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abstract: The seed-to-seedling transition constitutes a critical bottle-
neck in the life history of plants and represents a major determinant

empirical and theoretical ecology (Wright 2002; Kraft et al.
2008; Swenson 2013). Diverse tropical tree assemblages have
of species composition and abundance. However, we have surprisingly
little knowledge regarding the forces driving this ontogenetic transition.
Here we utilize information regarding organismal function to investi-
gate the strength of intra- and interspecific negative density dependence
during the seed-to-seedling transition in Puerto Rican tree species. Our
analyses were implemented at individual sites and across an entire 16-ha
forest plot, spanning 6 years. The functional richness of seedling assem-
blages was significantly lower than expected given the seed assemblages,
but the functional evenness was significantly higher than expected, indi-
cating the simultaneous importance of constraints on the overall pheno-
typic space and trait differences for successful transitions from seed to
seedling. The results were consistent across years.Within species, we also
found evidence for strong intraspecific negative density dependence,
where the probability of transition was proportionally lower when in a
site with high conspecific density. These results suggest that filtering of
similar phenotypes across species and strong negative density depen-
dence within and among species are simultaneously driving the struc-
ture and dynamics of tropical tree assemblages during this critical
life-history transition.

Keywords: community assembly, functional ecology, functional rich-
ness, seed-to-seedling transition, tropical tree ecology.

Introduction

Identifying themechanistic drivers of the assembly and struc-
ture of diverse plant communities remains a key challenge in
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been particularly challenging to untangle given the life span,
abundance, and diversity of the species involved. Despite
these challenges, ecologists have made progress through an-
alyzing long-term forest dynamics data sets (e.g., Condit et al.
2006; Wills et al. 2006; Swenson et al. 2012b; Muscarella et al.
2013). Recent studies have shown that nonrandom mortal-
ity is particularly high in the smallest size classes in tropical
tree communities, and this leaves a disproportionally large im-
print on patterns of coexistence through to adulthood (Bagchi
et al. 2010, 2014; Metz et al. 2010; Paine et al. 2012; Green
et al. 2014). Uncovering the ecological mechanisms that de-
termine the seed-to-seedling transition and their effects on
tropical tree coexistence and community dynamics (Levine
and Murell 2003) is an essential goal.
The number of individuals in the seed community is usu-

ally much larger than that in the established seedling com-
munity at any particular location, with more than 75% of
the seeds that land in a site unable to successfully establish
and grow (Howe et al. 1985; Schupp 1988). Seedling and
sapling studies have argued for the importance of negative
density dependence (Harms et al. 2000; Metz et al. 2010),
abiotic filtering (Uriarte et al. 2010), or stochastic survivor-
ship (Paine and Harms 2009). However, it is more likely
that all of these factors act at the same time (e.g., Swenson
and Enquist 2009), making it important to disentangle their
importance in structuring tropical tree communities through
space and time.
There have been many temporally static investigations of

seedling assemblages (Augspurger 1984;Nicotra 1999;Norden
et al. 2007; Paine et al. 2012) and some dynamic investiga-
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tions of the seedling-to-sapling transition (Norden et al. 2012;
Green et al. 2014), but there are few detailed forest-wide in-

communities is critical because of the potentially large
number of functionally similar species (Hubbell and Fos-
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vestigations of perhaps the largest demographic bottleneck of
all: the seed-to-seedling transition (Harms et al. 2000; Norden
et al. 2009; Paine andHarms 2009;Muscarella et al. 2013). One
of the best known of these investigations comes from Harms
et al. (2000), who found that the seed-to-seedling transition
in a Panamanian tropical forest assemblage was strongly influ-
enced by negative density dependence. Intraspecific negative
density dependence is expected to have a higher per capita
mortality rate at higher population densities than at lower
population densities. Thus, it is expected that proportionally
fewer individuals will successfully transition from seed to
seedling when there is a higher local conspecific density. Us-
ing a log-log regression of the number of seedlings against
the number of seeds at a site, Harms et al. (2000) proposed
that a linear regression slope less than 1 would be indicative
of intraspecific negative density dependence (fig. 1).

