过表达 AtWRKY71 影响植物对病原菌 Pseudomonas syringae 的抗性^{*}

王其娟^{1,2},陈利钢¹**,余迪求¹**

(1 中国科学院西双版纳热带植物园热带森林生态学重点实验室,昆明 650223;2 中国科学院大学,北京 100049)

摘要: WRKY 转录调控因子基因家族是主要存在于植物中的超级基因家族,其在调控植物生长发育以及 响应逆境胁迫方面发挥了重要的功能。本研究首先检测了 AtWRKY71 在不同组织器官,发育阶段,激素处 理和病原菌侵染条件下的表达模式。结果显示在约 12 周大的 WT 植株的不同组织器官中,AtWRKY71 主要 在根部表达,同时与 14 d 龄的幼苗相比,AtWRKY71 在 8 d 龄的幼苗中有更强的表达。在不同的处理条件 下,AtWRKY71 受水杨酸(salicylic acid,SA),乙烯(ethylene,ET),茉莉酸(jasmonic acid,JA)以及细菌 病原菌 Pseudomonas syringae 的诱导表达。此外,和野生型植株相比,组成型表达AtWRKY71 一方面使植株 生长发育变缓且出现锯齿状叶片,另一方面也增强了植株对 P. syringae 的敏感性,并抑制了多个与水杨酸 信号转导途径相关的病程相关基因(pathogenesis related gene,PR)的表达。这些研究结果表明,AtWRKY71 可能作为一个重要的调节子,在植物的生长发育及防御反应中发挥了重要功能。

关键词: *AtWRKY71*; WRKY 转录因子; 转基因植物; 防御反应 中图分类号: Q 786 文献标志码: A 文章编号: 20

文章编号: 2095-0845(2015) 05-577-09

Overexpression of AtWRKY71 Affects Plant's Defense Response to Pseudomonas syringae

WANG Qi-juan^{1,2}, CHEN Li-gang^{1**}, YU Di-qiu^{1**}

(1Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunning 650223, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The WRKY transcription factor super-family plays important roles in numerous processes , such as plant stress responses and plant development. In this study, we first investigated the expression profiles of *AtWRKY71* in different organs and developmental stages and under different hormone treatments and pathogen infection. In 12w old WT plants , *AtWRKY71* mainly expressed in roots and had stronger expression in 8 d old seedlings than that of 14 d old seedlings. Under various treatments , *AtWRKY71* was induced by SA, ET or JA treatment and infection of the bacterial pathogen *P. syringae*. Furthermore, compared with wild type, plants constitutively expressing *AtWRKY71* were smaller in size and had slightly serrated leaves. Further analysis showed that overexpression of *AtWRKY71* increased the sensitivity to the bacterial pathogen *P. syringae*. The enhanced susceptibility was associated with reduced expression of salicylic acid-regulated *PR* genes. These results suggest that *AtWRKY71* is a novel regulator in both plant growth and development and also in plant defense responses.

Key words: AtWRKY71; WRKY transcription factor; Transgenic plant; Defense response

植物在与病原微生物长期对抗过程中形成 了具有自我保护功能的天然免疫系统。植物天然

免疫系统包含两个层面: 首先是基于细胞表面的 模式识别受体 (Pattern-recognition receptors, PRRs)

** 通讯作者: Author for correspondence; E-mail: chenligang@xtbg.ac.cn; ydq@xtbg.ac.cn 收稿日期: 2015-02-03, 2015-03-27 接受发表

^{*} 基金项目: 国家自然科学基金项目(31200915)和中国科学院西部之光、中国科学院青年创新促进会项目

作者简介: 王其娟(1988-) 女,硕士研究生,主要从事植物分子生物学研究。

对病原物相关分子模式 (Pathogen-associated molecular patterns, PAMPs) 的识别, 从而使植物对 许多病原微生物中普遍存在的 PAMPs 作出识别 及应答, 触发 PTI (PAMP-triggered immunity) (Jones 和 Dangl, 2006)。当病原微生物成功避开植 物 PTI, 试图直接向寄主体内分泌效应蛋白达到 侵染目的时,植物又通过抗病基因(Resistance gene, R gene) 编码的蛋白产物来直接或间接识 别不同来源的病原物效应子,引发 ETI (Effectortriggered immunity) (Jones 和 Dangl, 2006)。发 生 ETI 时,通常会在侵染部位产生过敏性细胞死 亡反应 (Hypersensitive cell death response, HR), 从而阻止病原微生物的进一步侵染。之后,在自 然选择的作用下,病原微生物可能通过不同进化 策略来避开 ETI,这时植物又共进化出新的 R 蛋 白来再次触发 ETI 。从长期的角度看,植物与病 原微生物之间的相互作用呈现 Z 字形的"拉锯 战"局面 (Jones 和 Dangl, 2006)。 PTI 和 ETI 所 涉及的分子机制各不相同,但又相互联系,充分 体现了植物与病原微生物互作的复杂性。

