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� Background and Aims The inverse relationship between atmospheric CO2 partial pressure (pCO2) and stomatal
frequency in many species of plants has been widely used to estimate palaeoatmospheric CO2 (palaeo-CO2) levels;
however, the results obtained have been quite variable. This study attempts to find a potential new proxy for palaeo-
CO2 levels by analysing stomatal frequency in Quercus guyavifolia (Q. guajavifolia, Fagaceae), an extant dominant
species of sclerophyllous forests in the Himalayas with abundant fossil relatives.
�Methods Stomatal frequency was analysed for extant samples of Q. guyavifolia collected from17 field sites at al-
titudes ranging between 2493 and 4497 m. Herbarium specimens collected between 1926 and 2011 were also exam-
ined. Correlations of pCO2–stomatal frequency were determined using samples from both sources, and these were
then applied to Q. preguyavaefolia fossils in order to estimate palaeo-CO2 concentrations for two late-Pliocene
floras in south-western China.
� Key Results In contrast to the negative correlations detected for most other species that have been studied, a posi-
tive correlation between pCO2 and stomatal frequency was determined in Q. guyavifolia sampled from both extant
field collections and historical herbarium specimens. Palaeo-CO2 concentrations were estimated to be approx.
180–240 ppm in the late Pliocene, which is consistent with most other previous estimates.
� Conclusions A new positive relationship between pCO2 and stomatal frequency in Q. guyavifolia is presented,
which can be applied to the fossils closely related to this species that are widely distributed in the late-Cenozoic
strata in order to estimate palaeo-CO2 concentrations. The results show that it is valid to use a positive relationship
to estimate palaeo-CO2 concentrations, and the study adds to the variety of stomatal density/index relationships that
available for estimating pCO2. The physiological mechanisms underlying this positive response are unclear, how-
ever, and require further research.

Key words: Stomatal density, stomatal index, atmospheric CO2 concentration, palaeo-CO2 reconstruction,
altitudinal gradient, historical specimen, climate change, oak, Quercus guyavifolia, Q. guajavifolia.

INTRODUCTION

Palaeoatmospheric CO2 (palaeo-CO2) concentration estimates
provide important palaeoenvironmental information in geologi-
cal time and a baseline reference to understand future climatic
change. Atmospheric CO2 concentration has been hypothesized
to be a primary determinant of global climate change; periods
of low atmospheric CO2 concentrations witnessed major glacia-
tions, whereas those with higher CO2 concentrations had
warmer conditions (Retallack, 2001; Kürschner et al., 2008;
Lunt et al., 2008; Lacis et al., 2010; Smith et al., 2010). This
CO2–temperature relationship is conspicuous during the
Quaternary and has also been confirmed for other time periods:
for example, the Paleocene–Eocene thermal maximum (PETM)
was a brief but intense interval of global warming associated
with elevated atmospheric CO2 concentration (Zachos et al.,

2005). In addition, CO2 levels play a crucial role in affecting
the ecology and physiology of plants.

To understand the relationship of CO2, climate change and
ecological function of CO2, many attempts have been made to
estimate palaeo-CO2 throughout the Phanerozoic (Pagani et al.,
1999; Pearson and Palmer, 2000; Berner and Kothavala, 2001;
Berner, 2006; Tripati et al., 2009; Seki et al., 2010). A compar-
atively reliable method is to measure the CO2 composition of
air locked in glacial ice (Petit et al., 1999; Lüthi et al., 2008).
However, this method can only be applied for the past 800 000
years because of the absence of older glacial ice (Lüthi et al.,
2008). Pre-ice core CO2 concentration estimations rely on nu-
merous independent palaeobotanical and geochemical proxies
and biogeochemical models derived from palaeobotanical and
geochemical proxies, such as geochemical models (Berner and
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Kothavala, 2001; Berner, 2006), the d13C in palaeosols (Ekart
et al., 1999; Myers et al., 2012), d13C of the organic remains of
phytoplankton (Seki et al., 2010), the d11B and B/Ca ratio of
marine carbonate (Pearson and Palmer, 2000; Tripati et al.,
2009; Seki et al., 2010) and stomatal frequency [expressed as
stomatal density (SD) or stomatal index (SI)] in fossil leaves
(e.g. Royer et al., 2001; Kürschner et al., 2008). Among
these approaches, the d13C in palaeosols method and the stoma-
tal frequency method are terrestrial-based proxies, and the
others are marine-based proxies. However, estimates of the
palaeo-CO2 concentration made using these different
approaches are quite variable (Royer et al., 2001a; Beerling
and Royer, 2011). Thus, more research efforts focused on a
single time period using different proxies is required. This is es-
pecially true for the mid-Miocene climatic optimum [18–15
million years ago (Ma)] and the middle to late Pliocene
(3�6–2�6 Ma) (Beerling and Royer, 2011) because both of them
were globally warm and relatively recent and may be
comparable with the Earth’s immediate future with increasing
greenhouse gases. Fortunately, there are abundant fossils
from these two time periods (van der Burgh et al., 1993;
Kürschner et al., 1996; Kürschner et al., 2008; Retallack, 2009;
Stults et al., 2011) and we also found many oak fossils,
providing an ideal opportunity to study the CO2–temperature
relationship during these warm climate intervals by estimating
the palaeo-CO2 concentration using the stomatal frequency
method.

