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Insects that are parasitic only during their immature stages are termed protelean 
parasites (11). The protelean parasites that attack invertebrates nearly always de­
stroy their hosts. These parasites are often described as parasitoids, a term coined 
by Reuter (167) to differentiate them from the typical parasites. Parasitoids include 
a vast number of species of the so-called parasitic Hymenoptera, the Strepsiptera, 
and a few of the Diptera, primarily in the family Tachinidae. Although there are 
a few exceptions, insect parasitoids appear as typical parasites during their early 
developmental stages and later destroy the host to live as free adults. Placing 
emphasis on the latter aspects of their feeding behavior, Flanders (62) has recently 
referred to such insects as carniveroids. The evolutionary strategy of the parasitoid­
host relationship is different from that of either the predator or the parasite-host 
relationship in that the host's future development is of importance only to the 
parasitoid (226). 

The adult female parasitoid upon emergence is often in an alien habitat and 
removed from a host population. She must locate a suitable host in order to propa­
gate. Salt (179) concluded that the parasitoid first seeks a suitable environment. 
Laing (109) divided the host selection process into environmental and host factors 
and believed that the parasitoid is guided to a host habitat by chemical and physical 
parameters. Once a female has located a host habitat, she then searches systemat­
ically. Combining the information of Salt (179) and Flanders (60), Doutt (41) 
divided the process that results in successful parasitism into four steps: (a) host 
habitat location, (b) host location, (c) host acceptance, and (d) host suitability. 
More recently, a fifth step, host regulation, has been added (226) in order to 
adequately describe the factors necessary for successful parasitism. The first three 
of these steps can be combined as aspects of the host selection process. The host 
selection process may consist of only two or three steps in one relationship or of 
many steps in others. Because of this, there is often some overlap in describing and 
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comparing a particular parameter or a behavioral process that leads to host selec­
tion. 

Extensive literature exists on the biology and host relations of parasitoids (30, 
202), and many subjects have been updated by Askew (11). Although some aspects 
of the host selection process have been reviewed (40, 55, 131, 226), no attempt has 
been made to relate the complex role of the chemical and physical factors that are 
both involved in host selection. 

Much of the older literature suggests that hosts are found through random 
searching, particularly once a suitable habitat has been located (30, 34, 36, 202), and 
many models of host location or finding have reflected this idea (174, 176). Certainly 
random searching is involved in one or more phases in the host selection process 
of many parasitoids, although these phases have not yet been defined. Evidence 
suggests that once the host area is located, searching is not completely random but 
rather is modified by the discrimination of already parasitized hosts (14, 15, 39, 74, 
123). Models that take searching interference into account have been developed (48, 
84). 

Many insect parasitoids, however, appear to be directed to their host through a 
series of physical and chemical cues. These cues elicit a series of directed responses 
by the female that serve to reduce and restrict the area and habitats searched, and 
the species of host thus located. These factors may become increasingly refined in 
the more host specific parasitoid species. 

HABITAT PREFERENCE 

The habitat preference exhibited by a female parasitoid is often a major factor in 
determining the type of habitat searched and the hosts thus located or selected (I, 
49, 57, 148, 154, 160, 188, 237, 239). As has been suggested (34, 213), some hosts 
are attacked not because they are preferred but because they are accessible in a 
particular habitat being searched by a female and are acceptable. General habitat 
preference or selection of areas where searching is concentrated may be influenced 
by temperature, humidity, light intensity, wind, and food sources, as well as fiying 
and crawling habits of the parasitoid (2, 25, 57, 58, 61, 101, 110, 111, 155, 158, 184, 
214, 246), although this has not been well documented. High light intensity has been 
found to be necessary for searching activity in some parasitoids (226) and to inhibit 
it in others (134). Although most female parasitoids fiy, whether they fiy upwind 
and orient to a cue or fiy with the wind and are arrested when reaching the proper 
cue is unknown. Moderate winds do seem to reduce searching in some species (l01). 

PLANT INFLUENCES 

The plant is another environmental factor that may affect host selection in several 
ways. One such way is through interference. Rabb & Bradley (163) have reported 
that eggs of Manduca sexta were readily parasitized by Telenomus sphingis and 
Trichogramma minutum when they occurred on several species of plants but were 
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not parasitized to any great extent when they occurred on tobaccoo A sticky exudate 
present on the trichomes of the tobacco was found to entrap the small parasitoidso 
Similar interference with parasitism or escape by an otherwise acceptable host 
because of its location within a plant has been reported (4, 57, 114, 137). 

Another factor influencing apparent host preference is the role played by the plant 
in providing the parasitoid orientation or lack of orientation to the host's habitat. 
Although some studies have failed to find any plant effects (SO), the plant often 
provides the first cue in the chain of events that leads to the host location, regardless 
of the nature of the orienting factor. A parasitoid may cue to its host's food plant 
utilizing factors different from those u�ed by the

O
host in locating a plant. Thus, a 

host may have a wide range of plants on which it develops, but the parasitoid may 
only respond to a certain number of these plants. There are several reports of hosts 
that are readily attacked when occurring on one food plant but not on another (4, 
31, 194, 199, 205, 232, 250). For example, Aphidius smithi, a parasitoid of the pea 
aphid, will also attack the green peach aphid when the green peach aphid is reared 
on broad bean but not when it is reared on tobacco (63). 