植物的自我防御系统在分子水平上受到转录 调控因子的调节。WRKY 转录因子家族是主要 存在于植物中的一类超级基因家族,其在植物应 对生物胁迫的过程中发挥了重要的作用。WRKY 转录因子在拟南芥中有 74 个成员(Eulgem 和 Somssich,2007),在其N端含有高度保守的WRKY-GQK 氨基酸序列和锌指结构(Eulgem 等,2000)。 WRKY 蛋白通过结合靶基因启动子区域的 W 盒 (T/CTGACC/T) 来调控相关基因的表达,以此 来发挥其分子生物学的功能(Maleck 等,2000; Dong 等,2003)。

目前,大量研究表明 WRKY 转录因子在调 节植物防御反应相关基因的表达过程中发挥了重 要作用(Eulgem和Somssich,2007)。首先,WRKY 转录因子的很多成员受病原菌侵染诱导表达 (Rushton等,1996;Eulgem等,1999;Chen和 Chen,2000;Dellagi等,2000;Hara等,2000; Dong等,2003;Kalde等,2003;Eckey等,2004; Kim和Zhang,2004;Turck等,2004)。此外,在 植物受到病原菌侵染后,一些和防御反应相关的 基因(如PR基因和NPR1)的表达受到WRKY 转录因子的调控(Rushton等,1996;Willmott等, 1998; Yang 等, 1999; Yu 等, 2001; Turck 等, 2004; Yamamoto 等, 2004; Rocher 等, 2005; Chen 等, 2013)。这些研究结果暗示 WRKY 转录调控因子 广泛参与植物对病原菌侵染的响应过程。

最近,越来越多的研究表明WRKY 蛋白在 植物的基础抗性方面发挥了重要的调节作用。如 AtWRKY33 的突变体增强了植物对 Botrytis Cinerea 和 Alternaria brassicicola 的敏感性(Zheng 等, 2006)。功能上冗余的 AtWRKY18, AtWRKY40 和 AtWRKY60 在植物防御 P. syringae 和 Erysiphe cichoracearum 的过程中发挥了负调控的功能(Xu 等,2006; Shen 等,2007)。此外,还有研究报 道证实 AtWRKY8, AtWRKY48, AtWRKY38 和 At-WRKY62 在植物响应病原菌 P. syringae 的侵染过 程中发挥了负反馈调节的作用(Kim 等,2008; Xing 等,2008; Chen 等,2010)。因而,我们推 测 WRKY 转录因子作为重要的调节子,在植物 响应病原菌侵染的防御反应信号转导途径和转录 调控网络中发挥了重要的调控功能。

在前期的研究中我们对 P. syringae pv tomato strain DC3000 (PstDC3000) 侵染 2 天的野生型拟 南芥植株进行了表达谱分析,发现 AtWRKY71 受 其强烈诱导表达。因此,在本研究中我们利用过 表达 AtWRKY71 转基因植株,探讨了 AtWRKY71 在响应 PstDC3000 侵染过程中的调控功能。

1 材料和方法

1.1 材料

[³²P]-dATP(>3 000 Ci/mmol) 从北京福瑞生物技术 公司购得; 其他的化学试剂分别从上海生工生物技术公 司,Sigma,TaKaRa 生物技术公司(大连)购买。选用 拟南芥生态型 Columbia-0(Col)为实验材料。种子表面 消毒后均匀散布在 1/2MS 培养基上(含0.9% agar),4℃ 春化 3 d,转移到 22℃培养箱培养7 d 后移栽到土中。培 养条件为温度 22℃左右,相对湿度 50%,光照周期 10 h 白/14 h 昼(光照时间 8:30-18:30)。

1.2 激素处理

SA 溶解在水中配制成 100 mmol・L⁻¹浓度的母液,用 KOH 调至 pH6.5,将 SA 母液稀释为 2 mmol・L⁻¹的浓度 用来喷施植株。用 50% 的乙醇先溶解茉莉酸甲酯(Me-JA) 配制成 10 mmol・L⁻¹的母液,将母液稀释为 100 μmol ・L⁻¹的浓度来喷施植物。氨基环丙烷羧酸(Aminocyclopropane-I-carboxylic acid, ACC)(乙烯的前体)溶解在水 溶液中,用 2 mmol • L^{-1} 的 ACC 喷施植株。处理所用的植 株均为 4 周大的幼苗。

1.3 RT-PCR

用 Trizol reagent (Invitrogen, USA) 法提取拟南芥野 生型和转基因拟南芥的 RNA,并经 DNaseI (Fermentas) 消化处理后进行 RT-PCR 实验。用 Superscript II (Invitrogen, USA) 反转录试剂盒进行实验,反转录总体积为 20 μ L,包含2 μ g 的总 RNA。然后取1 μ L 用作 PCR 模板; ACTIN2 作为内参基因; PCR 循环数基于预实验,选择 适宜的次数;每组 RT-PCR 重复3次以上; PCR 选用 Tag DNA 聚合酶 (TaKaRa-Bio)。用于 RT-PCR 的引物分 别为: *AtWRKY71*: 5′-ACATCTACTACTACTCACCGTGGTG-3′和 5′-GATACGATCTATAGTACGTACATACCCCTC-3′; *ACTIN2*: 5′-TGTGCCAATCTACGAGGGTTT - 3′和 5′-TTTCCCGCTCTGCTGTGT-3′。