Although the Harms et al. (2000) approach can provide
insights into intraspecific negative density dependence, it
does not integrate information pertaining to plant function
in the form of trait data. Adding such information is impor-
tant because the successful transition from seed to seedling
is influenced by traits that affect the individuals’ establish-
ment, growth, survival, and ultimately fitness (Arnold 1983;
Reich 2003; McGill et al. 2006). Individuals with trait values
that are favored in a given abiotic and biotic context will
have increased probabilities of growth and survival, thereby
enabling the plant to advance to the next ontogenetic stages.
From a study of seed and seedling densities alone we can-
not understand the functional mechanisms underlying the
observed patterns of density change. Integrating traits into
analyses of the seed-to-seedling transition in tropical tree

1:1 
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ter 1986). For example, although negative density depen-
dence has been demonstrated within species of tropical
trees (Harms et al. 2000; Bagchi et al. 2014), one might also
expect stronger negative density dependence between spe-
cies with similar traits, due to negative interactions such as
interspecific competition for similar resources. As a result, we
would expect negative density dependence to maximize the
local species and functional richness and the mean nearest
neighbor distance of the community (i.e., the total trait range
and the mean trait distance between the nearest neighbors;
Villeger et al. 2008). Under this negative density dependence
hypothesis, the proportion of seeds that become established
as seedlings will be reduced if there are more conspecifics
or functionally similar heterospecifics in the neighborhood.
The pattern resulting from such a mechanism is that the
functional richness of seedlings will be similar to the func-
tional richness of seeds that arrived at that site.
An alternative to the negative density dependence hypoth-

esis described above would emphasize functional similarity
among species. Under the functional convergence hypoth-
esis, species have an increased probability of transitioning
from seed to seedling due to one of two main processes: abi-
otic filtering or hierarchical competition for resources. An
abiotic filtering process dictates that species with similar
functions are the only ones capable of successfully coloniz-
ing a given habitat (Keddy 1992; Weiher and Keddy 1995).
The hierarchical competition process states that function-
ally similar species coexist by being superior competitors
(Mayfield and Levine 2010), such that the competitive su-
periority of a species is related to its relative position in trait
space and not trait dissimilarity per se (Kunstler et al. 2012).
In both cases, the resulting pattern would be a seedling as-
semblage with a functional richness that is significantly lower
than that expected given the functional richness of species
represented in the seed assemblage.
A final hybrid hypothesis must be considered where mul-

tiple mechanisms are operating at the same time to influence
the seed-to-seedling transition. Specifically, negative density
dependencemay be a dominant force not only within species
but also among species when they are functionally very sim-
ilar; thus, the overall range of functions would be governed
by abiotic filtering or hierarchical competition, which would
eliminate extreme phenotypes. The pattern resulting from
this hybrid hypothesis would be a seedling assemblage that
has a smaller functional range or volume than the potential
range given the arriving seeds, combined with evidence that
the proportion of seeds successfully transitioning to estab-
lished seedlings within species critically relies on the number
of conspecific seeds and the high functional similarity among
species. Both the functional convergence and the hybrid hy-
potheses outlined above, which invoke the importance of
Seed Density
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Figure 1: Schematic figure comparing the Harms et al. (2000) ap-
proach. The slope lines correspond to the regression line for one species
where species B is experiencing stronger negative density dependence
than species A.
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abiotic filtering, could not be uncoveredwithout information
on functional traits.

the Holdridge life zone system (Ewel and Whitmore 1973),
with elevation ranging from 333 to 428 m asl and a mean