Since host plant preference changes have also been noted for several insects (98, 
189), it has been suggested that such a change by a host to a plant lacking the 
necessary cues to orient or attract the parasitoid would allow the host to escape 
(226). Similar changes in a plant's attractiveness to a parasitoid and its host could 
be brought about by natural selection or plant breeding, but such a situation may 
also work in reverse. A host changing a food plant preference or responding to an 
introduced plant may be subjected to attack by a parasitoid not previously encoun­
tered (120). 

Not only do plants generally influence a parasitoid, but a female may be oriented 
to and search only part of a plant. This was observed for Eurytoma curta, which 
orients to the flower heads of the knapweed (220), and for Microbracon vestiticida, 
which is attracted to milkweed pods (193). Although the habitat and plant influence 
the parasitoid's selection process, several chemical or physical factors are involved 
in parasite orientation. 

ROLE OF CHEMICALS 

Host Habitat Location 

Chemicals appear to play a major role at almost every level of the host selection 
process. Plant volatiles emanating from the host's food or food plant and food odors 
have been shown to be important cues in host habitat location for a number of 
hymenopterous parasitoids (4, 23, ISO, 166, 183, 185,201,210) as well as several 
of the dipterous parasitoids (18, 42, 89, 90, 139, 141, 143). In the olfactometer, 
several species of parasitoid Hymenoptera have been attracted to odors from the 
food plants of their host (4. 24. 150. 210). The suggestion that the evolution of the 
parasitic habit in Hymenoptera may stem from a plant parasitic habit (128) is 
supported by such findings. Among the Diptera, the tachinids. Drino bohemica and 
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Bessa harveYI: both parasitoids of sawfly larvae, and Eucarcelia rutilla, a parasitoid 
of several species of lepidopterous larvae, respond in an olfactometer to food plant­
derived chemicals (91, 139, 140). Other plant interactions may also occur. Odors 
from one plant in a habitat may have an effect on the parasitoid's orientation to 
others (142), or one odor or cue may facilitate the recognition of other cues (in a 
hierarchy of cues). 

A similar relationship to food exists in those hosts that do not feed on plants. For 
example, Alysia manducator and Nasonia (Mormoniella) vitripennis are attracted to 
meat (107), although meat that had contained or contains pupae appears more 
attractive (45, 246). Similarly, Venturia (Nemeritis) canescens is attracted to oat­
meal, the food of its host, Anagasta (Ephestia) kuehniella, particularly if the oatmeal 
is contaminated (209). 

The alteration of a food source by the presence of a host may result in the release 
of different odors, such as those caused by injury to the plant (20, 83, 139, 221). 
Cardiochiles nigriceps appears to cue first on plant factors, but once in the proper 
habitat, it may cue on injured plant tissue (226). The tachinid Cyzenis albicans was 
found to cue on leaves damaged by its host, specifically on sugars released from the 
damaged tissue (83). Camors & Payne (24) describe a sequence of arrival of parasi­
toids to pine trees attacked by the southern pine beetle. These results suggest that 
new factors due to the plant's injury or a mixture <?f plant and host factors are 
involved in directing the parasitoid to the plant with potential hosts. Monteith (139) 
found that the tachinid Drino bohemica was preferentially attracted to the un­
healthy food plant of its host. 

In a few parasitoid-host relationships, organisms in association with a host are 
apparently responsible for providing cues to the host's habitat. Fungi associated 
with the galleries of siricid woodwasps have been found to attract and initiate 
probing behavior by their parasitoids (127, 197), and P. D. Greany (personal com­
munication) has found that Biosteres (Opius) longicaudatus is attracted to ethanol 
and acetaldehyde produced by fungi associated with tephritid fruit fly larvae attack­
ing fruit. 

In other cases, odors from the host provide the necessary cues to habitat and host 
location. The orientation of a parasitoid to host-liberated volatiles might be expected 
in situations in which the stage that releases the odor either is attacked or is present 
along with the potential host stage. Chemicals deposited during egg laying stimulate 
searching by some of the parasitoids that attack eggs (118, 225), and there are 
several reports of parasitoids that are responsive to pheromones of their host (138, 
168, 2(0). As identification and testing of additional pheromones and defensive 
compounds proceeds, other parasitoid species that respond to such compounds may 
be discovered. 

Host Location 

The volatile chemicals-whether derived from the host's food, organisms associated 
with the host, the host itself, or a combination of these factors-are long-range 
factors responsible for directing the parasitoid to a host habitat. Although host-
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liberated chemicals may reveal a host to a parasitoid (138, 200), in most cases the 
parasitoid, having reached a potential host habitat, must begin a search for the host. 
Much literature has accumulated concerning host location, and again chemicals and 
the plant appear to play a major role. 

After the female of Cardiochiles nigriceps and several other parasitoids has 
reached the proper habitat, she orients to the host's food plant. Although the nature 
of the orientating factors are unknown, females have been observed scanning the 
plant by fiying 1-2 cm away (75, 226). The parasitoid will often land and examine 
the damaged plant tissue with her antennae (18, 20, 41). Such behavioral changes 
may be caused by plant-liberated factors operating at a short range. If the tissue 
damage is caused by a nonhost, the parasitoid may resume scanning (18, 20, 229). 
However, if the damage is due to the host, the parasitoid's behavior is changed, and 
she excitedly walks over the plant or contaminated surface, rubbing the substrate 
with her antennae and appearing to search for the host (112, 222, 229, 244). The 
materials responsible for the alteration of a parasitoid's behavior have often been 
found to be associated with the host's mandibular gland secretion, which is liberated 
during feeding (32, 222). Other sources for compounds that release this behavioral 
change have been the host's frass or webbing (26, 72, 88, 102, 103, 115). 