1.4 qRT-PCR

用 PstDC3000 (OD₆₀₀ = 0.000 1) 处理 WT 和 35S: At-WRKY71, 收集 WT 和 35S: AtWRKY71 经侵染 0 d, 1 d 和2d的叶片,用Trizol reagent (Invitrogen, USA) 法提 取总 RNA,并进行 DNase I 消化,用来进行 qRT-PCR 分 析。用 Superscript II (Invitrogen, USA) 反转录试剂盒进 行实验,反转录总体积为 20 μL,包含 2 μg 的总 RNA, 然后取 1 µL 用来进行 qRT-PCR 实验; ACTIN2 作为内参 基因。定量 PCR 的反应体系 (20 µL): 10 µL SYBR Green I 反应混合物,蒸馏水 8 µL,每条引物各 0.5 µL 和1 µL cDNA。退火温度为 50 ℃,在 Roche LightCycler 480 real-time PCR 仪上进行 qRT-PCR 实验。整个 qRT-PCR 实验用不同的 RNA 样品重复 3 次。用于 qRT-PCR 的引物分别为: ACTIN2: 5'-TGTGCCAATCTACGAGGG-TTT-3′和 5′-TTTCCCGCTCTGCTGTTGT-3′; PR1: 5′-GCAGCCTATGCTCGGAGCTAC-3′和 5′-TCCATTGCACGT-GTTCGCAGC-3', PR2: 5'-CGCCCAGTCCACTGTTGATA-3′和 5′-GGTCTCCGACACCACGATTT-3′, PR5: 5′-TG-CAAGAGTGCCTGTGAGAG - 3[~]和 5[~] - TCCGGTACAAGT-GAAGGTGC-3'.

1.5 Northern blotting

RNA 提取采用 Trizol reagent (Invitrogen, USA) 法。 使用 1.5% 甲醛-MOPS 琼脂糖凝胶分离大约 20 µg 的 RNA 后,转移到尼龙膜上。杂交温度为 68 ℃;杂交液 选用 PerfectHyb Plus Hybridization Buffer (Sigma)。探针 通过 klenow fragment (Takara)进行³² P-dATP 标记。洗 膜: 2×SSC 和 0.5% SDS 1 次,每次 10 min; 0.5×SSC 和 0.1% SDS 2 次,每次 20 min; 0.1×SSC 和 0.1% SDS 1 次,每次 20 min,最后压片放射自显影。

1.6 AtWRKY71 过表达植株构建

通过 PCR 扩增出 AtWRKY71 基因组 DNA 序列,在

35S 强启动子下将其克隆到 pOCA30 载体上(Chen 和 Chen,2002),从而得到 35S:AtWRKY71 过表达转基因植 株。农杆菌转化按照 Clough 和 Bent (1998)的花序浸染 法操作。收到的转基因拟南芥种子用含 50 μ g·mL⁻¹ kanamycin 的 1/2 MS 板进行筛选,筛选到的种子进行 8 d 的萌发实验后被移植到土中生长。提取 4 周大的 WT 和 转基因拟南芥植株的总 RNA 进行 Northern blotting 实验, 筛选到组成型表达 AtWRKY71 的 6 个株系。根据 T1 代在 卡那霉素筛选板上出现的筛选比例(3:1)确定 L3 和 L5 这两株系为单拷贝插入的转基因株系,并作为后续实验 的材料。

1.7 PstDC3000 处理

挑单菌落到 50 mL king's 培养液(已加抗生素), 28 ℃ 摇床过夜。离心,收集细菌,然后用 10 mmol・L⁻¹ MgCl₂ 稀释至 OD₆₀₀ = 0.5,再用 10 mmol・L⁻¹ MgCl₂稀释 5000 倍 (OD₆₀₀ = 0.0001)。选取有 6~8 片叶的植株,手指贴近 叶面,用注射器从叶背面打入叶内。收集叶片加 1 mL 10 mmol・L⁻¹ MgCl₂研磨,取叶片提取物涂在含 rifampicin (100 μg•mL⁻¹)和 kanamycin (25 μg•mL⁻¹)的 King's B 板上,25 ℃避光培养 2 d 后统计菌落数目。

2 结果与分析

2.1 AtWRKY71 的蛋白结构

AtWRKY71(AT1g29860)的蛋白由 283 个氨 基酸组成,其分子量为 31 955.2 Da,等电点为 7.495 3。序列分析表明,WRKY71 蛋白含有一 个高度保守的 DNA 结合域(WRKY domain),因 此被认为是 group II WRKY 蛋白中的一员(图 1) (Eulgem 等, 2000)。