Generally, the stomatal frequency method is based on the in-
verse correlation between atmospheric CO2 partial pressure
(pCO2) and leaf stomatal frequency which is species specific
and observed in many C3 plants (Woodward, 1987; Kürschner
et al., 2001; Royer, 2001; Beerling and Royer, 2002a;
Kouwenberg et al., 2003). The method has been widely used to
estimate palaeo-CO2 levels by applying the correlation to
closely related plant fossils. Numerous genera and species have
been used, such as Ginkgo (Retallack, 2001; Royer et al.,
2001b; Beerling and Royer, 2002a; Retallack, 2009; Smith
et al., 2010), Metasequoia (Royer et al., 2001b; Doria et al.,
2011), other conifers (Passalia, 2009; Steinthorsdottir and
Vajda, 2013), cycads (McElwain et al., 1999; Haworth et al.,
2011b), Quercus (van der Burgh et al., 1993; Kürschner et al.,
1996), Lauraceae (McElwain, 1998; Greenwood et al., 2003;
Kürschner et al., 2008) and Betula (Finsinger and Wagner-
Cremer, 2009). The precision of identifying nearest living
relatives (NLRs) of fossil species and the accuracy of the corre-
lation between stomatal frequency and pCO2 can have profound
effects on the estimates because the relationship is species spe-
cific. Royer (2001) summarized the stomatal frequency of 176
previously published C3 plant species and showed that a major-
ity of the species had inverse correlations; some had no signifi-
cant relationship; only �12 % had a positive correlation; and
species from the same genus may have inconsistent relation-
ships (McElwain et al., 1995; Rundgren and Beerling, 1999;
Eide and Birks, 2004; Finsinger and Wagner-Cremer, 2009;
Haworth et al., 2010b). Almost all the previous studies have
been based on an inverse relationship between atmospheric
pCO2 and stomatal frequency to estimate palaeo-CO2 levels.
Recently, a positive relationship between atmospheric pCO2

and stomatal frequency in Typha orientalis was used to estimate
palaeo-CO2 levels during the Plio-Pleistocene transition (Bai

et al., 2014). These studies indicate that it is essential to estab-
lish the specific stomatal frequency–pCO2 relationship of a fos-
sil’s NLR before using the relationship to estimate palaeo-CO2

levels. To achieve this, many studies have used three primary
approaches to investigate the response of stomatal frequency to
CO2 variation: (1) study leaves collected over an extended
period of time because atmospheric CO2 concentration
has increased from approx. 280 to 390 ppm over the last 150
years; (2) study leaves from different locations along an altitu-
dinal gradient because atmospheric pCO2 declines as baromet-
ric pressure decreases with increasing altitude; and
(3) greenhouse experiments in which stomatal frequency can be
counted in response to elevated CO2 concentrations. The
first and third approaches have been widely used (Woodward,
1987; van der Burgh et al., 1993; Royer et al., 2001b;
Greenwood et al., 2003; Kouwenberg et al., 2003; Haworth
et al., 2011a), although the first approach may be somewhat
constrained by the availability of historical specimens.
The third approach misrepresents the potential for proportional
population changes within a gene pool, and it does not
consider taxonomic differences in plant generation times
(Royer, 2001), and thus may fail to reflect long-term, genetic
responses to slow changes in the environment of plants
(Woodward, 1988; Beerling and Chaloner, 1993; McElwain
and Chaloner, 1995). The second method has been used less
frequently (McElwain, 2004; Kouwenberg et al., 2007) because
of the difficulty of collecting one species over a long altitudinal
gradient.