In other parasitoid-host relationships, odors from the host are important in host 
location (17, 27, 28, 52,91,95,107,162,216,218,245). These odors, in contrast 
to the more long-range volatile chemicals already described, appear to orient the 
parasitoid only when it is a short distance away (2-20 em) (88, 182). These materials 
either require high concentrations to elicit a response or are of low volatility (88, 
100). These host odors can be referred to as short-range host cues and may be 
analogous to the short-range factors released from injured plant tissue (18, 226). 

Another group of compounds that are particularly important in host location and 
selection are the contact chemicals. As shown for Orgilus lepidus (88), heptanoic 
acid brings the parasitoid to an infested site, and a second unidentified compound 
elicits ovipositor probing upon contact. Quednau (161) could not find an odor 
involved in host finding by the eulophid Chrysocharis laricinellae. a parasitoid of 
the larch casebearer, but did find that chemicals on the surface of the leaf mine 
stimulated females. Another example is demonstrated with Cardiochiles nigriceps. 
which responds to a host-seeking stimulant isolated from its habitual host Heliothis 
virescens. The host material elicited no response from the parasitoid unless she 
contacted the chemical with her antennae (222). Similar compounds perceived only 
on contact have been described for a number of parasitoids (32, 95, 115, 147, 149, 
162, 194). 

The chemistry of several of these contact chemicals have been worked out (see 
Table I). Several of the compounds are high molecular weight hydrocarbons, which 
supports the view that these compounds are of low volatility (99, 100, 228). In 
contrast to the hydrocarbons, Weseloh & Bartlett (241) found a material both 
internal and on the cuticle of the brown soft scale that stimulated a hyperparasitoid. 
The material was extractable in an aqueous media and, when separated on Se­
phadex, eluted in the 150,000 mol wt fraction. Nettles & Burks (149) have shown 
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Table 1 The identified compounds involved in the host selection process of several 
parasitoids. 

Family Parasitoid Host Source Chemical Reference 

Braconidae Diaeretiella rapae Myzus persicae Host plant Allyl isothiocyanate (166) 
Tachinidae Cyzenis a/bieans Operoph fera Damaged Sucrose and fructose (83) 

bromata host plant 
Braconidae Microplifis Heliofhis zea Frass 1 3-methyl (99) 

crocelpes hentriacontane 
Trichogrammatidae Trichogramma Eggs of wide Female Tricosane (100) 

evanescens range of moth scales 
lepidopteIous 
hosts 

Braconidae Cardiochiles Heliothis MandibulaI Several methyl (228) 
nigrlceps virescens gland and hentria-, Dotria-, 

frass and tritriacontanes 
Braeonidae Orgi/us /epidus Phthorimaea Frass n-Heptanoie acid (88) 

opercu/e/la 
Tachinidae Archytas Heliothis Frass Protein (149) 

marmoratus virescens 
lehneumonidae /top/ectis Gallerio Hemolymph Serine (9,81) 

conquiritor mellonella Arginine, 
Leucine 
MgCl 

that a protein from the frass of Heliothis virescens stimulates the tachinid Archytas 
marmoratus to larviposit. These results clearly point out the importance nonvolatile 
compounds of high molecular weight have in the host selection process. 

The influence of contact chemicals on the behavior of a parasitoid is difficult to 
separate from that of touch and texture. Some authors could not find any evidence 
for the involvement of odors in host location or selection (16, 67, 171. 179). Because 
odors were not found, these authors have concluded that nonchemical factors were 
important in the host selection process (16, 171, 179), although the existence of 
contact chemicals was not considered. 

Although an olfactometer will yield important information on the involvement 
of volatile chemicals, contact chemicals elicit a response only on contact. The most 
common bioassays have involved applying mixtures of solvent extracts of hosts to 
a localized spot on a piece of absorbent paper and then recording the parasitoids 
response upon contact (88,99, 115,222,225). Because many parasitoids mark the 
substrate during searching (157, 223), the test substrate should be changed often. 
Some parasitoids may respond only after being left in the chamber undisturbed, and 
others require special conditions (222). 

Although the chemistry of only a few host-seeking stimulants has been elucidated, 
it has been shown that these materials have an optimum concentration that will elicit 
a positive response by the parasitoid (88, 99, 228). The optimum concentration for 
most of the parasitoids so far investigated occurs in the nanogram range (88, 99, 
228) and thus appears to have a range of activity several-fold more concentrated 
than the responses observed for many pheromones, which often act in the picogram 
range. In most cases, single compounds have been isolated that give a response 
reasonably close to that produced by the crude extracts (88, 99), although it has been 
found that a mixture of materials isolated from the tobacco budworm was necessary 
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for maximal response from Cardiochiles nigriceps (228). The host-seeking stimu­
lants so far isolated also are remarkably specific. Microplitis croceipes will respond 
to I3-methyl hentriacontane but not to 12-methyl, whereas C. nigriceps wiJI respond 
to the 12- and 14-methyl but not to the 13-methyl hentriacontane (99, 228). Corbet 
(33), working with Venturia canescens, found that the exposure of the parasitoid to 
stimulant in concentrations below threshold may increase or decrease a subsequent 
response depending on both the timing and the amount of the initial exposure. As 
shown by Hays & Vinson (86), host larvae under attack often will defend themselves 
by expelling upon the parasitoid a small amount of mandibular secretion, which 
contains the stimulant. The parasitoid will often abandon its attack. Application of 
the stimulant to a parasitoid's antennae postponed oviposition and replaced it with 
grooming (33). 