Each station (120 in total) consisted of one 0.5-m2 trap and

We compiled trait data for all tree species present in the

Seed-to-Seedling Transition and Functional Diversity 000
In this work, we aim to investigate the critically impor-
tant seed-to-seedling transition in tropical trees. First, we
perform a series of null model analyses where we simply
quantify whether the trait range or multivariate trait volume
for seedlings at each individual site in the forest is higher or
lower than expected given the trait range and volumes for
the species arriving at that same site. These analyses were
performed to test the three hypotheses presented—the nega-
tive density dependence, abiotic filtering, and hybrid hypoth-
eses. The expectation is that if the negative density depen-
dence hypothesis is supported, trait ranges or volumes in
seedlings will be similar in size to that found for the species
of seeds. In addition, we also expect that species will be more
evenly spaced in trait space. Conversely, if the functional
convergence hypothesis is supported, we predict a smaller
than expected range and spacing of trait values for seedlings
given the trait values of the seed assemblage. It is possible that
both abiotic filtering and negative density dependence are
operating simultaneously. Under this hybrid hypothesis, we
expect seedling assemblages to have a smaller range or vol-
ume of trait values, but species within this range or volume
will be evenly spaced. A second goal of our study was to
quantify whether there was evidence for intraspecific nega-
tive density dependence forest-wide. To address this, we uti-
lize the framework developed byHarms et al. (2000) designed
to detect within-species negative density dependence by com-
paring the number of established seedlings to the number of
seeds of a species (fig. 1).

There are four specific questions related to our three main
hypotheses that we address in this research: (1) Is interspe-
cific negative density dependence an important force pro-
moting the observed changes in functional diversity across
the seed-to-seedling transition? (2) Is there a detectable in-
fluence of both intra- and interspecific negative density de-
pendence during the seed-to-seedling transition? (3) Are the
answers to the first two questions consistent across differ-
ent axes of plant function, which are related to different
limiting resource axes? (4) How does the strength of these
processes influencing the seed-to-seedling transition change
across time?

Methods
Study Area
Our study used data on 62 species found as seeds in seed
traps or as seedlings in seedling plots from 120 stations dis-
tributed across the 16-ha Luquillo Forest Dynamics Plot
(LFDP), part of a National Science Foundation Long-Term
Ecological Research (LTER) site in eastern Puerto Rico. The
LFDP is classified as a subtropical wet forest according to
This content downloaded from 23.235.32
All use subject to JSTOR
annual rainfall of 3,500 mm (Thompson et al. 2002).

Seed Traps and Seedling Plots
three 1-m2 seedling plots placed in a random direction 2 m
from three of the edges of the trap. Each trap was built with
a PVC frame that held a 1-mm wire mesh bag suspended
approximately 1 m above the ground. Fruits and seeds were
collected every 2 weeks from each trap, and all seedlings
were counted, tagged, and identified from each seedling plot
once per year from 2007 to 2012. Data are available via
Luquillo LTER: http://luq.lternet.edu/data/luqmetadata175
(Zimmerman 2014).

Trait Data
LFDP (data available in the Dryad Digital Repository: http://
dx.doi.org/10.5061/dryad.j2r53 [Swenson and Umaña 2015]).
We analyzed eight functional traits that represent the major
ecological strategies of trees using standard protocols (Swen-
son and Enquist 2008; Swenson et al. 2012a, 2012b). All traits
used in the analysis reported here come from adult individ-
uals, except seed mass (data collected by J. Forero-Montaña
and LTER staff). Leaf traits for seedlings have beenmeasured
for some of our study species in this forest by N. G. Swenson,
R.Muscarella, andM.N. Umaña.We performed exploratory
analyses to determine whether using seedling traits altered
our findings. We found that the qualitative results and infer-
ences were not different from those we display and that the
rank correlation between seedling and adult traits was strong
(fig. S1; figs. S1–S6, A1–A4 are available online). We there-
fore used only the adult traits so that the traits from the leaves
and wood came from individuals of the same ontogenetic
stage and not different stages (i.e., we avoided mixing wood
trait data from adults and leaf trait data from seedlings).
Leaf area was measured to reflect the area deployed for

light capture. Leaf %C, %N, and %P and specific leaf area
(SLA) are a part of the leaf economics spectrum (LES), which
indicates where a leaf occurs along a continuum of resource
capture rates and leaf life spans. Maximum height was mea-
sured to represent the adult light niche of species. It was in-
cluded in this study of seedlings, as it is linked to growth rates
across life stages (Iida et al. 2014; Lasky et al. 2015). Seed
mass wasmeasured, as it represents where a species is located
on an axis between producing fewwell-provisioned offspring
andproducingmanypoorlyprovisionedoffspring,wherepro-
visioning is expected to be strongly related to success along
resource availability gradients. Last, wood density was mea-
sured to represent the wood economics spectrum (Chave
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et al. 2009), where species fall along a continuum of fast vol-
umetric growth and high mortality rates versus slow volu-

tances have similar trends, but mean nearest neighbor dis-
tance may be more informative regarding hierarchical com-
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metric growth and low mortality rates.

