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The relationship linking leaf physiognomy and climate has long been used in paleoclimatic reconstructions, but
current models lose precision when worldwide data sets are considered because of the broader range of
physiognomies that occur under the wider range of climate types represented. Our aim is to improve the
predictive power of leaf physiognomy to yield climate signals, and here we explore the use of an algorithm
based on the general regression neural network (GRNN), which we refer to as Climate Leaf Analysis with Neural
Networks (CLANN). We then test our algorithm on Climate Leaf Analysis Multivariate Program (CLAMP) data
sets and digital leaf physiognomy (DLP) data sets, and compare our results with those obtained from other
computation methods. We explore the contribution of different physiognomic characters and test fossil sites
from North America. The CLANN algorithm introduced here gives high predictive precision for all tested climatic
parameters in both data sets. For the CLAMP data set neural network analysis improves the predictive capability
as measured by R?, to 0.86 for MAT on a worldwide basis, compared to 0.71 using the vector-based approach used
in the standard analysis. Such a high resolution is attained due to the nonlinearity of the method, but at the cost of
being susceptible to ‘noise’ in the calibration data. Tests show that the predictions are repeatable, and robust to
information loss and applicable to fossil leaf data. The CLANN neural network algorithm used here confirms,
and better resolves, the global leaf form-climate relationship, opening new approaches to paleoclimatic

reconstruction and understanding the evolution of complex leaf function.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing concern about global climate change, in recent
decades there have been new and broader interests in paleoclimate
reconstructions. Paleobotany has a long tradition of exploiting leaf
form to determine past climates (e.g. Bailey and Sinnott, 1915, 1916;
Dilcher, 1973; Greenwood and Wing, 1995; Jacobs, 1999, 2002;
Jacques et al., 2011; Kowalski and Dilcher, 2003; Spicer and Herman,
2010; Srivastava et al., 2012; Su et al., 2013; Wilf, 1997; Wilf et al.,
1998; Wing and Greenwood, 1993). These physiognomic methods
have more than one hundred years of history from the first description
of the relationship linking the percentage of leaves with entire margins
to temperature (Britton and Brown, 1913). Since then both univariate
(Wolfe, 1979) and multivariate approaches (Wolfe, 1990, 1993;
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Kovach and Spicer, 1996; Wolfe and Spicer, 1999; Spicer, 2000, 2007;
Spicer et al., 2004, 2009; Jacques et al., 2011; Peppe et al., 2011; Yang
et al.,, 2011, 2015) have been developed to reconstruct temperature,
precipitation, and other climatic parameters.

There is a rich literature about the relationship between climate and
foliar physiognomy: the percentage of species with entire margined
leaves increases with temperature (Wolfe, 1979, 1993; Wilf, 1997),
leaf size increases with moisture availability (Givnish, 1987; Peppe
etal, 2011), and ‘drip tips’ are common in warm and humid environ-
ments (Leigh, 1975), but common mechanistic links between individual
characters and single climate variables across all taxa remain elusive
(Jordan, 2011). This is probably because modular genetic control, driven
by pleiotropy, influences variation in form under a variable environ-
ment, and ultimately leads to natural selection for strongly linked but
flexible functional systems (Falconer and Mackay, 1996; Juenger et al.,
2005; Rodriguez et al., 2014) and “phenotypic integration,” in which
functionally related traits covary in complex ways within a given organ-
ism (Pigliucci, 2003). Leaves must optimize a variety of ecophysiological
functions simultaneously and are developmentally integrated; it seems
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unlikely then that they would show single-character form-function-
environment relationships (Yang et al., 2015).

A practical application of linking physiognomy and climate is the
development of tools to retrodict past climate from leaf fossils via
some form of function (f):

Climate = f(physiognomic features)

The recent assembly of a large global foliar physiognomic data set
(378 sites) demonstrates that in natural woody dicot vegetation, an in-
tegrated spectrum of leaf form exists across multiple leaf character
states and species, and appears more strongly influenced by prevailing
climate than biogeographic history (Yang et al., 2015). In this data set
the co-variation of leaf traits across species suggests strong integration
of leaf form (Yang et al., 2015). This work also demonstrates correla-
tions between characters across a wide spectrum of woody dicot taxa
despite the inclusion of samples from highly endemic floras. We
know, therefore, that there is a relationship linking climate and physiog-
nomy independent of taxonomic composition; however, we have little
idea of the form of the function, how complex it is, and its parameters.
Using simple relationships to build a complex multivariate function
proves to be difficult because we lack information about how the factors
interact. Univariate methods, such as leaf margin analysis, reduce the
problem to one climatic parameter linked to one physiognomic feature,
while digital leaf physiognomy (DLP) first looks at the physiognomic
features with the highest explanation power, and then calculates the
parameters of the function (Royer et al., 2005; Peppe et al., 2011).
Both these approaches ignore, or in the case of DLP try to filter, the inte-
grated nature of leaf form and function. If phenotypic integration results
in an overall optimized solution to maximizing photosynthetic return
for minimal resource investment, then the assumption that one partic-
ular subset of character/climate relationships is more important than
another is dangerous when developing a climate proxy that has to be re-
liable across time and space.

