivable that auxin steers PM H+-ATPase activity both

directly via non-genomic (non-transcriptional) signalling,

as well as indirectly, by inducing gene expression

[Figure 2].

Growth induction and growth repression
Importantly, the alleged acid growth theory applies solely

to tissues showing auxin-induced growth. Went, notably,

was not entirely correct when stating that auxin is a

growth-promoting hormone [3]. It turned out that auxin

promotes and inhibits growth depending on its concen-

tration as well as the underlying cell type [5]. It appears

that low auxin concentrations induce cellular enlarge-

ments, whereas high concentrations impose growth re-

pression. In the physiological concentration range, auxin

preferentially induces growth in aerial, and represses

growth in underground tissues [Figure 3].

In light of the supra-cellular and lead tissue growth

mechanism, it appears obvious that auxin-dependent

growth repression does not solely depend on mecha-

nisms related to the acidification of the extracellular

space. For instance, if a given lead tissue perceives a

strong auxin-dependent growth repression  signal,

neighbouring cells possibly still continue to acidify

the shared apoplastic space. Fast diffusing protons

could, hence, still acidify the cell wall of the lead tissue

and would consequently impose cellular expansion on

them. An alternative model, featuring growth repres-

sion via intracellularly controlled regulatory switches,

would overcome these shortcomings and would offer a

mechanism for stable and neighbour-independent
Current Opinion in Plant Biology 2015, 28:55–59
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Potential functions of the vacuole in cellular growth processes. (a)

Vacuolar expansion and cytosol homeostasis. Cell volume occupancy

by the vacuole is a putative mechanism for cytosol homeostasis

during cellular growth. Such a system would allow for the rapid cell

expansion without de novo synthesis of cytosolic constituents. (b) The

acid growth balloon theory. Lead tissues possibly utilize both the

auxin-dependent vacuolar balloon function and auxin-dependent

alterations of cell wall rigidity in order to restrict (depicted in red) or

promote (depicted in blue) cellular growth.
growth repression in leading tissues. Auxin-dependent

growth inhibition, as largely applies for example for root

cells, may require fundamentally different and yet to be

defined mechanisms for the negative control of cell

size.

The acid growth balloon theory
Our recent findings suggest that auxin impacts on the

appearance of the biggest plant cell organelle, the vacuole

[11��]. We could show that the auxin effect on vacuolar

morphology — leading to smaller luminal vacuolar struc-

tures — correlates, and is required for the auxin-depen-

dent restriction of cell size in the root epidermis, ultimately

contributing to root organ growth [11��]. This finding,

therefore, proposes that the vacuole plays a substantial

role in regulating auxin-dependent growth repression. On

the contrary, it has been postulated that the vacuole may

also drive cell elongation via turgor pressure [30], but this

assumption remains to be addressed experimentally. The

plasmodesmata (cell to cell bridges) are very likely to

equalize the pressure within plant tissues. It has been

shown that symplastic tissues, such as the root meristem,

are capable of rapidly balancing small solute and water

levels [31]. Accordingly, a distinct regulation of the turgor

pressure required for a tissue-specific growth mechanism

appears questionable. On the contrary, auxin responses

may initiate callose-dependent closure of these cytosol

bridges, at least in some instances [32]. Hence, auxin could

exert distinct conditions in some tissues [33]. However, it is

currently debatable whether the turgor pressure is a pre-

requisite or indeed a mechanism to control growth.

Notably, the genetic or pharmacological induction of

bigger vacuoles (compared to wild type or mock treat-

ment) did not increase cell size [11��]. This unidirectional

limitation (smaller luminal structures restrict cell size,

whereas bigger vacuoles do not increase cell size) might

be due to the fact that the cell wall remains rigid in this

experimental set-up, ultimately restricting cellular enlar-

gements. We hypothesize that vacuolar morphology and

cell wall composition/constitution are jointly controlled,

in an auxin-dependent manner, to cooperatively allow or

restrict cellular expansion.

It remains to be seen how the vacuolar shape ultimately

restricts cellular growth. In speculating on this matter, we

would like to volunteer the ‘acid growth balloon theory’.

It has been shown that vacuolar volume, but not the

cytosol’s dimensions, correlate with cell size in plant cell

cultures [34]. We therefore hypothesize that the increase

in vacuolar volume could actually be a mechanism for

cytosol homeostasis, allowing a plant cell to grow without

de novo production of cytosolic components [Figure 4a].

Accordingly, the vacuole may be viewed as a balloon that

becomes inflated with water inside the cell, occupying

cellular space and preventing the dilution of the cytosol.

Such a mechanism would allow for rapid growth by using
Current Opinion in Plant Biology 2015, 28:55–59 
pre-existing resources. Further, any interference with this

balloon function would slow down growth, as the cytosolic

components would become a limiting factor.

According to our theory, plant growth is an interplay

between the intracellular space-filling ‘vacuolar balloon’

and the required extracellular cell wall acidification/loos-

ening [Figure 4b]. Leading tissues could possibly employ

the vacuolar balloon function to limit growth fully inde-

pendent of their walls and, hence, their neighbouring

cells. On the other hand, cellular expansion would require

the coordinated ‘inflation’ of the vacuole and the loosen-

ing of the cell wall. Such a tuneable growth mechanism

would allow plant cells to rapidly grow and to integrate

possibly conflicting internal and external signals into their

developmental growth program.
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