2.2 AtWRKY71 的表达谱分析

为了了解 AtWRKY71 的生物学功能,我们首 先分析了 AtWRKY71 在不同组织器官及发育阶段 的表达谱。RT-PCR 的结果表明,在约 12 周大的 WT 植株的不同组织器官中,AtWRKY71 在根中的 表达量最高。同时,在 8 d 龄幼苗中 AtWRKY71的表达量要高于 14 d 龄的幼苗(图 2: A)。为了 证实 AtWRKY71 在植物基础抗性方面的功能,我 们探究了其在不同处理条件下的表达谱。如图 2B 所示,与对照相比,在注射 PstDC3000 侵染 植株 1 d,2 d 和 3 d 后,AtWRKY71 受到强烈的 诱导表达。除此之外,我们还分析了水杨酸(Salicylic acid,SA),乙烯(ethylene,ET) 和茉莉酸 (jasmonic acid,JA) 处理下,AtWRKY71 的表达 水平。从图 2C 中我们可以看出,在这三种激素 处理后, *AtWRKY71* 的表达都受到诱导。以上结 果表明, *AtWRKY71* 可能在植物的基础抗性方面 发挥重要的功能。

为了进一步证实 AtWRKY71 的表达是否受 SA, ET 和(或) JA 等信号转导途径或生物合成途径 的影响,我们检测了 AtWRKY71 在以上途径下不 同突变体中的表达水平。和 WT 相比,在 SA 信 号转导和生物合成突变体 npr1-3 和 sid2 中, At*WRKY71*的表达受到轻微的抑制(图 3)(Cao 等,1997;Wildermuth等,2001)。在ET不敏感 突变体*ein2-1*(Xie等,1998)中,*AtWRKY71*的 转录水平要高于其在WT中的水平(图 3)。在JA 不敏感突变体*coi1-1*(Alonso等,1999)中,*At-WRKY71*的表达受到显著的诱导(图 3)。这些结 果表明,在*Pst*DC3000侵染时*AtWRKY71*的表达 受到 SA 信号途径的正调节,而受到 ET 和 JA 信 号途径的负调节。

MDDHVEHNYNTSLEEVHFKSLSDCLQSSLVMDYNSLEKVFKFSPYSSPFQS VSPSVNNPYLNLTSNSPVVSSSSNEGEPKENTNDKSDQMEDNEGDLHGVG ESSKQLTKQGKKKGEKKEREVRVAFMTKSEIDHLEDGYR<u>WRKYGQK</u>AVKNS PYPRSYYR<u>C</u>TTQK<u>C</u>NVKKRVERSFQDPSIVITTYEGK<u>HNH</u>PIPSTLRGTVAAE HLLVHRGGGGSLLHSFPRHHQDFLMMKHSPANYQSVGSLSYEHGHGTSSY NFNNNQPVVDYGLLQDIVPSMFSKNES

图 1 AtWRKY71 的氨基酸序列分析 横线标示的为保守的 WRKYGQK 结构域和 C₂H₂锌指结构

Fig. 1 Amino acid sequence of AtWRKY71

The highly conserved WRKYGQK sequences and the residues forming the C2H2 zinc fingers are underlined

图 2 AtWRKY71 的表达谱分析

A. AtWRKY71 在不同的组织器官及发育阶段的表达谱分析。收集约 12 周大的 WT 植株的根、莲座叶、茎生叶、茎、花、角果及 8 d 和 14 d 龄的幼苗并提取总 RNA,以 ACTIN2 作为内参基因,实验重复 3 次。RT-PCR 的结果表明 AtWRKY71 在根中表达最强; B. 病原菌处理后 AtWRKY71 的表达谱分析,将 10 mmol·L⁻¹ MgCl₂ 或 PstDC3000 ($OD_{600} = 0.0001$ in 10 mmol·L⁻¹ MgCl₂) 注射到 5 周大的 WT 幼苗中,然后收集叶片,提取 RNA,并进行 RT-PCR 分析; C. 激素处理后 AtWRKY71 的表达谱分析,分别用 SA (1 mmol·L⁻¹), ACC (0.1 mmol·L⁻¹) 和 MeJA (0.1 mmol·L⁻¹) 处理 4 周大的 WT 幼苗,然后收集叶片,提取 RNA,并进行 RT-PCR 分析

Fig. 2 Tissue-specific and induced expression of the AtWRKY71 gene

A. *AtWRKY71* gene expression in various plant organs and at different developmental stages. RT-PCR was performed with total RNA isolated from roots, rosette leaves, cauline leaves, stem, flowers, siliques of about 12w old WT plants and 8 d or 14 d old seedlings. The *Actin2* gene was used as an internal control for an equal volume of cDNA. The data presented are the representative result obtained from three replicates; B. Time course of expression of *AtWRKY71* after mock and pathogen inoculation. Five-week-old Arabidopsis plants (Col-0) were infiltrated with 10 mmol $\cdot L^{-1}$ MgCl₂ or *Pst*DC3000 (OD₆₀₀ = 0.0001 in10 mmol $\cdot L^{-1}$ MgCl₂). The infiltrated leaves were collected at indicated times after inoculation for RNA isolation. RT-PCR was performed as in A; C. Time course of expression of *AtWRKY71* after chemical treatments. Four-week-old wild-type (Col-0) plants were treated with SA (1 mmol $\cdot L^{-1}$), ACC (0.1 mmol $\cdot L^{-1}$), or MeJA (0.1 mmol $\cdot L^{-1}$). Leaf collection, RNA isolation and RT-PCR analysis of *AtWRKY71* expression was performed as in A