CLAMP does not explicitly filter physiognomic characters but uses a
vector-based direct ordination method, canonical correspondence anal-
ysis (ter Braak, 1986), to seek physiognomic/climate relationships
across 31 leaf characters and a variety of climate variables. Like all pre-
vious approaches this uses traditional algebraic methods to compute
model parameters. Major climate trends are sought through the cloud
of modern natural or naturalized vegetation sites positioned relative
to one another based on the leaf physiognomy displayed by at least
twenty of their woody dicot component taxa. This cloud of calibration
sites form what is known as ‘physiognomic space’. By using observed
climate data for each of the vegetation sites, climate trends across phys-
iognomic space are determined and expressed as straight-line vectors.
These vectors were originally aligned by eye in two-dimensional space
(Wolfe, 1993) but subsequently objectively positioned first in two-
dimensional space (Kovach and Spicer, 1996) and subsequently in
four-dimensional space (Spicer et al., 2003). Higher dimensions carry
little additional information for most calibration data sets. Samples
with no known climate, such as fossil leaf assemblages, are positioned
passively and their position along the vector (the vector score) is used
to predict the unknown climate (CLAMP website: http://clamp.ibcas.
ac.cn; Kovach and Spicer, 1996; Spicer, 2000; Wolfe and Spicer, 1999).

With small calibration data sets the structure of physiognomic space
is relatively simple (Stranks and England, 1997; Spicer, 2000; Jacques
etal,, 2011), and the vector approach has proved adequate for predicting
past climate accurately as measured against other paleoclimate proxies
(Kennedy et al., 2002; Spicer et al., 2003), even accommodating some
structural complexity by means of a non-linear regression model
for calibrating the vectors. However, with large data sets spanning a
diversity of vegetation and climates the ability of the vectors to capture
the complexity of physiognomic space and the leaf form-climate
relationship degrades (Yang et al., 2015), although the complexity can

be visualized using a generalized additive model (Wood, 2011; Yang
et al, 2015).

Because of the complexity of the relationship between plants and cli-
mate, it is quite likely that non-linear interactions exist among various
aspects of the leaf physiognomy-climate relationship. So far, different
approaches, such as CLAMP, DLP and other related modified ap-
proaches, seek linear trends that may constrain the prediction ability
when worldwide data sets are considered. This is because a wider
range of physiognomies occurs under the greater diversity of climate
types represented as the size and geographic spread of the calibra-
tion data set increases. Non-linear relationships should be sought
to improve the precision of paleoclimatic reconstruction from leaf
physiognomy.

The purpose of this work is not to present an alternative paleoclimate
proxy to those currently in use, but to explore a different way of revealing
the information content of physiognomic space. In this study, we explore
a new non-linear approach to approximate the function linking climate
and physiognomy. The general regression neural network (GRNN) is a
type of artificial neural network (ANN) that can approximate to both lin-
ear and nonlinear regressions (Specht, 1991). The GRNN is particularly
advantageous with sparse data in a real-time environment, because the
regression surface is instantly defined everywhere (Specht, 1991). As
such the GRNN is a useful technique to investigate the climate and phys-
iognomy relationship. We tested GRNN on two different physiognomy
data sets and compared our results with those obtained from other com-
putational methods. We also tested the GRNN using different physiog-
nomic characters and fossil sites from North America.

2. Material and methods
2.1. Leaf physiognomy and climatic data sets

Two data sets were used in this study. The CLAMP global data set
(Yang et al., 2015; the CLAMP website: http://clamp.ibcas.ac.cn) and
the DLP data set (Peppe et al., 2011). Both data sets have a similar struc-
ture: a physiognomic data set that encapsulates leaf characteristics for
each sampling site, and a meteorological data set describing the climate
data for the same sites.

The CLAMP global data set used here is made up of 378 sites
worldwide. The meteorological data usually consists of 11 parame-
ters retrieved from a gridded data set (New et al., 2002; Spicer
et al., 2009). The physiognomic data consist of a string of 31 charac-
ters describing leaf physiognomy across at least 20 taxa for each of
those sites.

The DLP data set consists of 92 sites around the world. The meteoro-
logical data is made up of 10 parameters retrieved from WorldClim
(Hijmans et al., 2005). The physiognomic data consist of 28 characters.
Because the CLAMP data set is larger than the DLP data set, and thus po-
tentially more complex, we chose to use the CLAMP data set in detailed
tests of GRNN.

2.2. CLANN algorithm
We developed an algorithm based on GRNN. The predicted value

(target) Y to input vector X in the GRNN is computed by the equation
(Specht, 1991):

n D?