Sampling and Data Analysis
The analyses required that the seed and seedling data were

We conducted the null model analyses on two levels: inter-
directly and logically comparable. To this end, we performed
the following steps. First, all seeds falling into a single seed
trap for an entire year were tallied into one assemblage for
that year. Thus, we had one single seed assemblage for each
station by year (2007–2012) that could be compared to the
seedling census from the same year. Second, the seedling as-
semblage for each year was the combined assemblage of the
three small seedling inventory plots surrounding a single
seed trap. Some of the seedling plots recruited species that
were not recorded in the seed traps, indicating that the seed
traps did not capture 100% of the species dispersing to the
site. This could have unintentionally inflated our analyses
of the importance of negative density dependence. To avoid
this problem, we combined the seed and seedling data for
each station and year into a single matrix and used this as
the original species pool data. In other words, we defined
the pool of species that arrived at each site as the combina-
tion of species found in the seed trap and seedling plots at
a single location.

To compare the functional composition of the seed and
seedling assemblages, we calculated the functional richness,
functional evenness, andmean nearest neighbor distance of
the assemblage (Villéger et al. 2008; Laliberte and Legendre
2010). The functional richness metric calculates the multi-
dimensional volume occupied by the community in trait
space. This metric is an approximation of the range of traits
in the sample that is not weighted by species abundance.
The functional evenness metric measures the regularity of
the spacing of species and their abundances in trait space us-
ing a minimum spanning tree (Villéger et al. 2008; Laliberté
and Legendre 2010). If limiting similarity was important, we
would expect a higher functional evenness value than ex-
pected if the probability of an individual transitioning from
seed to seedling were random with respect to its function. If
hierarchical competition and/or abiotic filtering were impor-
tant, we would expect dominant species to be on one end of
the trait range; consequently, we would expect a lower mean
nearest neighbor distance value than expected if the proba-
bility of an individual transitioning from seed to seedling
were random with respect to its function, but not necessar-
ily a lower functional evenness value. This is because func-
tional evenness calculates the evenness given the observed
trait range, whereas mean nearest neighbor distance calcu-
lates the shortest trait distance between neighboring species
given the total trait range of the system. Thus, it is expected
that functional evenness and mean nearest neighbor dis-
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petition. Trait data were centered, scaled, and subjected to
a principal component analysis (PCA) to diminish redun-
dancy. We used the positions of species along the first two
PCA axes, which together explained 51% of the total varia-
tion for themultivariate analyses. Previous research on static
adult tropical tree assemblage data sets has shown that the
degree of local trait diversity varies by trait, reflecting diver-
gence and convergence operating simultaneously on the
functional similarity (e.g., Swenson and Enquist 2009). Thus,
we performed the univariate and multivariate analyses de-
scribed below. All analyses were replicated across years to
quantify temporal variability of the results.

Null Model Analyses
and intraspecific. For the interspecific analyses, we studied
individual sites in the forest by comparing the functional
richness, functional evenness, and mean nearest neighbor
distance values in seedling assemblages at a site to that of
the seed1 seedling assemblages at the same site. In the null
models for the site level, the species pool could contain only
those species found in the individual site being considered.
We are aware that this species pool is missing some species
that either were not able to germinate or had germination
not last long enough to be counted in the seedling census.
These unseen species would increase the size of the pool,
which would mean that our analyses are probably under-
estimating the functional diversity of the species in the pool
and the narrowing of functional diversity during the seed-
to-seedling transition. Our null models were performed by
randomizing the names of species on the seed 1 seedling
species list; comparing the random functional richness,
functional evenness, and mean nearest neighbor distance
values to the observed values; and calculating a standard-
ized effect size (SES) value for each site (Swenson 2014).
All randomizations maintained the observed species rich-
ness. Negative values indicated lower than expected values
for a given metric (i.e., functional richness, functional even-
ness, or mean nearest neighbor distance) given the observed
species richness in the seed 1 seedling assemblage. Con-
versely, positive values indicated higher than expected values
for a metric (i.e., functional richness, functional evenness, or
mean nearest neighbor distance) given the observed species
richness. A forest-wide analysis was also conducted, and the
methods are discussed in the appendix, available online.
Our intraspecific analyses aimed to evaluate the strength

of negative density dependence within species by compar-
ing the abundances of seeds and seedlings at individual sites
across the forest. Our method follows the approach devel-
oped by Harms et al. (2000), who examined the logarithmic
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relationship (Rp aSb) between the density of recruits (R)
and the density of seeds (S). To avoid spurious results from