图 3 AtWRKY71 在 sid2, npr1, ein2 和 coi1 突变体中的表达分析

将 PstDC3000 (OD600 = 0.0001 in 10 mmol • L⁻¹ MgCl₂) 注射到 5 周大的 WT, sid2, npr1, ein2 及 coil

突变体中,然后收集叶片,提取 RNA,并进行 RT-PCR 分析

Fig. 3 Expression of AtWRKY71 in defense signaling mutants infected with PstDC3000

Five-week-old Arabidopsis wildtype (Col-0), sid2, npr1, ein2 and coi1 mutant plants were infiltrated with PstDC3000

($OD_{600} = 0.0001$ in 10 mmol $\cdot L^{-1}$ MgCl₂). The infiltrated leaves were collected at indicated times after

inoculation for RNA isolation. RT-PCR was performed as in Fig. 2A

2.3 AtWRKY71 过表达转基因拟南芥植株的构建

为了进一步探究 AtWRKY71 的分子生物学功 能,我们构建了 35S:AtWRKY71 过表达载体,并 通过花絮浸泡法获得了转基因拟南芥植株。根据 Northern blotting 的结果我们筛选到几株组成型表 达 AtWRKY71 的转基因拟南芥植株(图 4: A)。 与 WT 相比,这些转基因植株生长稍微变缓且叶 片出现锯齿状(图 4: B)。这些转基因拟南芥植 株的表型与之前报道的且受病原菌诱导表达的 AtWRKY8, AtWRKY18 和 AtWRKY48 的转基因植 株的表型类似(Chen 和 Chen,2002; Xing 等,2008; Chen 等,2010)。由于 L3 和 L5 这两个转基因株 系中只含有一个 T-DNA 插入位点,因此我们选择 了这两个株系进行接下来的研究工作(图 4: A, Line3 和 Line5)。

2.4 过表达 AtWRKY71 降低了植株对 PstDC3000 的耐受性

为了检测 AtWRKY71 在抗病方面的功能,我 们比较分析了 WT 和 35S: AtWRKY71 过表达植株 在 PstDC3000 侵染后的生长状况。实验选取 5 周 大的幼苗,用注射器将 PstDC3000 从叶背面打 入。从图 5A 中我们可以看出,与 WT 相比,At-WRKY71 过表达植株中 PstDC3000 的生长量增加 了 7 到 11 倍。表型方面,用 PstDC3000 侵染 At-WRKY71 过表达植株后,转基因拟南芥植株表现 出更为严重的感病表型,如叶片更黄且萎蔫等 (图 5: B)。以上研究表明,过表达 AtWRKY71 降 低了植株对 PstDC3000 的耐受性。

2.5 AtWRKY71 抑制 PR 基因的表达 SA 调节的抗病信号转导途径在抵御 P. syrin-

gae 的侵染方面发挥了重要的功能,而此机制与 多个病程相关基因(pathogenesis related gene,*PR*) 的表达有关,如*PR1*(At2g14610),*PR2*(At3g57260) 和*PR5*(At1g75040)(Li等,2004)。此外,先前 的研究还表明*PR1*可作为系统获得性抗病机制

Fig. 4 Over-expression lines for AtWRKY71

A. *AtWRKY71* expression in transgenic plants. Total RNA was isolated from leaves of 4-week-old wild-type (Col-0) and transgenic plants and probed with a *AtWRKY71*-specific probe. Transgenic *AtWRKY71* lines 3 and 5 contained a single T-DNA insertion in the genome and exhibited stable *AtWRKY71* expression. The F3 homozygous progeny plants were used in all the experiments in the study; B. Morphology of representative 30-d-old wild-type (Col-0) and transgenic plant lines 3 (L3) and 5 (L5) over-expressing *AtWRKY71*

(Systemic Acquired Resistance, SAR) 一个可靠的 marker 基因。因此,我们比较分析了这些 PR 基 因在 PstDC3000 侵染 35S: AtWRKY71 转基因植株 和 WT 后的表达差异。和抗病表型一致,与 WT

图 5 高表达 *AtWRKY71* 影响植株对 *Pst*DC3000 的响应 A. 细菌生长统计分析。用悬浮于 10 mmol・L⁻¹ MgCl₂ OD₆₀₀ = 0.0001 的 *Pst*DC3000 注射 WT 和高表达植株,三天后收集样品 来确定细菌的生长。每个株系取 6~8 株; B. 发病症状分析。用 *Pst*DC3000 接种 WT,*35S*: *AtWRKY71: L3* 及 *35S*: *AtWRKY71: L5* 叶 片,三天后拍照