> oY exp<—2é2>
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where i is number of hidden nodes (samples) i = 1, 2, 3, ..., n. The
optimal value of g, which here denotes the spread, can be determined
by cross-validation (Specht, 1991). D? is the Euclidian distance between

Y(X)
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the prediction site X; and each known sites X, which is given by the
following equation:

Di =/ (X—X)" (X—X)) (2)

We were able to simulate a GRNN (Fig. 1; Algorithms S1 and S2)
using an algorithm we call CLANN (Climate Leaf Analysis with Neural
Networks). The physiognomic data set corresponds to the input, where-
as the meteorological data set corresponds to the target. The active sites
were used as a training data set for the network. Because variables with
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|
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Fig. 1. Schematic illustration of the CLANN algorithm. (1) The entire dataset of 378 sites
were randomly separated to 10 folds using 10-fold validation method in R. One of these
folds was selected for test data and the other 9 folds for calibration data. This 10-fold val-
idation was repeated 10 times. (2) Two hundred spreads (from 0.01 to 2, in steps of 0.01)
were selected for model training. For each model the calibration was optimized with
20 x 10 iterative cycles (epochs) (3) Next, calibration data were randomly separated to
10 folds using 10-fold validation method in R. One of these folds was selected for valida-
tion data and the other 9 folds for training data. (4) GRNN training. (5) The diagnostic
values were calculated by comparing the predicted values and the real values. (6) The
models were calibrated based on the optimal spread values. (7) Once the models were
calibrated they were used to predict climate values for test data. The climate parameters
of 378 sites were subsequently predicted using all the calibrated models for 10 iterative
cycles (epochs). (8) The mean of all predicted climate parameters of 10 iterative cycles
were calculated as a measure of the performance of the model.

large magnitudes are combined with those with small magnitudes, the
former can mask the effect of the latter due to the larger weights
associated with them (Sandhya, 2006), so it is crucial to normalize
data prior to ANNSs training process (Sola and Sevilla, 1997). All param-
eters of the active physiognomic data set were normalized so that their
minimum and maximum values ranged between —1 and + 1. The
physiognomic parameters of the passive sites were transformed using
the same function. The transformed active physiognomic data set was
used for the weights of the input layer (Fig. 1). The meteorological
data of the active data set were used as the weight of the pattern layer
(Fig. 1).

2.3. Performance

2.3.1. Cross-validation

Because ANNSs are prone to over-training (Plumb et al., 2005), we
used a repeated k-fold cross-validation process to test the precision of
the approach (Fig. 1). All sites were randomly separated to 10 folds
using the 10-fold validation method in R. One of these folds was selected
for test data and the other 9 folds for calibration data. The meteorolog-
ical parameters of the test data were reconstructed using the trained
model. This 10-fold validation was repeated 10 times. The mean values
of predictions for all sites were compared to the observed meteorological
data.

2.3.2. Diagnostic values

Two diagnostic values were calculated to measure the performance
of the model: 1) the R-squared (R?) between the predicted and
observed values, and 2) the standard deviation of the residuals (SD).

2.3.3. Spread selection

The spread is the only parameter that can be adjusted in a GRNN. A
lower spread will give relatively higher weights to active sites near
the passive site. A higher spread will tend to give more similar weights
over all the data set. In other words, a lower spread increases the influ-
ence of local sites while a high spread gives results that tend toward the
mean of the data set. Different spreads were tested for our model; tested
values were from 0.01 to 2.00 with an increment of 0.01. The R? be-
tween the observed values and the values predicted under the 10-fold
cross-validation procedure was used as a measure of performance of
the model. For each climatic parameter, we selected the spread that
gave the highest R%.

24. Significance of the model

To test if there is a real climatic signal retrieved by the CLANN algo-
rithm from leaf physiognomy, we composed an artificial physiognomy
file consisting of random numbers, and compared our results from the
CLAMP data set with that from this random data set. The random phys-
iognomic data set was built using the function runif’ in R, following the
rules of scoring for CLAMP (Wolfe, 1993). For example in CLAMP scoring
the sum score of the characters ‘no teeth’, ‘rounded teeth’ and ‘acute
teeth’ is 100 and the total score of the three leaf base characters is
100. The random numbers were constructed in such a way that such re-
strictions in the scoring regime (see the CLAMP website, http://clamp.
ibcas.ac.cn, for details) were adhered to. The algorithm used is given
in Algorithm S3. The cross-validation procedure was used with this
random data set as if it were the physiognomic data set along with the
meteorological data set used for CLAMP. The spread was adjusted for
this data set. R? values of predicted versus observed values for the
random data set and the R? values of predicted versus observed values
for the CLAMP data set were compared to test the validity of the model.
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2.5. Comparison with previous methods

To calculate the performance of CLAMP under a cross-validation
process, we used the R package ‘Vegan’ (Oksanen, 2015). The models
followed the usual calculation method (Jacques et al., 2011; Yang
etal,2011).

The DLP calculations for the cross-validation procedure were carried
out using the software R. The multiple regression models for DLP data
were built according to Peppe et al. (2011). The regression parameters
were selected using stepwise model selection by AIC in R package
‘MASS’ (Ripley et al., 2015).

2.6. Contribution of each character

The physiognomic characters can be grouped in seven classes: lobed
(character #1), leaf margin (characters #2 to 7), leaf size (characters #8
to 16), leaf apex (characters #17 to 20), leaf base (characters #21 to 23),
length-to-width ratio (L:W, characters #24 to 28), and leaf shape
(characters #29 to 31).

The influence of each character class was analyzed in two ways.

(1) A new input data set created by excluding a class from the
physiognomic data set—The cross-validation procedure is carried
out using this new input data set. This is done for all classes turn-
by-turn.