The function of these contact chemicals in host location and selection is not clear. 
W. J. Lewis and co-workers (75, 116) showed that the application of these host­
seeking stimulants to plants in the field increases parasitism. Such compounds would 
be expected to lead to confusion and reduce parasitism if they are responsible for 
the final step in host location or acceptance. Instead, these compounds appear to 
elicit an intense, directed search of the contaminated and surrounding areas (75). 

The host-seeking stimulants and host odors seem to play an important role in host 
selection. Insects normally not recognized as hosts are attacked if contaminated by 
odors from the parasitoid's habitual host (204, 211, 226). For example, Cardiochiles 
nigriceps will attack a number of insects that are not recognized as potential hosts 
if treated with the host-seeking stimulant (226). Although many of these treated 
hosts are attacked, they are not all accepted as ovipositional sites (226), indicating 
that acceptance may depend on yet other factors. Host larvae that were solvent­
extracted to remove the host-seeking stimulants were not recognized as hosts by 
C. nigriceps; however, if the stimulants were applied to extracted larvae, the larvae 
were attacked, but no eggs were deposited (86). Again, other factors appear respon­
sible for acceptance or egg release. 

Host Acceptance 

The acceptance of hosts has been attributed to a number of factors, such as shape 
(28, 222), size (171), movement (172, 212), and sound (13, 161), although chemicals 
again play an important role. As pointed out by Picard (156), host odors may result 
in a reflex action of ovipositor piercing or probing, but-there has to be a host present 
before egg release will occur. The hemolymph of Galleria mellon ella was found to 
contain compounds that induced oviposition by ftopleetis eonquisitor (8, 87), be­
cause of 19 amino acids and a hexose component (87). Based on these results, a 
synthetic medium that will induce oviposition by I eonquisitor and Triehogramma 
californicurn has been developed; it consists of several salts and amino acids (9, 165). 
It is interesting to note that in both cases the solutions were held in wax containers. 
In light of the role of hydrocarbons in eliciting ovipositor thrusting (99, 228), the 
importance of these wax containers should be further evaluated, and a more thor­
ough study made of the factors involved in oviposition in other parasitoid species. 
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Although chemicals have been found to play a major role in host selection, these 
same chemicals may also play an important role in the biology of the host. The 
chemicals involved in host location and selection have been referred to as kairo­
mones (242) when derived from the host (88, 99, 1(0) and could be referred to as 
allomones if plant-derived (242). It would be expected that the liberation of a 
kairomone by a host that provided cues as to the host's location would be selected 
against unless these materials also were functionally important to the host. In an 
effort to understand the coevolution of the parasitoid habit, a more thorough study 
of the role of these chemicals from both the point of view of the host as well as from 
that of the parasitoid should be undertaken. As pointed out, some parasitoids cue 
on the sex pheromones of the adult (138, 168, 2(0) and Corbet (32) showed that 
the mandibular gland secretion of larval Anagasta kuekniella acted as a dispersal 
pheromone for the host larvae as well as a searching stimulant or kairomone for the 
parasitoid Venturia canescens. 

-

ROLE OF SHAPE AND TEXTURE 

Odors and chemicals have been demonstrated to be of major importance in host 
selection by parasitoids, but various other factors are also involved. The shape and 
texture of the host or host's enclosure have been shown to be of particular impor­
tance in acceptance. However, in many studies odor played a key role, with shape 
or texture influencing the degree of acceptance of a host (6, 20, 225). Carton (28) 
found that Pimpla instigator was attracted initially by odor from a distance to an 
area containing hosts, then a cylindrical shape with a degree of relief increased 
acceptance. Odor is of primary importance in initiating oviposition by Campoletis 
sonorensis, with a cylindrical shape being more readily accepted than other shapes 
(182, 245). Macrocentrus ancylivorus, a parasitoid of the potato tuber moth (129), 
is stimulated by small holes, whereas shape (rounded or concave) is important to 
the hyperparasitoid Cheiloneurus noxius (234). Weseloh (240) found that hairiness 
and odor were important for host selection by Apanteles melanoscelus. Odor pro­
vides Therion circumflexum with the initial cues to host location, and tactile cues 
provided by secondary setae influence acceptance (191). It can be concluded that 
shape and texture are usually secondary factors involved in the acceptance of a host. 
Although there are cases in Which shape or texture has been shown to be a major 
factor in host selection (16, 129,216), a thorough investigation of the influence of 
contact chemicals is often not undertaken. 

. 