Fig. 5 Altered responses of the transgenic 35S : AtWRKY71 plants to PstDC3000

A. Altered bacterial growth. Wild-type (Col-0) and over-expression plants for AtWRKY71 were infiltrated with a suspension of PstDC3000 (OD₆₀₀ = 0.0001 in 10 mmol • L⁻¹ MgCl₂). Samples were taken at 0 and 3 dpi to determine the growth of the bacterial pathogen. The means and standard errors were calculated from 6 – 8 plants for each treatment. According to Duncan's multiple range test (P=0.05), means of colony-forming units (cfu) do not differ significantly at the same dpi if they are indicated with the same letter. This experiment was repeated three times, with similar results; B. Altered disease symptom development. Pathogen inoculation of wild-type (Col-0) and over-expression plants was performed as in (A). Pictures of representative inoculated leaves taken at 3 dpi

相比,35S:AtWRKY71 转基因植株中 PR1,PR2 和 PR5 的转录水平显著降低(图6)。这些研究结 果进一步证实了 AtWRKY71 在植物抵抗 PstDC3000 侵染过程中发挥了负调控的功能。

收集 WT 和 35S : AtWRKY71 经 PstDC3000 (OD₆₀₀ = 0.0001) 侵染 0天,1天和2天的叶片,提取 RNA,并进行 qRT-PCR 分析 Fig. 6 Pathogen-related gene expression

Wild-type (Col-0) and transgenic 35S:AtWRKY71 plants were inoculated with PstDC3000 (OD₆₀₀ = 0.0001). Total RNA was isolated from inoculated leaves that were harvested at indicated times after inoculation. Then qRT-PCR analysis was performed and the *ACTIN2* gene was used as an internal control

3 讨论

在自然环境中,植物的生长发育往往受到各 种逆境胁迫的影响,为了在逆境中求得生存,植 物往往通过调节自身来适应,并在长期的适应过 程中,形成了一套以多防线来抵抗环境变化的独 特防御机制,包括形态,生理或者分子水平上的 改变或调节 (Bohnert 等, 1995)。其中, 在分子水 平上主要表现为相关基因的转录激活或抑制,而 这个过程需要转录调控因子的参与。WRKY 转 录因子家族是主要存在于植物中的一类超级基 因家族,在植物的生长发育(Johnson 等, 2002; Lagace 和 Matton, 2004; Xu 等, 2004; Zhang 等, 2004; Zou 等, 2004; Xie 等, 2005) 以及应对生 物胁迫方面 (Eulgem 等, 2000; Eulgem 和 Somssich, 2007) 发挥了重要的作用。如 AtWRKY70 介 导了茉莉酸及水杨酸信号的选择与平衡,表现为 激活水杨酸相关反应基因的表达,而抑制茉莉酸 相关响应基因的表达。AtWRKY70的高表达植株 中茉莉酸响应基因 PDF1.2 的表达受到抑制,结 果表现为植物对 Botrytis cinerea 和 Alternaria brassicicola 等病原菌的抗性降低(Li 等, 2004)。At-WRKY3 和 AtWRKY4 在植物应对 B. cinerea 的调控 过程中发挥了正调的作用,而AtWRKY4在植物响 应 PstDC3000 侵染的过程中发挥了负调的功能 (Lai 等, 2008)。AtWRKY8 则通过介导脱落酸 (abscisic acid, ABA) 和乙烯(ET) 信号参与了 十字花科感染烟草花叶病毒(TMV-cg)的防御反 应 (Chen 等, 2013)。 WRKY 转录因子家族成员 除了参与调控真菌、细菌、病毒等生物胁迫反应 外,还参与调控了其他生物胁迫过程。研究表明 AtWRKY23 在线虫叮咬的早期诱导表达,而其高 抑制植株中线虫叮咬程度变弱(Grunewald 等, 2008)。在本研究中,我们检测了AtWRKY71的基 础表达以及不同处理条件下的诱导表达情况。结 果显示, AtWRKY71 在根中的表达最为强烈; At-WRKY71 受 SA, ET 和 JA 等植物激素的诱导表达; 同时 AtWRKY71 也受 PstDC3000 侵染强烈诱导表 达(图2)。这些研究结果意味着 AtWRKY71 可能 在植物的基础抗病方面发挥着重要的调控功能。