When all of the results were considered across the 6 years,
we found that functional patterns for the multivariate and
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the regression analyses, we conducted the same tests that
Harms et al. (2000) performed. As a result, some of the spe-
cies were excluded, and we implemented only the analyses
with a subset of species (10 species for 2007, 11 for 2008,
and 9 for 2009, 2010, 2011, and 2012). For this analysis,
the seed density was obtained by counting the total number
of seeds of each species collected in a seed trap over 1 year
and dividing by 0.5 m2 (area of the seed trap). The seedling
recruit density was obtained from the total number of indi-
viduals of each species in the three 1-m2 seedling plots for
each site divided by three and calculated for each census.
These values were then log transformed, and the density of
seedlings was regressed against the density of seeds. Slope
values lower than 1 indicate that the density of seedlings
was lower than would be expected under intraspecific neg-
ative density dependence (fig. 1).

Results
Overall, our results provide support for the hybrid hypoth-

The transition from seed to seedling represents one of the
esis, where the seed-to-seedling transition is the outcome
of multiple mechanisms acting simultaneously. In the fol-
lowing, we present the detailed results for interspecific and
intraspecific analyses.

At the site level for the multivariate analyses (fig. 2), the
seedling functional richness values were lower than expected
given the observed functional richness in all years. When
the analyses were performed at the individual trait level, we
found that seed size and leaf traits associated with the LES
showed the same trend as the multivariate results (fig. S2).
However, the functional richness SES values for trait max-
imum tree height of adults and wood density showed no
positive or negative trend (fig. S2). Only leaf area (fig. S2)
exhibited functional richness SES values higher than those
expected by chance. In general, these results provide support
for abiotic filtering or hierarchical competition as expected
under the functional convergence hypothesis. When func-
tional evenness and mean nearest neighbor distance were
considered, most of the observed values were higher than ex-
pected given the observed species richness (figs. 3, S3). In
other words, the spacing of seedling abundances in trait
space was larger than expected given the seed assemblage, in-
dicating an important role of negative density dependence
processes occurring between functionally similar species. The
functional evenness and mean nearest neighbor distance anal-
yses performed on individual traits were generally consistent
with the overall functional evenness andmeannearest neigh-
bor distance results, with the exception that leaf nutrients,
SLA, and seed mass were less evenly dispersed than expected
(figs. S4, S5). The results from site level were consistent with
analyses conducted on the forest-wide scale (appendix).
This content downloaded from 23.235.32
All use subject to JSTOR
univariate analyses were generally consistent (figs. 2, 3, S3).
The results for forest-wide analyses showed trends that were
generally similar to the site-level analyses; however, for wood
density and the leaf economics spectrum traits, we found a
decreasing pattern in functional richness across time (fig.A2).
We also analyzed the direction of the filtering by compar-

ing the mean trait values in the pool and at seedling stage
ad hoc. The mean seed mass, wood density, and leaf area
values were generally higher for the seedling assemblages
than for the seed1 seedling assemblages, whereas the mean
LES and maximum height values were more likely to be
smaller than the total seed 1 seedling assemblages (fig. S6).
Last, we conducted an analysis to quantify whether there

was evidence for intraspecific negative density dependence.
The results of our intraspecific analyses generally found a
log-log slope less than 1 between the seed and the seedling
density, indicating a decrease in the per capita transition
rate as conspecific density increased (i.e., negative density
dependence). The only exception was Guarea guidonia
(Meliaceae) in 2010, which had a slope higher than 1 (fig. 4).