Oak plants of Quercus guyavifolia H. Lév. [¼ Q. pannosa
Hand.-Mazz. (Flora of China), Q. guajavifolia H. Lév. (Flora of
China, Volume 4, page 375)] is a dominant species in the scle-
rophyllous forests along the steep altitudinal gradients in the
Qinghai-Tibet Plateau and Hengduan Mountains. There are
also abundant Q. preguyavaefolia Tao (Zhou, 1992) fossils in
the late-Cenozoic strata of this region (Zhou, 1999). For exam-
ple, the Longmen flora (Su et al., 2013) and the Fudong flora
(Tao, 1986; Huang et al., 2013) in south-western China, both
from the Sanying Formation of the Pliocene, are dominated by
Q. preguyavaefolia fossils; the Namling flora in Tibet from the
Wulong Formation (middle Miocene, 15 Ma) is the earliest re-
corded occurrence of Q. preguyavaefolia fossils (Li and Guo,
1976; Spicer et al., 2003). Together, these fossils provide ideal
material to estimate the atmospheric CO2 concentration history
of the late Cenozoic and to study the CO2–temperature relation-
ship during warm climate intervals in the mid-Miocene climatic
optimum and the middle to late Pliocene. In this study, we
chose Q. guyavifolia (the NLR of Q. preguyavaefolia fossils,
Fig. 2) in order to (1) determine how the stomatal frequency of
Q. guyavifolia responds to decreasing pCO2 (increasing alti-
tude) and to generate calibration curves of stomatal frequency
vs. atmospheric pCO2; (2) test whether samples collected along
an altitudinal gradient provide results consistent with results
from historical herbarium specimens; (3) estimate the late-
Pliocene atmospheric CO2 concentration using two contempo-
raneous Q. preguyavaefolia fossils; and (4) compare CO2 levels
estimated using the stomatal frequency of Q. guyavifolia with
previous estimates. This is the first study to use both extant
field collections from along an altitudinal gradient and histori-
cal herbarium specimens to establish a specific stomatal
frequency–pCO2 relationship.
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MATERIALS AND METHODS

Collection of extant altitudinal material, historical herbarium
specimens and fossil samples

Extant sun and shade leaves of Quercus guyavifolia were
collected from five individuals at each of 17 sites at elevations
ranging from 2493 to 4497 m (the altitudinal range of Q. guya-
vifolia distributions is approx. 2500–4500 m), i.e. pCO2

22�695–29�134 Pa (Supplementary Data Table S1; Fig. 1). Sun
and shade leaves were collected because light intensity affects
these two types of leaves differently and has a positive effect
on the stomatal frequency (Kürschner, 1997; Royer, 2001;
Lake et al., 2002; McElwain, 2004; Kouwenberg et al., 2007).
Sun leaves were collected from outer branches; shade leaves
were collected from within and beneath canopies. To account
for the high natural population variability in stomatal frequency
(Poole and Kürschner, 1999; Beerling and Royer, 2002a), four
sun and four shade leaves were collected from each of five Q.
guyavifolia trees at each site.

Herbarium samples of Q. guyavifolia from the Herbarium of
the Kunming Institute of Botany, Chinese Academy of
Sciences (KUN) were examined and they spanned the time pe-
riod 1926–1995. Specimens from similar altitudes (range
2800–3300 m) were chosen (Supplementary Data Table S2) so
as to limit stomatal frequency variation that might be caused by
factors associated with changing altitude. Sample HS006
collected in the field extends the time period to 2011, i.e. pCO2

21�207–26�539 Pa (Table S2).
Fossil leaves of Q. preguyavaefolia (Fig. 2E–H) were col-

lected from two different late-Pliocene floras – the Hunshuitang
and the Qingfucun floras (Fig. 1). The Hunshuitang flora col-
lection site is located 25 km north-east of Kunming,
central Yunnan Province, south-western China (25�06’N,
102�57’E, altitude 2102 m). The Hunshuitang flora belongs to
the Ciying Formation from the late Pliocene (Yunnan
Bureau of Geology and Mineral Resources, 1978, 1990; Jiang
et al., 2003). The Qingfucun flora, located in Weixi county,
north-western Yunnan (27�05’N, 99�21’E, altitude 2476 m),
is from the Sanying Formation, late Pliocene (3�6 Ma;
Li et al., 2013). We analysed five fossil specimens of Q. pre-
guyavaefolia from the Hunshuitang flora and four from the
Qingfucun flora.