ROLE OF SIZE AND AGE 

Size and age are usually related, and few investigations of size or age, while keeping 
other factors constant, have been undertaken. Upon using different-sized host spe­
cies, size was found to influence host choice (172), and preferences for a certain size 
of immature hosts has been reported (44, 121, 126, 135). Age, independent of size, 
was also shown to influence acceptance (66, 78, 182). Lewis & Redlinger (117) found 
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that eggs of various ages were acceptable to Trichogramma, although suitability was 
reduced in eggs in which the head capsule of the host was evident. Several authors 
(86, 113, 192) have shown that as a larval host reaches the pharate pupal stage, it 
becomes unacceptable. Such changes in acceptance have been related to hormones 
(192) or to alteration in the factors necessary for acceptance. Thus, the importance 
of size and age in most studies must remain in question until the chemicals involved 
in host selection have been determined for the various ages and stages not attacked. 

ROLE OF MOVEMENT AND SOUND 

Movement and sound have been implicated in the female's host location and accep­
tance, although no such effects have been found in other cases. Quednau (161) 
observed that Chrysocharis laricinellae, after being stimulated by a contact chemi­
cal, was induced by host vibrations to probe. Movement or host vibrations have 
often been suggested as important stimuli in the release of ovipositor probing and 
acceptance of hosts that are hidden or concealed by a covering (47, 106, 109, 177). 
Similar' findings were reported by Baier (13) for a parasitoid of a cecidomyiid gall 
midge and by van den Assem & Kuenen (2ISa) for a chalcid parasitoid of Choe­
pi/a elegans. The movement of exposed hosts has been reported as a releaser of 
ovipositional behavior, possibly perceived by several parasitoids through sight (21, 
172, 212), and Smith (195) reported that motionless hosts were palpated by female 
Microtonus vittatae and were attacked if movement was induced. Movement was 
reported as an important ovipositional inducer for Drino bohemica, a tachinid, if 
it was first stimulated by the odor of the host (140). Movement and odor are 
particularly important to Perilitus coccinellae, a parasitoid of certain adult Coleopt­
era (21, 172, 230). Lloyd (125) could not find any indication that odor was important 
in host location by the pupal parasitoid, Mastrus carpocapsae. He did find that 
incapacitated pupae were not attacked and suggested sound rather than movement 
as a trigger for oviposition. 

Richerson & Borden (169), examining the host finding of Coeloides brunneri, a 
bark beetle parasitoid, found no evidence that sound or vibration acted as an 
important stimulus in host finding, as suggested for related species (37, 177). They 
further ruled out odor and suggested that C brunneri uses IR radiation to locate 
hosts (170). Although odor does not appear to be necessary for host location, the 
procedures used by Richerson & Borden (171) would not rule out contact chemicals 
(nonvolatile compounds). 

The role of the heart beat was investigated by several authors (45, 207), but no 
definite conclusions were reached as to its importance. However, it has been found 
that movement is not a necessary factor in host selection for a number of hymenop­
terous parasitoids (86, 182, 245) since dead or immobile larvae are attacked, al­
though movement often appears to excite the parasitoid and thereby increases 
acceptance (182, 245). Of particular interest is the cleptoparasitoid, Eurytoma pini, 
a chaIcid that only attacks paralyzed or dead larvae (3). Rejection of hosts after 
movement has also been indicated for certain hyperparasitoids (207), and movement 
within an egg prior to hatching inhibits oviposition by egg parasitoids (93). 
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ROLE OF SIGHT AND COLOR 

Salt ( 180) and Laing ( 107) reported on the importance of sight for several parasit­
oids, particularly Trichogramma, although Laing (108) also recognized the impor­
tance of odor. Although sight is not necessarily involved in the selection process, 
some parasitoids do not respond to a host in dim light (47, 154, 226). The role of 
sight and host pattern or shape, separate from tactile examination, has not been 
investigated with any thoroughness, except for study of the perception of movement. 

Color has been examined in only a few cases with respect to its effect on host 
selection or acceptance. Takahashi & Pimentel (203) found that black house fly 
pupae were preferred over brown pupae. Other authors have reported that color 
influenced preferences (172) or that the parasitoids were attracted to certain colors 
or wavelengths (94, 145, 238). For example, Arthur (5) found that Itoplectis con­
quisitor could be conditioned to attack its host larvae in colored tubes; the parasitoid 
exhibited a preference for blue. Parasetigena agilis, a parasitoid of the gypsy moth 
is also attracted to blue- or green-colored tubes (T. M. O'Dell and P. A. Godwin, 
personal communication). 

HOST PREFERENCES 

A number of studies regarding a parasitoid's preference for different host species 
have been conducted (22, 43, 79, 122). Usually these have been efforts to determine 
which hosts recorded for a particular parasitoid have been preferred rather than to 
determine host preferences based on host phylogenetic or habitat relationships. 
Some non host species are readily attacked when encountered (22, 120, 122, 226). 
It also has been shown that the contamination of an otherwise unacceptable host 
by the odor of a preferred host may result in the attack of the unacceptable host 
(16, 196, 204, 211, 226). In some cases, the novel host is suitable (196, 211) and in 
others it is not (22, 120, 204). 