(2) A new input data set created using only one feature class of the
physiognomic data set—The cross-validation procedure is carried
out using this new input data set. This is done for all classes turn-
by-turn.

Spreads are adjusted for each newly designed data set by training
the new data sets respectively using the CLANN algorithm (see
Algorithm S2).

2.7. Application to fossil assemblages

Canonical correspondence analyses (CCAs) were carried out to
understand the differences between regions and to visualize where
the fossil sites were located in relation to calibrated physiognomic
space (physiognomic space defined by modern vegetation sites growing
within a known climate regime). A CCA was carried out on the physiog-
nomic data of the modern CLAMP data set and another on the 82 fossil
sites from Eocene to Pliocene in North America presented in Yang et al.
(2011). Both CCAs were made using the R package ‘Vegan’ (Oksanen,
2015).

Table 1

Paleoclimates were reconstructed from 82 Eocene to Pliocene fossil
sites in North America (36 Paleogene fossil sites and 46 Neogene
fossil sites), to test the parity between CLAMP and CLANN when
reconstructing paleoclimates. A paired t-test was performed with IBM
SPSS statistics software (version 20, IBM Corporation, Somers, NY,
USA) to explore the differences in the reconstructed paleoclimates
between CLAMP and CLANN. We also drew box plots to show how
large these differences were among the 11 reconstructed climate
parameters.

3. Results
3.1. Performance

The best spreads, R?, and P of the CLANN algorithm for the CLAMP
and DLP data set are shown in Table 1.

For the CLAMP data set, the predictive power as measured by R?
ranged between 0.42 and 0.86 for all climatic parameters. The relation-
ship between predicted and observed values for all climatic parameters
is highly significant (see P values). The relationships between observed
and predicted values for MAT and GSP are indicated on Fig. 2. Compar-
ison of CLAMP and CLANN predictions for all of the 11 climate parame-
ters are shown in the Figs. S1-S11. The CLANN algorithm gives high
predictive power across all 11 parameters.

For the DLP data set, the predictive power is low for MAP, with an R?
of only 0.21. However, the relationship between observed and predicted
values is highly significant for both MAP and MAT (Table 1).

3.2. Significance

The R? and P between the predicted and observed values for the
CLAMP physiognomic data set and a random physiognomic data set
are shown in Table 1. All R? values for the random data set are very
low. The relationship between the predicted and observed values for
the random data set is not significant for all climatic parameters.
These results show that the CLANN algorithm gives higher predictive
power than CLAMP for the real CLAMP data set, but presents very
poor predictions for the random data set. This shows that the CLANN
algorithm retrieves climate information from the CLAMP data set and
does not impose patterns where none exists.

3.3. Comparison with previous methods

Diagnostic values of CLANN and CLAMP, including R? and standard
deviations, are given in Table 2. Whatever climatic parameter is

Results of the Climate Leaf Analysis with Neural Networks (CLANN) algorithm applied to the Climate Leaf Analysis Multivariate Program (CLAMP) PhysgGlobal378 dataset with a corre-
sponding high resolution gridded climate data available from the CLAMP website (http://clamp.ibcas.ac.cn), a random physiognomic dataset constructed using CLAMP scoring protocols,
and the digital leaf physiognomy (DLP) datasets of Peppe et al. (2011). Abbreviations: MAT, mean annual temperature; WMMT, mean temperature of the warmest month; CMMT, mean
temperature of the coldest month; LGS, length of the growing season; GSP, growing season precipitation; MMGSP, mean monthly growing season precipitation; 3-WET, precipitation of
the three consecutive wettest months; 3-DRY, precipitation of the three consecutive driest months; RH, annual mean relative humidity; SH, annual mean specific humidity; ENT, enthalpy;
MART, mean annual range in temperature; GSMT, growing season mean temperature; GDD, growing degree days; GSDD, growing season degree days; GSL, growing season length; MAP,

mean annual precipitation.

CLAMP dataset Random dataset DLP dataset

Parameter Spread R? P R? P Parameter Spread R? P

MAT (°C) 0.52 0.86 1.89 x 10160 0.0018 0.976 MAT (°C) 0.50 0.66 1.40 x 102!
WMMT (°C) 0.55 0.75 1.87 x 107113 0.0024 1.141 WMMT (°C) 0.45 0.38 1.04 x 1079
CMMT (°C) 0.49 0.85 5.69 x 107152 0.0022 0.636 CMMT (°C) 0.48 0.73 1.15x 1026
LGS (months) 0.56 0.85 7.93 x 107156 0.0027 0.931 MART (°C) 0.50 0.63 149 x 107 '8
GSP (cm) 0.57 0.58 1.19%x 1077 0.0018 0.732 GSMT (°C) 0.47 0.53 259 x 10715
MMGSP (cm) 0.58 0.56 7.83 x 1077 0.0020 0.808 GDD (days) 0.50 0.63 1.08 x 10~ 1°
3-WET (cm) 0.56 0.42 3.63x 10~ 0.0037 0.354 GSDD (days) 0.49 0.73 1.29 x 1026
3-DRY (cm) 0.52 0.60 252x1077° 0.0098 1.575 GSL (days) 0.39 0.39 7.18 x 1079
RH (%) 0.49 0.74 3.92 x 107110 0.0030 0.810 GSP (cm) 0.39 0.38 2.04x107%
SH (g/kg) 0.56 0.80 7.42 x 107130 0.0026 0.800 MAP (cm) 0.57 0.21 473x107%
ENT (0.1 kj/kg) 0.55 0.83 3.77 x 1071 0.0023 0.828
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Fig. 2. Climate Leaf Analysis with Neural Networks (CLANN) predictions for mean annual temperature (MAT) and growing season precipitation (GSP). The black line represents a 1:1 cor-
respondence between the observed and predicted values, the red line is the regression representing the CLANN-derived relationship.