Stomatal analysis of extant samples collected along an altitudinal
gradient

Mature leaves (1–2 years of leaf growth, mostly 2 years)
were chosen for cuticle preparation. Leaf fragments of Q. guya-
vifolia were macerated using a 1:1 solution of glacial acetic
acid and 30 % H2O2 at 80�C for approx. 3 h after the thick tri-
chomes were removed. The lower cuticles without mesophyll
tissue were stained using safranin O solution and then mounted
in glycerine on glass slides (Stace, 1965; Poole and Kürschner,
1999). Cuticle images were taken using a light microscope
(Leica DM 1000) attached to a Leica DFC 295 camera. The
size of the images for stomatal and epidermal cell counts was
468� 351mm2 (approx. 0�1643 mm2). In addition, cleared
leaves of Q. guyavifolia (Fig. 2C, D) were made following the
protocol of Hickey and Wolfe (1975) to compare the leaf mor-
phology of extant and fossil material.

Stomatal density (SD) is measured as the number of stomata
per mm2 of leaf. Stomatal index (SI) is the proportion of sto-
mata to the total number of epidermal cells and measured as:

SI %ð Þ ¼ SD= SDþ EDð Þ½ � � 100ðSalisbury; 1927Þ (1)

where ED is epidermal cell density.
Stomatal and epidermal cells were counted using the soft-

ware package ImageJ version 1.42q (http://rsb.info.nih.gov/ij).
Samples came from five individuals at each site; four leaves
were taken from each individual; three microscope fields were
counted per leaf. The leaves of Q. guyavifolia are hypostoma-
tous (He et al., 1994) so the images of stomatal and epidermal
cell counts were all made on the abaxial surface. This resulted
in 60 counts (5 individuals� 4 leaves� 3 counts) for each site.
Stomatal and epidermal cells were counted in intercostal areas
and restricted to the mid-lamina region to minimize variability
(Poole et al., 1996). The SD and SI for each site were calcu-
lated as the mean of 60 counts per site.

Stomatal analysis of historical herbarium material

The experimental protocols for cuticle preparation of herbar-
ium samples were the same as for extant field material. Three
mature leaves were collected from each historical herbarium
specimen; five microscope fields were counted per leaf, thus 15
counts were made for each specimen.

Stomatal analysis of fossil material

Fossil leaf fragments were treated successively with 20 %
HCl, 40 % HF and 20 % HCl again to remove calcareous and
siliceous materials, and then macerated using 3�5 % NaClO so-
lution for 10 min to 1 h until they became white or translucent.
After removing the mesophyll tissue, the lower cuticles were
stained using safranin O and mounted in glycerine on glass
slides (Ye, 1981; Kerp, 1990; Leng, 2000). Cuticular images
were taken using a light microscope (Leica DM 750) linked to
a Leica DFC 295 camera. The size of the images was
298� 223mm2 (approx. 0�0665 mm2). Five to ten cuticular im-
ages were counted for each fossil; a separate mean of the counts
was calculated for the two fossil sites. The cuticles examined in
fossil leaves were from the same part of the leaf as those for the
extant leaves (intercostal area near mid-lamina). All cuticular
slides were deposited at the Laboratory of Environmental
Change and Its Impact on Plants Group in the Kunming
Institute of Botany, Chinese Academy of Sciences.

Calibration curves

Calibration curves of stomatal frequency vs. pCO2 for sun
and shade leaves were constructed based on extant samples.
Atmospheric pCO2 used in the calibration curves were calcu-
lated from the elevation range using eqn (2) (Beerling and
Royer, 2002a, derived from Jones, 1992):

elevðp2Þ ¼ �ln
p2

p1

� �
� R� T

ðMA � gÞ ; (2)

where p1 and p2 are the CO2 partial pressures (Pa) at sea
level and at the site, respectively; R is the gas constant
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FIG. 1. The locations of 17 sites (black points) where extant field samples of leaf materials of Quercus guyavifolia were collected and two sites (purple stars) where
fossil materials of Q. preguyavaefolia were collected. (A) The study area. (B) Locations where extant and fossil leaf materials were collected. (C) Detailed location

map showing 16 of the 17 collection sites in the boundary (grey line) region between Yunnan and Sichuan Provinces.