LEARNING AND CONDITIONING VS INHERENT BEHAVIOR 

Both learning, which is a relatively permanent change in behavior as a result of 
reinforced practice, and conditioning, where an organism acquires the capacity to 
respond to a stimulus with a reflex reaction proper to another stimulus, have been 
implicated in having an important influence on host selection. The early work of 
Thorpe (208, 209) and later studies by Arthur (5,7) have shown that hymenopterous 
parasitoids may learn to concentrate in productive habitats. Gross et al (75) have 
found that by introducing the appropriate host seeking stimuli to certain parasitoids 
at the time of their release, an inherent fixed action pattern could be evoked that 
resulted in significantly increased rates of parasitization over that of unstimulated 
parasites. If such a phenomenon is common among parasitoids, it has marked 
potential in the regulation of parasitoids released for biological control purposes. 

The importance of a chain of cues leading to finding a potential host and the value 
of each link in the chain in reducing both the area searched and the species of 
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potential hosts has been challenged by the results of conditioning studies as well as 
the concept of the random selection of hosts. Many authors have suggested that a 
host is located by random searching or that a series of cues leading to the orientation 
of the parasitoid toward the host plays only a minor role in determining which 
insects serve as hosts for a given parasitoid (34, 175, 213, 220, 246). Taylor (206) 
found that Venturia canescens could be conditioned to search a novel environment 
and suggested that the pattern of search does not by itself determine host specificity 
but rather that host specificity must reside with host acceptance and suitability. 

Many potential host populations fluctuate with respect to food plants and with 
respect to habitats during different times of the year. A parasitoid with a wide host 
range may also encounter different potential populations of a host species at different 
times of the year. The ability of a parasitoid to be conditioned would allow for a 
degree of flexibility necessary for the parasitoid to meet these challenges by concen­
trating on those hosts and habitats where success has been achieved. 

It also has been demonstrated that oviposition may be a matter of experience (181) 
and that a female parasitoid with a wide host range often prefers a host species from 
which she has been reared (48, 96, 153, 211). These studies suggest that conditioning 
may be rather widespread among the hymenopterous parasitoids, although the 
degree to which a female can be conditioned is probably limited. It would not be 
surprising to find that a female's preference for a particular host or a host-plant 
complex after being determined by the proper stimuli for habitat and host location 
and recognition is a matter of prior exposure and success. The possibility of examin­
ing the role of conditioning was demonstrated by Shteinberg (186), who was able 
to implant a parasitoid larva into a host normally not parasitized by it. However, 
in some parasitoid-host relationships, the implanted larvae are encapsulated in a 
suitable host unless accompanied by a secretion from the female parasitoid (224). 
More work on parasitoid conditioning is needed, particularly with respect to host 
preferences, habitat expl�itation, and evolution of the parasitoid-host relationship. 

HOST DISCRIMINATION 

Host discrimination appears to be common among the Hymenoptera and has been 
applied to the ability of an insect parasitoid to avoid attacking or accepting a 
potential host that has been parasitized, as well as to reduce the searching of 
previously searched environments. Salt (180) was the first to report that a parasitoid 
left a factor that inhibited further attack. These inhibitory factors have been termed 
spoor factors (59), trail odors (157), search-deterrent substances (131), deterrent 
pheromones (71) and host-marking pheromones (223). 

These marking pheromones can be found at various levels in the parasitoid-host 
selection chain. Several authors have reported that the searched substrate is marked, 
thus reducing the researching of such areas and resulting in parasitoid dispersal (35, 
37, 157). 

The host itself may also be marked and the marking may occur in two ways. Salt 
(180) found that an egg parasitized by Trichogramma was marked externally, by 
factors perceived at very close range by the antenna, and internally, presumably by 
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a change in the egg that was detected only after ovipositor insertion. Many examples 
of the external marking of the host has been reported (10, 14, 70, 71, 164, 178, 217, 
243). These externally marked hosts are often perceived as marked prior to oviposi­
tor insertion and are often not rejected by other parasitoid species, which indicates 
a degree of specificity (95, 124, 133, 223). Although interspecific recognition of 
externally marked hosts has been reported (157, 159), it appears less common. The 
rejection of hosts after ovipositor insertion has also been observed for a number of 
parasitoids (41, 54, 70, 71, 74, 97, 104, 243, 247). In the few cases investigated, these 
internal markers evoke a response in other parasitoid species (248, 249). 

The literature on host-marking suggests that the external marking habit is more 
consequential in the dispersal of paras ito ids (159) and in preventing superparasitism, 
that is, the presence of more than one individual of the same species within a host. 
Preventing superparasitism is particularly important because many parasitoids ap­
pear to search intensively the adjacent area around a host after a successful oviposi­
tion (73, 119, 171). Internal marking has a greater impact in reducing both multiple 
parasitism, parasitism by different parasitoid species, and superparasitism. 

The cIeptoparasitic habit has produced some interesting examples of host location 
by orientation to host markers. Temelucha interruptor is attracted to ovipositional 
sites of the parasitoid Orgilus obscurator and then destroys it (10). Price (158) 
showed a similar behavior for Pleolophus indistinctusf which would explore a host 
pupa and attack through old oviposition wounds of the same or other species and 
destroy the competitor's egg. 

The sources and nature of the factors involved in host marking or discrimination 
have been investigated for only a few species. Scratching of the egg surface has been 
suggested as the means by which some of the Scelionidae mark their hosts (178). 
In most other parasitoids, the various accessory glands associated with the female 
have been suggested as the source of chemicals that mark the host (71, 97, 173). The 
marking pheromone responsible for the rejection of parasitized hosts by the braco­
nids Microplitis croceipes and Cardiochiles nigriceps has been isolated from their 
Dufour's gland (alkaline gland) (227), and the activity from the latter parasitoid is 
attributed to a hydrocarbon component (76). The Dufour's gland is also responsible 
for host marking by the ichneumonid Campoietis sonorensis (77). 