Discussion
great population bottlenecks for tree communities. This bot-
tleneck leaves a lasting imprint on the structure of adult tree
assemblages. Thus, uncovering the mechanisms underlying
this transition is essential for our understanding of the struc-
ture and dynamics of tree communities (Green et al. 2014).
Here we have tested three hypotheses regarding the seed-
to-seedling transition in tree communities that make clear
predictions regarding the role of functional similarity among
species during this critical transition. Specifically, we tested
(i) a negative density dependence hypothesis that predicts
that functionally dissimilar species are more likely to tran-
sition from seed to seedling, (ii) a functional convergence
hypothesis where functional similar species are more likely
to transition from seed to seedling due to abiotic filtering or
hierarchical competition, and (iii) a hybrid hypothesis that
predicts that there is functional convergence during the seed-
to-seedling transition but also negative-density-dependent
processes that evenly space species within a constrained trait
space.
The first main finding from our study is that, consistent

with the functional convergence hypothesis, functionally sim-
ilar species are more likely to transition from seed to seedling
(figs. 2, A2). This could be the result of one of two processes:
an abiotic constraint on the phenotypes that can successfully
establish at a site (Keddy 1992) or hierarchical competition
(Mayfield and Levine 2010; Kunstler et al. 2012). Further
analyses that considered the evenness of species abundance
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tances and functional evenness) found that seedling assem- inferences in detail.
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blages are more evenly spaced in trait space than expected
given the seed assemblages (figs. 3, S3, A3, A4). Consistent
with the negative density dependence hypothesis, this result
indicates a thinning of individuals with similar functions dur-
ing the seed-to-seedling transition and is generally consistent
with trait-based negative density dependence. A final analysis
of intraspecific negative density dependence based on the
Harms et al. (2000)method (see fig. 1) uncovered consistently
strong negative density dependence (fig. 4). Considering the
results together, we find support for the hybrid hypothesis,
where interspecific and intraspecific negative dependence and
abiotic constraints both influence the seed-to-seedling tran-
This content downloaded from 23.235.32
All use subject to JSTOR
Changes in the Assemblage of Functional Diversity
during the Seed-to-Seedling Transition
To determine the changes in functional diversity of the to-
tal species dispersed to a site and the seedling population
that established, we compared the functional richness, func-
tional evenness, and mean nearest neighbor distance of the
species in our seedling plots to the species that could have
recruited to the plots using a null modeling approach (figs. 2,
3, S3, A2–A4). Specifically, we asked whether the observed
functional richness, functional evenness, and mean nearest
in trait space (i.e., analyses of mean nearest neighbor dis- sition. In the following sections, we discuss these results and
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Figure 2: Site-level results for the standardized effect size (SES) of functional richness across 6 years. Negative functional richness SES values
indicate lower functional richness in the seedling assemblage than expected. Positive functional richness SES values indicate higher functional
richness in the seedling assemblage than expected. FRic p functional richness.
.0 on Fri, 20 Nov 2015 08:09:00 AM
 Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


2007

ite
s

30

2008

30

Seed-to-Seedling Transition and Functional Diversity 000
sitioning to seedlings.
The majority of the sites showed negative SES values of

functional richness, indicating a smaller than expected func-
tional richness in the seedling communities given the seeds
that are present in the same location (fig. 2). This result
was consistent across years. When considering individual
traits, we found that leaf area had higher than expected func-
tional richness, but the remaining traits—wood density, LES
traits (i.e., SLA and leaf N and P), and seed mass—had less
functional richness than expected given the seedling assem-
blages (figs. S2, A2). Our finding that most functional traits
(all except leaf area) were lower in the seedling than seed
communities demonstrates that the species able to success-
This content downloaded from 23.235.32
All use subject to JSTOR
cies assemblages. This indicates that the traits measured re-
lated to resource capture and interactions with the abiotic
environment strongly limit seedling establishment. For ex-
ample, during the seedling stage, light availability has been
shown to be one of the most important requirements for
successful seedling establishment, as very-small-seeded spe-
cies have limited resources for initial seedling growth and
survival and therefore require more light at an earlier stage
than large-seeded species, which have greater stored resources
(Denslow 1987; Chazdon et al. 1996; Nicotra et al. 1999;
Montgomery and Chazdon 2001; Dalling et al. 2004; Muller-
Landau 2010). The seed mass results indicate a constraint
that is most likely associated with the fecundity-stress trade-
neighbor distance values were higher, lower, or no different
from that expected if seeds had a random chance of tran-

fully establish as seedlings represent a significantly smaller
range of trait values compared to that found in the seed spe-
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Figure 3: Site-level results for the standardized effect size (SES) of functional evenness across 6 years. Negative functional evenness SES values
indicate lower functional evenness in the seedling assemblage than expected. Positive functional evenness SES values indicate higher functional
evenness in seedling assemblages than expected. FEve refers to functional evenness.
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off (Muller-Landau 2010). Indeed, mean seed mass values of
the species that established as seedlings tended to be high