目前大量的研究表明,植物在受到病原菌的 侵害时会激活各种与抗病相关的信号转导途径。 其中,SA抗病信号转导途径主要参与了对活体

营养型病原菌的抵抗以及 SAR (Systemic Acquired Resistance) 的建立。P. syringae 在侵染植 物的初始阶段是活体营养型,但在侵染的后阶段 就变成了死体营养型,因此它是一种半活体营养 型的病原菌。已有研究证实 SA 信号途径在限制 P. syringae 的生长方面发挥了重要的作用,例如 在与 SA 生物合成或信号转导途径相关的突变体 中 (eds1, pad4, eds5, sid2, npr1) P. syringae 的 生长量增加 (Glazebrook 等, 1996; Rogers 和 Ausubel, 1997; Aarts 等, 1998; Zhou 等, 1998; Nawrath 和 Metraux, 1999), 而组成型表达 SA 的 突变体,如 acd6 (accelerated cell death 6) 和 agd2 (aberrant growth and death 2) (Rate \Leftrightarrow , 1999; Rate 和 Greenberg, 2001),则增强了对 *P. syringae* 的耐受性。我们的研究证实过表达 At-WRKY71 增强了植株对 PstDC3000 的敏感性,表 现在细菌数量的增加以及植株感病症状的增强 (图 5: A, B)。与 AtWRKY8, AtWRKY18 和 At-WRKY48 等过表达植株表型类似 (Chen 和 Chen, 2002; Xing 等, 2008), 过表达 AtWRKY71 也使植 株生长发育变缓且出现锯齿状叶片(图 4: B)。 但不同于 AtWRKY18 的过表达植株, AtWRKY8, AtWRKY48 和 AtWRKY71 的过表达株系表现出对 PstDC3000的不耐受性。同时,我们还发现3个 和 SA 抗病信号转导途径相关的 PR 基因 (PR1, PR2, PR5), 在 AtWRKY71 过表达植株中的转录 水平也比 WT 中要低(图 6)。因此,我们的研 究结果证实 AtWRKY71 在 SA 调节的抗病信号转 导途径中发挥了负调控的功能。

为了进一步研究 AtWRKY71 的功能,我们也尝 试构建了 AtWRKY71-RNAi 转基因植株,但通过比 较研究发现其在抗病方面与 WT 相比没有什么区 别(data not shown),这可能是因为 AtWRKY71 在 AtWRKY71-RNAi 转基因植株中的表达没有被完全 抑制,也可能是由于 WRKY 基因家族成员之间存 在功能冗余。因此,未来如有可能获得 AtWRKY71 完全缺失的突变体,仍有必要进一步检测其在基 础抗病性方面的功能。同时也可以进一步深入研 究 AtWRKY71 在植物基础抗病性方面的分子机 制,如寻找 AtWRKY71 的下游直接调控靶基因 及其相互作用蛋白等,相信这些工作有助于详细 解析 AtWRKY71 在植物基础抗病性方面的功能。 总之,我们的研究证实了 AtWRKY71 参与了植物的抗病反应,进一步完善了 WRKY 基因家族在调控植物基础抗病性方面的功能。

(参考文献)

- Aarts N , Metz M , Holub E et al. , 1998. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis [J]. Proceedings of the National Academy of Sciences USA ,95: 10306—10311
- Alonso JM , Hirayama T , Roman G et al. , 1999. EIN2 , a bi-functional transducer of ethylene and stress responses in Arabidopsis [J]. Science , 284: 2148—2152
- Bohnert HJ, Neison DE et al., 1995. Adaptations to environmental stresses [J]. The Plant Cell, 7: 1099—1111
- Cao H , Glazebrook J , Clarke JD *et al.*, 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J]. *Cell*, 88: 57-63
- Chen CH , Chen ZX , 2000. Isolation and characterization of two pathogen– and salicylic acid-induced genes encoding WRKY DNA–binding proteins from tobacco [J]. *Plant Molecular Biology* , 42: 387—396
- Chen CH , Chen ZX , 2002. Potentiation of developmentally regulated plant defense response by AtWRKY18 , a pathogen-induced Arabidopsis transcription factor [J]. *Plant Physiology* , **129**: 706—716
- Chen LG , Zhang LP , Li DB et al. ,2013. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis [J]. Proceedings of the National Academy of Sciences USA , 110: E1963— E1971
- Chen LG , Zhang LP , Yu DQ , 2010. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis [J]. Molecular Plant-Microbe Interactions , 23: 558—565
- Clough SJ, Bent AF, 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. The Plant Journal, 16: 735—743
- Dellagi A , Heilbronn J , Avrova AO *et al.*, 2000. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression [J]. *Molecular Plant-Microbe Interactions*, 13: 1092—1101
- Dong JX , Chen CH , Chen ZX , 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response [J]. Plant Molecular Biology , 51: 21—37
- Eckey C , Korell M , Leib K et al. , 2004. Identification of powdery mildew-induced barley genes by cDNA-AFLP; functional assessment of an early expressed MAP kinase [J]. Plant Molecular Biology , 55: 1—15