The factors and, sources of the interal markers have generally been attributed to 
either an injected secretion (71, 77, 97, 249), physical changes (214), or changes in 
the hemolymph (56, 104). C sonorensis has been found to attack a previously 
parasitized host after the apparent disappearance of the external marking phero­
mone, but such females did not lay additional eggs (77). It was also established that 
a fluid injected into hosts from the lateral oviduct was responsible for the discrimina­
tion exhibited by this parasitoid. The ovary factor does not appear to be directly 
active, but it results in changes in the hemolymph that are detected by the parasitoid 
(S. B. Vinson, unpublished data). 

Parasitoids have also been observed to return to previous oviposition sites (130, 
217), but whether these responses are because of similar marking pheromones with 
a different behavioral expression is unknown. Several authors have developed eco­
logical models of parasitism that take host discrimination into account (14, 15, 39, 
74). 
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RECEPTOR ROLE IN HOST SELECTION 

The antennae, eyes, ovipositor, and tarsi have generally been accepted as playing 
a role in the perception of the host and of those cues leading to a host. The behavior 
associated with and the importance of the antennae have been discussed by many 
authors (71, 86, 170, 197, 198, 235, 236, 245). 

The antennal response of many parasitoids is best described by an account by 
Williams (244): "The antennae vibrate rapidly and occasionally touch the sub­
stratum, as the insect moves quickly about. When antennal contact is made with 
a wondering host or with 'traces' of a host (i.e., anything which is contaminated by 
previous contact with a host), the nature of the parasitoid's activity at once changes. 
The scurrying to and from ceases, the antennae stop vibrating and their tips curl 
downwards, tentatively investigating the region of host contamination." 

As indicated, such activities are often elicited by chemicals (152, 182, 197, 198, 
222, 224) and are often associated with the detection of contact chemicals (32, 88, 
96, 99, 112, 115, 222, 229, 245). Once the host or host-contaminated material such 
as frass has been contacted, the ovipositor is unsheathed and the host or region is 
subjected to ovipositor jabs or drilling (53, 88, 144, 162, 198, 225, 244). 

Study of the structure of the antennae of some parasitoids has revealed the 
presence of unique receptors, but no conclusive data concerning which receptors are 
involved in host selection have been obtained (19, 136, 151, 152, 190, 236). In some 
insects the process of antennal tapping or drumming has been described, particularly 
with parasitoids att�cking hosts located within a capsule, under the bark, or in a 
gall (69, 82), or attacking eggs (107, 179, 180). The habit of drumming may be in 
response to chemicals that aid the parasitoid in host location (146). Klomp & 
Teerink (105) have shown that the act of drumming may indicate host size to a 
female, who in turn is able to regulate the number of eggs deposited. The importance 
of drumming in other species, however, is unknown. 

The factors involved in ovipositor unsheathing have not generally been subjected 
to investigation, although it has been reported that a chemical elicited an antennal 
searching response from Chelonus texan us and rough texture appeared to initiate 
ovipositor probing (225). In some parasitoids, the role of the ovipositor is more 
obvious wherever the parasitoid must drill into the substrate to reach the host below 
(88, 132, 198). As described by Hobbs & Krunic (92), Pteromalus venustus, a 
parasitoid of the alfalfa leaf cutter bee, would pierce the cocoon and wave her 
ovipositor around in search of the host. Similar descriptions have been given for 
Bracon mellitor, a parasitoid of the boll weevil (132). Gutierrez & van den Bosch 
(81) reported that the hyperparasite Charips victrix would probe both parasitized 
and non parasitized aphids in search of the primary parasitoid host and that the 
discriminatory ability resided with the ovipositor (80). Although there is presently 
no data, there is no reason to believe that the ovipositor is incapable of responding 
to chemical or physical stimuli that aid in host location or recognition during 
drilling and thrusting. There is also no reason to believe that the ovipositor and 
antennae respond to the same stimuli. Experiments with isolated abdomens (38, 72) 
should yield more information. Dethier (38) has observed that the ovipositor will 
respond to salts, and the work of several authors (8, 87, 165) suggests the ovipositor 
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will respond to amino acids and sugars. As previously pointed out, the discrimina­
tion of previously parasitized hosts may also reside with the ovipositor. 

Fulton (64) found small setae on the first and second valvulae of Habrocytus 
cerealellae and suggested they were involved in perceiving the host through tactile 
stimuli. The functioning of tactile receptors has been supported by other authors 
(30), although a number of workers have either observed or suggested the utilization 
of chemoreceptors on the ovipositor (17, 46, 53, 162, 183, 187, 220, 231, 233, 246). 
There have been several studies of ovipositor structure (65, 85, 104, 219). These 
investigations have revealed several different receptors, although what role they may 
play in location, detection, acceptance, or rejection of hosts is unknown. 

The tarsi have been implicated in host detection for a few parasitoids (51, 86) and 
may be important, although few studies have evaluated the role of the tarsi in either 
host location or acceptance. As noted by Askew (11), the tarsi and eyes may be more 
important in the dipterous parasitoids; however, specific evidence is lacking. 