While our functional richness results are informative,
quantifying how species are arrayed in trait space is essen-

000 The American Naturalist
compared with the mean values for the pool (seed 1 seed-
lings; fig. S6). Previous work from this forest (Francis and
Rodriguez 1993;Muscarella et al. 2013) has also demonstrated
that large seeds have a germination advantage, suggesting
that only a small subset of seed sizes might be expected to
establish in a habitat that is relatively temporally stable. In
forests with a well-developed canopy, low light in the under-
story, and few canopy gaps, it is likely that there will be few
opportunities for small-seeded, light-demanding species to
be able to successfully establish (Comita et al. 2009). Last,
our wood density results are likely linked to the importance
of water availability for establishment where a dense wood
conservative strategy has a higher probability of survival in
resource-limited conditions (Chave et al. 2009). Indeed, seed-
ling assemblages tended to have higher wood density values
than the seed 1 seedling assemblages. Thus, we infer that
abiotic filtering (e.g., Keddy 1992) and/or competitive hierar-
chies where functionally similar species with superior perfor-
mance in a given abiotic context competitively exclude func-
tionally dissimilar species (e.g., Mayfield and Levine 2010)
are affecting the seed-to-seedling transition.
This content downloaded from 23.235.32
All use subject to JSTOR
tial for disentangling the influence of hierarchical compe-
tition and abiotic filtering and for determining whether in-
terspecific negative density dependence is also important as
predicted by the hybrid hypothesis.We therefore compared
the observed functional evenness and mean nearest neigh-
bor distance of the seedling assemblages to that expected
given the seed assemblages. We found that seedling assem-
blages have higher than expected functional evenness and
mean nearest neighbor distance (figs. 3, S3). This result in-
dicates that the abundance in the seedling assemblages is
evenly spread over multivariate trait space, which is consis-
tent with trait-based interspecific negative density depen-
dence and not hierarchical competition. Taken together, our
results demonstrate that a constrained range of phenotypes
transition fromseeds to seedlings, butwithin that constrained
space a thinning of individuals from similar species also oc-
curs. This is consistent with our hybrid hypothesis, where an
abiotic constraint and functionally driven interspecific nega-
tive density dependence are operating simultaneously.
When we considered the functional evenness and mean

nearest neighbor distance of individual traits, we found that
not all traits are behaving similarly, as has been noted in
previous tropical tree research comparing multivariate and
individual trait dispersion patterns (e.g., Kraft et al. 2008;
Swenson and Enquist 2009). Specifically, wood density and
leaf area showed higher functional evenness and mean near-
est neighbor distance than expected, indicating a thinning
of individuals with similar wood density and leaf area values.
Interestingly, the distribution of these traits is highly variable
at different sites within the forest, indicating that the forest
is highly heterogeneous (fig. S5). We believe that this pattern
reflects the effect of disturbance from past land-use history
that was more intense in the northern part of the LFDP
and hurricane disturbance (Zimmerman 1994; Thompson
et al. 2002; Comita et al. 2010). For the other traits, the func-
tional evenness was usually lower than expected, indicating
that traits associated with photosynthetic capacity (i.e., SLA
and leaf nutrients) and stress tolerance (i.e., seed mass) are
more successful inmaking the ontogenetic transition (Poorter
2007). A higher rate of establishment success is expected for
species sharing similar conservative leaf and seed economies
in dark tropical forest understories (Poorter 2007). Thus, it is
possible that competitive hierarchies on these individual trait
axes are also important, but when considering the overall
phenotype, assemblages become more evenly spaced during
the seed-to-seedling transition, as expected by limiting sim-
ilarity theory.
When evaluating the functional evenness and mean near-

est neighbor distance results for all traits combined across
the 6 years, we found no major changes through time. The
functional evenness as well as themean nearest neighbor dis-
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Figure 4: Boxplot representing the regression slope values between
seed and seedling densities by species by year. Black circles represent
the slope values for Guarea guidonea (Meliaceae). Smaller slope
values are indicative of stronger intraspecific negative density depen-
dence, whereas slope values of 1 indicate no intraspecific density de-
pendence (Harms et al. 2000).
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tance in seedling assemblages were consistently higher than
expected from 2007 to 2012, indicating that the strength of

tion, and those axes that we did consider are primarily related
to resource acquisition rather than direct biotic interactions.