considered and whatever diagnostics are used, CLANN always
gives better precision than CLAMP. Figs. S1-S11 compare the
relationships between observed and predicted values for CLAMP
and CLANN. For 3-DRY and RH, there are greatly improved predic-
tions by CLANN compared to CLAMP. For 3-DRY and RH, the R? of
CLAMP predictions are around 0.16 and 0.30 respectively, whereas
CLANN gives much better predictive power. Note that these values
are different from those for the whole data set because they refer
to the mean statistics of the 10-fold cross validation subsamples of
the full data set (Fig. 1). Figs. S1-S11 show that sample points are
less dispersed using the CLANN model than for CLAMP, and that
the model regression line is closer to the y = x line for CLANN
than for CLAMP.

Diagnostic values of CLANN and DLP are also given in Table 2.
For all climatic parameters, except GDD and GSDD, CLANN always
gives better diagnostic values than DLP. For GDD and GSDD, the
diagnostic values are quite similar between the DLP and CLANN
predictions.

Table 2

3.4. Contribution of each character

The R? for each climatic parameter when a character class is lost is
shown in Fig. 3. Whatever class of character is excluded and whatever
climatic parameter is considered, the R? is similar to the one obtained
with all characters present.

The R? for each climatic parameter when only one character class is
included is shown in Fig. 4. In most instances, the R? is clearly different
from zero. For temperature-related parameters, the features concerning
the teeth give the highest R2. For precipitation-related parameters,
leaf size characters typically have the highest predictive power. No
character class alone reaches the R? levels obtained with all characters.

3.5. Comparison between CLAMP and CLANN for fossil sites
CCA axes 1vs 2 and CCA axes 1 vs 3 (Fig. 5) show the distribution of 82

North American Paleogene and Neogene fossil sites (black open circles),
within the cloud of modern sites (colored symbols) that define

Comparison of model statistics for the Climate Leaf Analysis Multivariate Program (CLAMP), and the digital leaf physiognomy (DLP) with the newly introduced Climate Leaf Analysis with
Neural Networks (CLANN). In terms of the R-squared (R?) and the standard deviation (SD), CLANN has a better precision than CLAMP for all studied climatic parameters from CLAMP
dataset. For the DLP dataset, both methods give similar precision for GDD and GSDD, but CLANN has a better precision for all other parameters than DLP. Abbreviations: MAT, mean annual
temperature; WMMT, mean temperature of the warmest month; CMMT, mean temperature of the coldest month; LGS, length of the growing season; GSP, growing season precipitation;
MMGSP, mean monthly growing season precipitation; 3-WET, precipitation of the three consecutive wettest months; 3-DRY, precipitation of the three consecutive driest months; RH,
annual mean relative humidity; SH, annual mean specific humidity; ENT, enthalpy. Note that the CLAMP statistics are slightly different from those given in Yang et al. (2015) because those
given here are calculated on the basis of the same random 90% subsets of the full data set as used in CLANN for training, whereas those in Yang et al. (2015) are based on the full data set.

CLAMP dataset DLP dataset
Parameter CLAMP method CLANN method Parameter DLP method CLANN method
R? SD R? SD R? SD R? SD

MAT(°C) 0.71 410 0.86 2.85 MAT (°C) 0.54 415 0.66 2.72
WMMT(°C) 0.41 3.97 0.75 2.59 WMMT (°C) 0.27 3.51 0.38 2.73
CMMT(°C) 0.62 6.92 0.85 4.40 CMMT (°C) 0.63 6.12 0.73 3.40
LGS(months) 0.66 1.92 0.85 1.26 MART (°C) 0.38 5.85 0.63 3.32
GSP(cm) 0.41 56.96 0.58 47.86 GSMT (°C) 0.46 3.84 0.53 3.06
MMGSP(cm) 0.28 6.11 0.56 4.77 GDD (days) 0.66 865.77 0.63 872.54
3-WET(cm) 0.20 33.55 0.42 28.56 GSDD (days) 0.77 598.15 0.73 653.99
3-DRY(cm) 0.16 13.40 0.60 9.23 GSL (days) 0.09 132.39 0.39 52.31
RH(%) 0.30 9.68 0.74 5.89 GSP (cm) 0.16 162.21 0.38 56.36
SH(g/kg) 0.67 1.99 0.80 1.58 MAP (cm) 0.05 92.42 0.21 77.97