OTHER FACTORS 

Some parasitoids are transported to their host by a nonhost stage or by some other 
insect, a process known as phoresy (30, 40, 68, 215). Although a phoretic relation­
ship allows a parasitoid that lacks the ability to orient to and locate the proper host 
stage to do so, the parasitoid must still locate the transporting insect. 

Parasitoids may exhibit what can be called success-motivated searching, that is, 
after ovipositing, a female will research the area around the host (29, 46, 67, 75). 
In high host densities or clumped population distributions, such activity would be 
a reasonable strategy and may be common among parasitoids. Some of the kairo-

. mones (75, 225) may also release this behavior, which is probably abandoned if no 
host is found. 

. 

SUMMARY 

The available information concerning host selection by insect parasitoids suggests 
that host selection is regulated by a combination of factors, the most important of 
which appears to be chemicals. Although only circumstantial evidence exists, there 
appears to be a hierarchy of cues, with certain physical factors such as shape or 
sound that are only important in conjunction with the appropriate chemosensory 
stimulation. More research is needed to test the existence of a hierarchy and se­
quence of cues that aid many parasitoid species in host selection. 

The chemical and physical factors important in host selection serve to direct a 
parasitoid to a potential host through a series of inherent behavioral patterns. Each 
step in the series of cues serves to reduce the physical volume searched by a female, 
thereby increasing her chances of finding a suitable host species. The cost of this 
strategy lies in restricting the number of host species that can be located, which 
results in an increased specificity at each step. As previously discussed. successful 
parasitism requires a sequence of steps (41) with host habitat location, host location, 
'
and acceptance being the major divisions of the host selection process. It is suggested 
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that upon emergence a female may first seek a suitable environment or habitat with 
adequate physical conditions and a food source. Such habitat preferences may 
restrict a parasitoid's potential host range. When a female begins the process of host 
selection, the first cues for orientation may be detected accidentally or through 
random searching. Long-range odors (volatile compounds) from the host's food or 
from a plant responding to injury by a host insect appear to be the first factors in 
the process of host selection. In some cases these long-range odors are provided by 
organisms in association with the host or by the host itself. However, once a female 
reaches the proper habitat, she must begin a search for additional cues. Parasitoids 
of some of the phytophagous hosts have been observed to orient to the plant and 
to scan or search it. Additional short-range cues, such as damaged plant tissue or 
host odors, may further serve to orient the female to a host area. Whether one cue 
leads to the next is unclear. It may well be that once a female has reached one step 
she must search for the next cue. Such a situation would lead to random searching 
at each step, although each stage would be within a more confined area. This view 
is supported by the results of W. J. Lewis and co-workers (personal communication), 
who found that plants treated with a kairomone increased parasitism by Tricho­
gramma spp. by releasing and continuously reinforcing an intensified searching 
behavior, rather than by attracting or guiding the parasitoid to the ,host. 

Contact chemicals have been found to be important for a number of parasitoids. 
These materials are often secreted by the host and are present in the host's frass or 
webbing. These compounds' seem to elicit a fixed behavioral pattern exhibited by the 
antennal searching of a contaminated area followed by ovipositor probing in some 
parasitoids. These chemicals also appear important in host recognition, with other 
factors being necessary for identification and acceptance. Although data is lacking, 
other factors involved in identification and acceptance may only elicit a response in 
the presence of host odors or contact chemicals. 

Factors such as movement, shape, texture, color, and sound have been implicated 
in host selection. These factors often appear to play a role only after a female has 
been activated by an odor or searching stimulant. Although odors have not been 
found to play a role in some studies, the possibility of contact chemicals has often 
been overlooked. Again, more research on the hierarchy of factors and their interre­
lationships is needed. 

In the few cases investigated, host acceptance also appears to be chemically 
controlled, although other secondary factors such as movement and shape may be 
involved. Here the role of the ovipositor needs to be investigated not only with 
respect to acceptance, but also in host location by some species of parasitoid as well. 

Although a female responds to a specific inherent set of cues to orient to a host, 
she may be capable of responding to one of several or a combination of cues. The 
fact that a parasitoid can be conditioned to search for or attack specific hosts 
indicates the presence of the flexibility needed to respond to altered host habitat 
preferences and seasonal changes. Thus, a female tends to respond to conditions 
where success has been achieved. The ability to condition a female, however, may 
only occur within the confines placed on the female's inherent ability to orient to 
a group or sequence of cues. 
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Lastly, hosts that have been previously parasitized are often marked by the 
attacking female with a pheromone. These marking pheromones may occur at 
various levels in the host selection process but are most often on the host itself. They 
often prevent the attack of the female, although in a few cases they may attract. It 
is not surprising to find a hyperparasitoid attracted to the marking pheromone of 
its parasitoid host. 

Although a general pattern in host selection is emerging, the present information 
is based on too few cases to determine if a general pattern will be found. Much more 
work is needed on the identification of both contact and volatile chemicals that may 
be responsible for host habitat and host location. The hierarchy of cues and the role 
of physical host factors independent of odors and contact chemicals should be 
studied further. The role of the ovipositor in host selection also needs further 
exploration. These studies should lead to a better understanding of host selection 
and may ultimately provide the means for the manipulation of both the parasitoid 
and host. 
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