During their lifetime, trees are subjected to several transi-
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interspecific negative density dependence remains the same
across time. Different results were obtained for the func-
tional richness analyses, where we found that a decrease in
functional richness across years during the transition was
present. In particular, traits such as those associated with
the LES and wood density had a relatively consistent de-
crease in functional richness during the seed-to-seedling
transition across years. A potential reason for this trait con-
vergence over timemay be a delayed turnover in species com-
position caused by hurricane disturbance (Hurricane Hugo in
1989 and Hurricane Georges in 1998), where species adapted
to nondisturbed conditions and low understory light levels
may take a long time to arrive and dominate in the seedling
population. In previous work, Swenson et al. (2012a) found
that the functional turnover in the adult tree assemblage in
this forest increased as light-demanding trees established in
canopy gaps after Hurricane Georges in 1998 but converged
by 2005.

Intraspecific Negative Density Dependence during
the Seed-to-Seedling Transition
We thank K. Harms for clarifications regarding his method-
In addition to the dynamics occurring on the interspecific
level that are mainly determined by functional differences
among species, we also wanted to evaluate the importance
of intraspecific negative density dependence. We estimated
the strength of intraspecific negative density dependence
for all the species using the methodology developed by
Harms et al. (2000; fig. 1). We found strong intraspecific neg-
ative density dependence across the seed-to-seedling tran-
sition for nearly all species included in the analysis (fig. 4).
The only exception was Guarea guidonia (Meliaceae), a
common seedling in the LFDP forest with generally high re-
cruitment. Our results are also consistent with investiga-
tions of tropical tree communities that have inferred the im-
portance of intraspecific negative density dependence (e.g.,
Harms et al. 2000). Thus, deterministic negative interac-
tions between conspecifics, such as shared enemies and com-
petition, appear to play a consistently important role in de-
fining seedling and adult tree community structure.

Caveats and Suggestions
Most traits in our study show a decrease in range during the

seed-to-seedling transition, but some do not, and of course
there are many other traits that could potentially be consid-
ered (Swenson 2012, 2013). For example, traits related to in-
teractions with pests and pathogens would be very informa-
tive, particularly with respect to intraspecific negative density
dependence. We therefore wish to highlight that our infer-
ences are based on a limited number of axes of plant func-
This content downloaded from 23.235.32
All use subject to JSTOR
A second important consideration is that most func-
tional trait-based studies of tree communities utilize spe-
cies’ mean trait values and ignore intraspecific variation,
making it impossible to quantify whether there is func-
tional displacement between co-occurring conspecifics (see
Paine et al. 2011). More research is clearly needed, particu-
larly to increase our understanding of seedling community
dynamics, where the performance of individual phenotypes
and their interactions with other individuals and their phe-
notypes can be quantified.

Conclusions
tions across different life-history stages in order to disperse,
establish, grow, survive, and reproduce, which represent sig-
nificant challenges. At all life stages, trees must deal with en-
vironmental stresses and biotic interactions that will have a
range of impacts depending on the life stage but that will de-
termine survival and a successful transition to future stages.
We have developed new techniques for quantifying the
changes in the community composition of functional traits
during the seed-to-seedling transition utilizing functional trait
information. We found that along with strong intraspecific
negative density dependence, there is evidence that seedling
assemblages represent only a small proportion of the total
functional volume found in seed assemblages and that within
these constrained volumes seedlings are more evenly spaced
than expected. Together, these results argue for a greater ap-
preciation of the simultaneous contribution of multiple de-
terministic processes that drive community structure and
population dynamics and the way that these processes vary
in their importance within and among species.
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