A B C D

E F G H

FIG. 2. Comparisons of leaf morphology of extant Quercus guyavifolia and fossil Q. preguyavaefolia. (A, B) Branches of extant Q. guyavifolia. (C, D) Cleared leaves
of extant Q. guyavifolia. (E, F) and (G, H) are leaf fossils from the Hunshuitang flora and the Qingfucun flora respectively. Scale bars¼ 1 cm.
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(8�3144 Pa m3 mol�1 K�1); T is the mean annual temperature
(K) of the range in elevation; MA is the molecular weight of air
(0�028964 kg mol�1); g is the acceleration due to gravity
(9�8 m s�2); and elev (p2) is the elevation (m) of the site. As alti-
tude increases, pCO2 decreases from 29�134 to 22�695 Pa
(Supplementary Data Table S1). The calculated atmospheric
pCO2 should have no significant difference from the field atmo-
spheric pCO2 (McElwain, 2004).

Calibration curves were constructed using linear regression
analysis, using R version 2.14.1 (http://www.R-project.org). To
determine if sun and shade leaves should be analysed separately
or combined, differences in slopes and y-intercepts of their con-
structed curves were tested by analysis of covariance using
SPSS Statistics version 18.0 (http://www.spss.com.cn).

Calibration curves of stomatal frequency vs. pCO2 were also
constructed using historical herbarium materials. Historical lev-
els of atmospheric CO2 at sea level were obtained from
Etheridge et al. (1996) and from the CO2 Now website (http://
co2now.org/). Using this information, atmospheric pCO2 at the
sites was calculated using eqn (2).

Palaeo-CO2 estimate

The stomatal frequency of the fossil material was analysed
and applied to the calibration curves prepared using the extant
field materials and historical herbarium samples, respectively,
to estimate palaeo-CO2 levels during the late Pliocene.
Envelopes of uncertainty were obtained after propagating
uncertainties in the calibration function and fossil leaf measure-
ments. Due to differences between sun and shade leaves, it was
necessary to construct morphotype-specific calibration curves
for each type of leaf. Sun leaves are characterized by straight to
rounded epidermal cell walls (Fig. 3A, B) whereas shade leaves
show a pronounced undulation of the epidermal cell walls
(Fig. 3C, D) (Kürschner, 1997), and on this basis fossils from
the Hunshuitang flora (Figs 2E, F and 3E, F) and the Qingfucun
flora (Figs 2G, H and 3G, H) were all assessed to be sun leaves.
Sun leaves of historical herbarium samples were also chosen
according to their epidermal features. This necessarily deter-
mined that the calibration curve for CO2 estimation was pre-
pared exclusively using sun leaves of Q. guyavifolia; the
calibration curve generated using shade leaves will be used in
future work for Q. preguyavaefolia fossils from different sites.
We then compared our atmospheric CO2 concentration esti-
mates from the Hunshuitang and Qingfucun floras with other
published results of atmospheric CO2 concentration during the
late Pliocene (van der Burgh et al., 1993; Kürschner et al.,
1996; Pearson and Palmer, 2000; Tripati et al., 2009; Seki
et al., 2010).

RESULTS

Stomatal frequency of extant Quercus guyavifolia and calibration
curves

The calibration curves show a significant (P� 0�01) positive
linear relationship between stomatal frequency and atmospheric
pCO2 for both sun and shade leaves in extant field samples of
Quercus guyavifolia collected along an altitudinal gradient
(Supplementary Data Table S1; Fig. 4).

The slopes of the calibration curves constructed by sun and
shade leaves, respectively, are not different (P> 0�05). The SD
and SI of shade leaves were 1�4 and 7�8 %, respectively, lower
than those of sun leaves. There was a significant difference in
intercept of SI–pCO2 curves between sun and shade leaves
(P< 0�05), but not for SD–pCO2 curves (P> 0�05), indicating
that the SI of shade leaves was lower than that of sun leaves,
but the SD was not.

Stomatal frequency of historical herbarium materials and
calibration curves

There was no significant relationship between SD and atmo-
spheric pCO2 for historical herbarium materials, but a signifi-
cant (P< 0�05) positive linear relationship between SI and
pCO2 was found (Fig. 5).

Palaeo-CO2 estimate of the late Pliocene

The relationship between SI and atmospheric pCO2 for both
extant specimens collected along an altitudinal gradient and his-
torical herbarium materials were compared (Fig. 6). Results
from both sources showed a significant positive linear relation-
ship between SI and pCO2 (Fig. 6).