ENT(0.1 kJ/kg) 0.72 1.07 0.83 0.84
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Fig. 3. Spider diagram showing the effect of character loss tested by the Climate Leaf Analysis with Neural Networks (CLANN). The radii represent the R-squared (R?) between the predicted
and observed values for the complete physiognomic dataset (All), and other seven new datasets created by excluding a class of leaf characters from the physiognomic dataset each time.
The physiognomic characters are grouped in seven classes: lobing, teeth, size, apex, base, length-to-width ratio (L:W), and shape. Abbreviations for the climate parameters: MAT, mean
annual temperature; WMMT, mean temperature of the warmest month; CMMT, mean temperature of the coldest month; LGS, length of the growing season; GSP, growing season
precipitation; MMGSP, mean monthly growing season precipitation; 3-WET, precipitation of the three consecutive wettest months; 3-DRY, precipitation of the three consecutive driest
months; RH, annual mean relative humidity; SH, annual mean specific humidity; ENT, enthalpy.

physiognomic space for the calibration data set. All the 82 fossil sites are
located within modern physiognomic space. This implies that the
paleoclimate for all of these fossil sites can be reconstructed using CLANN.

Based on the results of paleoclimates reconstructed using CLAMP
and CLANN (Table S1 and S2 respectively), we explored the difference
between these two methods using the paired t-test. Table S3 shows
that there were significant differences in six paleoclimate parameters
reconstructed by CLANN and CLAMP, implying that there were differ-
ences between these two models when reconstructing paleoclimates.
For these six paleoclimate parameters, CLANN generates higher predic-
tion values for WMMT, LGS, GSP, and 3-WET, while it gives lower values
for CMMT and RH. For 3-DRY, although CLANN greatly improved pre-
dictive precision compared to CLAMP, the t-test result shows no signif-
icant difference in the mean values between these two methods.

The box plots show that CLANN produces obviously higher median
values for MAT, WMMT and LGS, while it gives distinctly lower median

values for CMMT, GSP and MMGSP. For 3-DRY, the box plots show only a
small difference in the median value; while CLANN gives a larger range
of reconstructed climate values. The results also show that CLANN
predictions have larger ranges than those of CLAMP for all the
moisture-related climate parameters.

4. Discussion
4.1. An improved paleoclimatic model

A skeptic could argue that our results are an artifact of the algorithm,
and that there is no real climatic signal to be retrieved from leaf physi-
ognomy. To test this, we compared our results to results obtained from
an artificial physiognomy file consisting of random numbers. When
using this random input data set, all R? values for the relationships be-
tween predicted and observed values were below 0.01 (P> 0.3 for all
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Fig. 4. Spider diagram showing the climatic signal coded by each feature class tested by the Climate Leaf Analysis with Neural Networks (CLANN). The radii represent the R-squared (R?)
between the predicted and observed values for the complete physiognomic dataset (All), and other seven new datasets created by using just a single class of leaf characters from the
physiognomic dataset each time. The physiognomic characters are grouped in seven classes: lobing, teeth, size, apex, base, length-to-width ratio (L:W), and shape. Abbreviations are as in Fig. 3.

tested climate variables; see Table 1). Whereas with the observed leaf
physiognomy data set, the smallest R* we get is 0.42 (see Table 1; for
3-WET, which refers to precipitation during the three consecutive wet-
test months). Therefore, we conclude that the CLANN algorithm is capa-
ble of revealing structure in the data that is present in the real
observations but absent in the random artificial data.

In this study, two indices were used to test the performance of the
new CLANN method. For all climatic parameters, CLANN performs
better than CLAMP (Table 2). CLANN also performs better than DLP
for eight parameters, while there are no significant differences between
CLANN and DLP performance for GDD and GSDD parameters (Table 2).
However, where the same climate parameter is used in both CLAMP and
DLP, CLAMP exhibits the greater predictive precision.

Among the methods of paleoclimatic reconstruction based on leaf
physiognomy, CLANN is the one that performs best based on R? metrics.
For example, based on the CLAMP data set, CLANN gives an R? of 0.86 for
MAT, which means that CLANN can explain 86% of the MAT variability

based on the leaf physiognomy variability. A perfect model should give
100%. Our model is not perfect; we need to investigate possible sources
of errors. One source of error is the modeling itself, which does not per-
fectly fit all data. Other sources of error concern imperfections in the
data sets: the actual climatic parameters experienced by the vegetation
may be different from those given by the gridded data set; the leaf sam-
pling process may have missed one or two species and even if the scoring
process is well defined, there can be occasional scoring errors. All sources
of error contribute to the overall model error and methodological im-
provements cannot rectify error within the data sets. Within these con-
straints it appears that the CLANN model is closer to the minimal error
compared to CLAMP and DLP models.