- Eulgem T , Rushton PJ , Robatzek S et al. , 2000. The WRKY superfamily of plant transcription factors [J]. Trends in Plant Science , 5: 199–206
- Eulgem T , Rushton PJ , Schmelzer E *et al.* , 1999. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors [J]. *Embo Journal* , 18: 4689–4699
- Eulgem T , Somssich IE , 2007. Networks of WRKY transcription factors in defense signaling [J]. Current Opinion in Plant Biology , 10: 366—371
- Glazebrook J , Rogers EE , Ausubel FM , 1996. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening [J]. Genetics , 143: 973—982
- Grunewald W, Karimi M, Wieczorek K et al., 2008. A role for At-WRKY23 in feeding site establishment of plant-parasitic nematodes [J]. Plant Physiology, 148: 358-368
- Hara K , Yagi M , Kusano T et al. , 2000. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding [J]. Molecular Genetics and Genomics , 263: 30—37
- Johnson CS, Kolevski B, Smyth DR, 2002. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor [J]. The Plant Cell, 14: 1359—1375
- Jones JDG , Dangl JL , 2006. The plant immune system [J]. Nature , 444: 323-329
- Kalde M , Barth M , Somssich IE et al. , 2003. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways [J]. Molecular Plant-Microbe Interactions , 16: 295—305
- Kim CY, Zhang SQ, 2004. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco [J]. The Plant Journal, 38: 142–151
- Kim KC , Lai ZB , Fan BF et al. , 2008. Arabidopsis WRKY38 and WRKY62 Transcription Factors Interact with Histone Deacetylase 19 in Basal Defense [J]. The Plant Cell , 20: 2357–2371
- Lagace M , Matton DP , 2004. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense [J]. *Planta* , **219**: 185—189
- Lai Z , Vinod K , Zheng Z et al. , 2008. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens [J]. BMC Plant Biology , 8: 68
- Li J, Brader G, Palva ET, 2004. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense [J]. *The Plant Cell*, 16: 319— 331
- Maleck K , Levine A , Eulgem T et al. , 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance [J]. Nature Genetics , 26: 403–410
- Nawrath C , Metraux JP , 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high

levels of camalexin after pathogen inoculation [J]. The Plant Cell , 11: 1393-1404

- Rate DN, Cuenca JV, Bowman GR et al., 1999. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, de– fenses, and cell growth [J]. Plant Cell, 11: 1695—1708
- Rate DN , Greenberg JT , 2001. The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death [J]. The Plant Journal , 27: 203-211
- Rocher A , Dumas C , Cock JMA , 2005. W-box is required for full expression of the SA-responsive gene SFR2 [J]. Gene , 344: 181—192
- Rogers EE, Ausubel FM, 1997. Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-I gene expression [J]. *The Plant Cell*, 9: 305—316
- Rushton PJ , Torres JT , Parniske M *et al.* , 1996. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes [J]. *Embo Journal* , 15: 5690—5700
- Shen QH, Saijo Y, Mauch S et al., 2007. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses [J]. Science, 315: 1098–1103
- Turck F , Zhou A , Somssich IE , 2004. Stimulus-dependent , promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-I in parsley [J]. *The Plant Cell*, 16: 2573—2585
- Wildermuth MC , Dewdney J , Wu G et al. , 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence [J]. Nature , 414: 562—565
- Willmott RL, Rushton PJ, Hooley R et al., 1998. DNase1 footprints suggest the involvement of at least three types of transcription factors in the regulation of alpha-Amy2/A by gibberellin [J]. Plant Molecular Biology, 38: 817—825
- Xie DX , Feys BF , James S et al. , 1998. COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility [J]. Science , 280: 1091—1094
- Xie Z , Zhang ZL , Zou XL et al. , 2005. Annotations and functional

analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells [J]. *Plant Physiology*, **137**: 176–189

- Xing DH , Lai ZB , Zheng ZY et al. , 2008. Stress- and pathogeninduced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense [J]. Molecular Plant , 1: 459— 470
- Xu XP, Chen CH, Fan BF et al., 2006. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors [J]. The Plant Cell, 18: 1310—1326
- Xu YH , Wang JW , Wang S et al. ,2004. Characterization of GaWRKY1 , a cotton transcription factor that regulates the sesquiterpene synthase gene (+) -delta-cadinene synthase-A [J]. Plant Physiology , 13: 507-515
- Yamamoto S , Nakano T , Suzuki K et al. ,2004. Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco [J]. Biochimica et Biophysica Acta Gene Structure and Expression , 1679: 279—287
- Yang PZ, Chen CH, Wang ZP et al., 1999. A pathogen-and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter [J]. The Plant Journal, 18: 141-149
- Yu DQ , Chen CH , Chen ZX , 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene express ion [J]. *The Plant Cell* , **13**: 1527—1539
- Zhang ZL, Xie Z, Zou XL et al., 2004. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells [J]. Plant Physiology, 134: 1500—1513
- Zheng ZY, Abu Qamar S, Chen ZX et al., 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens [J]. The Plant Journal, 48: 592—605
- Zhou N , Tootle TL , Tsui F et al. , 1998. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis [J]. The Plant Cell , 10: 1021–1030
- Zou XL, Seemann JR, Neuman D et al., 2004. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway [J]. Journal of Biology Chemistry, 279: 55770—55779