4.2. Advantages and limits

Previous paleoclimate reconstructions methods based on leaf
physiognomy relied on a general relationship (trends) between
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Fig. 5. Canonical correspondence analysis (CCA) showing that the 82 fossil sites used as CLANN test samples all fall within the physiognomic space defined by the modern dataset. CCA axes
1vs 2 and CCA axes 1 vs 3 show the distribution of 82 North American Paleogene and Neogene fossil floras (black color open circles), within the cloud of modern sites (colored symbols)

that define physiognomic space for the calibration dataset.

physiognomic features and climate variables across whole data sets. The
CLANN method is based on a GRNN; therefore, it allows local adapta-
tions of the model to the data (Specht, 1991). However, it raises the
question of the importance of the local adaptations over the general
relationship. It is not an easy question to answer: a too generalized
model overlooks local adaptations that might be important. For
example particular combinations of leaf features, exhibited within
large global foliar physiognomic data sets, might be important for
detecting marked seasonal variations in water availability and thus a
monsoon signal (Jacques et al.,, 2011) and these may be missed if a too
generalized model is used. However, too strong an importance given
to local adaptations diminishes the power of the model when used on
new sites. In GRNN, the local importance is defined by the spread: a
high spread favors a more general relationship; a low spread favors
local adaptations. For a very high spread, the model gives the same
value (the mean of the calibration data set) for all sites. For a very low
spread, the model gives the exact value for all calibrating points, and 0
for all other possible points. Using a repeated k-fold cross-validation ap-
proach, we were able to tune the best spreads for our data set and avoid
over-fitting. If the CLANN method were to be used on another data set,
new spread values would have to be tuned and even then a low spread
would make predictions vulnerable to the characteristics of individual
calibration sites. In situations where species diversity is low and/or sam-
pling or scoring contains errors, or the gridded calibration climate data
do not reflect well the local conditions experienced by the leaves (e.g.
in topographically complex mountainous terrain), the position of a
calibration site in physiognomic space may be anomalous and lead to
erroneous CLANN predictions for unknown (fossil) sites. This will give
rise to ‘noise’ and a large predictive range offered by CLANN. In CLAMP
the influence of such poor calibration sites is low, but the cost is a
reduction in precision.

Alimit of CLANN is that it cannot be used for sites that fall outside the
range of its calibrating data set. This limitation is true for any arithmetic
model: the error of the models increases sharply outside the calibrating
range. Even if the models can be extrapolated beyond the calibration
range, the cost in increasing errors is hidden. In the case of CLANN,
when a site is far from the range of the calibrating data set, the results
will be 0: this gives a good control for such sites. However, we recom-
mend that users always test if a fossil site is included in the range of

calibration. CLANN by itself does not provide a visualization of physiog-
nomic space, or the relationship of a fossil site to calibrated physiog-
nomic space, but this can be done using CCA. The CCA results (Fig. 5)
show that all of the fossil sites of North America were located within
the physiognomic space occupied by the modern global data set, and
indicate that the CLANN model derived from this calibration is appropri-
ate for exploring the paleoclimates represented by the fossil sites.

4.3. Applicability on different data sets

We tested our computation methods on two data sets that were
built with different scoring strategies: the CLAMP data set and the DLP
data set. CLANN works on both data sets, which indicates that it may
also perform well on other data sets. If scoring improvements are
proposed, or new scoring methods developed, we suggest that CLANN
represents one of the best computation methods to explore their
properties.

4.4. Complex multivariate relationships

The relationship between leaf physiognomy and climatic parameters
is complex and multivariate. Ecologists are interested in leaf physiog-
nomic function in relation to the environment, including climate. For
paleoclimatic reconstruction, a strong relationship is more important
than fully understanding functional mechanisms. In contrast to linear
models, the GRNN used in CLANN allows the influence of a feature to
vary inside physiognomic space. This is one of the reasons why CLANN
offers higher precision than other methods: it models a higher complex-
ity of the relationships than those methods.

Previous studies on CLAMP show not only that the climatic signal of
one parameter is present in one leaf feature, but also that all features can
contribute to this signal (Spicer et al., 2011; Yang et al.,, 2015). However
some authors suggest that some characters correlate only weakly with
climate in the present day (Peppe et al., 2010). This characteristic is an
important issue in paleobotany, where some leaf features cannot be
scored because of taphonomic loss and poor preservation in the fossil,
or correlations may change over time. This leads to a question: is the
reconstruction method robust to character loss? To test this, 1) each
character class was excluded one by one from the analysis (Fig. 3);
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and 2) only one character class was included in each analysis (Fig. 4).
These results show that a climatic signal is retrieved for all climatic
parameters whatever the analysis carried out; and there is only a
small difference in the R? value when some character information is
lost. Therefore, our results show that the climatic signal is encoded in
all character classes and that the CLANN algorithm, like CLAMP, is robust
against character loss. Our results also show that in the calibration data
some traits make a higher contribution to the prediction of temperature
and precipitation related parameters (e.g. teeth and leaf size contribute
greatly to temperature and precipitation predictions respectively) than
others, although there is strong integration of leaf form as evidenced by
the covariation of leaf traits across species (Yang et al., 2015). Does this
mean that some leaf characters are more ‘important’ than others for
paleoclimate and the rest ignored? Based on the observation that in
some parts of the modern world such as New Zealand even the propor-
tion of toothed to non-toothed leaves shows no correlation with mean
annual temperature (Stranks and England, 1997; Kennedy et al., 2014;
Yang et al., 2015) clearly the ‘importance’ of a character is not universal
between geographic regions and is equally unlikely to be static through
time. The purpose of our character removal test is to explore the sensi-
tivity of CLANN to character loss, not to argue that one suite of charac-
ters is more important than another for retrieving climate signals.

4.5. Regional differences

It has been suggested that several regions have a different leaf phys-
iognomy-climate relationship (Jacques et al., 2011; Little et al., 2010;
Peppe et al., 2011; Stranks and England, 1997; Su et al., 2010). These re-
gions include Australia and New Zealand (Stranks and England, 1997).
For New Zealand, the predictive 3-DRY climate values are displaced
away from the observed values (Fig. S8), indicating that 3-DRY cannot
be reconstructed confidently but this is easily explained because there

is no proper dry season in New Zealand. Extreme cold sites from Siberia
are outliers in CLAMP (Spicer et al., 2004), especially for temperature
parameters (e.g. MAT and CMMT). With CLANN, there are no outliers
(Figs. S1 and S3). From these results we conclude that the approach
we explore here is valid worldwide. Because this new method correctly
reconstructs modern climate from tropical to cold regions, it is also like-
ly to reconstruct well the diversity of past climates.

Regional constraints have long been recognized for univariate phys-
iognomic methods (reviewed in Steart et al., 2010). When the leaf form/
climate relationship is examined using multiple leaf characters climate
dominates over phylogeny in determining this relationship, but the
structure of physiognomic space can be complex and that this complex-
ity varies among climate parameters (Yang et al., 2015). Because CLANN
has the ability to adapt to localized trends within physiognomic space,
regional variations in the relationship between leaf form and climate,
particularly variations in the mix of characters that result in leaf optimi-
zation for local climatic regimes, is captured by CLANN.

Nevertheless, it is clear that a non-random phylogenetic signal is
present in both leaf traits and the distribution of plants: (1) some fam-
ilies have only leaves with entire margin (such as Magnoliaceae),
whereas others have only toothed leaves (such as Betulaceae); (2) the
distribution of plants is not independent of their taxonomy, some fam-
ilies are exclusively tropical, whereas others are mostly represented in
cold or temperate regions. An exaptive scenario has been suggested by
some authors to explain the distribution of toothed-margin species in
cold regions (Little et al,, 2010), but our results show that each class of
character contains some climatic signal for all climatic parameters
(Fig. 4). Exaptive scenarios to explain the distribution of all the studied
leaf features along the gradient of all studied climatic parameters there-
fore seem highly improbable. An adaptive scenario, where leaf features
are selected by the climate, is thus more parsimonious. Therefore, as in
Yang et al. (2015), we suggest that the climatic signal present in leaf
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Fig. 6. Box plots showing the differences of 12 reconstructed climate parameters for the 82 fossil sites using CLAMP and CLANN. Abbreviations for the climate parameters are as in Fig. 3.
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physiognomy (especially for temperatures) is mostly independent of
phylogeny.

4.6. CLANN as a paleoclimate proxy

The 82 Paleogene and Neogene fossil sites analyzed here demon-
strate differences between CLAMP and CLANN. The box plots show
that CLANN predictions may cover larger ranges of climate space than
CLAMP. Are these greater ranges a reflection of reality or are they an
artifact? To answer this question it is necessary to compare the method-
ological differences between CLAMP and CLANN. In CLAMP the standard
statistical engine is canonical correspondence analysis, the outcome of
which is the summary of climate trends across physiognomic space rep-
resented by linear vectors. Such trends inevitably compromise precision
because they cannot accommodate complexities in physiognomic space
(Yang et al., 2015). In CLANN the derived climate signal is weighted to-
ward the climate experienced by those calibration sites that have the
most similar physiognomies to that of the unknown (fossil) site. The de-
rived signal is thus in large part dependent on the number of calibration
sites, and their properties, that are used to obtain the climate of the un-
known site. Which calibration sites are used to derive the prediction is
determined by the CLANN ‘spread’ parameter. Potentially this approach,
like the local multivariate regression approach (Stranks and England,
1997) and its multiple regression surfaces derivative (Yang et al.,
2015), can yield more precise climate predictions because it better ac-
commodates the complexities of physiognomic space. However, the
fewer (spread-determined) calibration samples used to derive climate
predictions in CLANN, compared to the full data set that is used in
CLAMP, renders it highly sensitive to variation among the calibration
sites due to proximity to the boundaries of physiognomic space, poor
sampling, poor scoring, or uncertainties in the modern climate data.
This meteorological ‘noise’ is most pronounced in topographically com-
plex mountainous regions (the location of many of the calibration sites
because this is where natural vegetation survives today) and particular-
ly in precipitation data (Spicer et al., 2009). It is perhaps to be expected
then that the ranges in CLANN predictions for fossil sites are uniformly
higher than those for CLAMP, most notably in the precipitation variables
(Fig. 6). In future this climatic noise may be reduced by gridded data
that takes into account meso-scale meteorological processes as well as
aspect, but at the moment meteorological noise is a major limitation
on increasing both the precision and accuracy of multivariate foliar
physiognomic paleoclimate proxies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.palaeo.2015.11.005.
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