Fossils from the Hunshuitang flora had a mean SD of
516 6 91 mm�2, and a mean SI of 6�69 6 0�76 % (Table 1).
Using the SD and SI of fossil material, the palaeo-CO2 concen-
tration was estimated using the equations in Fig. 4A and 4C,
respectively, which were both derived from extant sun leaves
(Table 1). The palaeo-CO2 concentration was also estimated us-
ing the equation in Fig. 5B which was derived from sun leaves
of historical specimens (Table 1; Fig. 6).

Fossils from the Qingfucun flora had a mean SD of
496 6 24 mm�2, and a mean SI of 7�79 6 0�1 % (Table 1).
Palaeo-CO2 levels of the late Pliocene were estimated
by applying the equations in Fig. 4A and 4C to the SD and
SI, respectively, of the fossils (Table 1). The palaeo-CO2

was also estimated using the equation in Fig. 5B to compare
with the estimates from the extant field samples (Table 1;
Fig. 6).

DISCUSSION

Positive relationship between stomatal frequency and pCO2 in
Quercus guyavifolia

We found a positive relationship between stomatal frequency
and atmospheric pCO2 in Q. guyavifolia sun and shade leaves
collected along an altitudinal gradient, which is consistent with
the pattern from the historical herbarium samples. It is an un-
usual and interesting phenomenon because most other species
show an inverse relationship (Woodward, 1987; van der Burgh
et al., 1993; Woodward and Kelly, 1995; Beerling and Royer,
2002b; Royer, 2003; Kouwenberg et al., 2007; Franks and
Beerling, 2009). However, several studies also report that in
some species stomatal frequency increases with atmospheric
CO2 concentration (Ferris and Taylor, 1994; Royer, 2001). In
particular, some Quercus species such as Q. rubra and Q. robur
grown in climate-controlled greenhouses show an increase in
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SD at elevated CO2 (Dixon et al., 1995; Atkinson et al., 1997).
Although greenhouse results are not necessarily reliable, these
results indicate to a certain extent that a positive relationship
between stomatal frequency and atmospheric pCO2 in other
species of Quercus may be not unexpected. Recently, this
positive correlation between SI and atmospheric pCO2 in
historical herbarium specimens of Typha orientalis has been
used to estimate atmospheric CO2 during the Plio-Pleistocene
transition (Bai et al., 2014). This is supportive evidence of
the reliability of the positive relationship used to estimate
palaeo-CO2.

The positive relationship detected between stomatal fre-
quency and atmospheric pCO2 in Q. guyavifolia was observed

from both the altitudinal collection and the historical herbarium
samples. These two independently derived results showed the
same pattern. The altitudinal samples were collected in Yunnan
and Sichuan provinces; the historical samples were collected
from similar altitudes in northern and north-western Yunnan
province. To test if this unusual, positive relationship between
pCO2 and stomatal frequency is affected by other environmen-
tal factors, the relationships between stomatal frequency and
other climatic factors (mean annual temperature, mean annual
precipitation, annual mean relative humidity) were tested by
simple linear regression analysis. The result showed that only
atmospheric pCO2 significantly correlates to stomatal fre-
quency of Q. guyavifolia (Figs 4 and 5) rather than the mean

A B

C D

E F

G H

FIG. 3. Images of the cuticle of sun (A, B) and shade (C, D) leaves of extant Quercus guyavifolia and Q. preguyavaefolia fossils from the Hunshuitang (E, F) and
Qingfucun (G, H) floras. Scale bars¼ 50mm. Black arrows indicate the undulant epidermal cell walls in shade leaves.
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annual temperature (P> 0�05 for both the altitudinal collection
and the historical herbarium samples), mean annual precipita-
tion (P> 0�05 for both the altitudinal collection and the histori-
cal herbarium samples) and annual mean relative humidity
(P> 0�05 for both the altitudinal collection and the historical
herbarium samples), confirming that the positive relationship
between stomatal frequency and pCO2 in Q. guyavifolia is de-
termined by atmospheric pCO2. Together with evidence from
other studies (Dixon et al., 1995; Atkinson et al., 1997; Bai
et al., 2014), we propose that the positive relationship between
stomatal frequency and pCO2 in Q. guyavifolia is reliable and
this relationship can be used as a basis to estimate palaeo-CO2

levels.
The physiological mechanism underlying the positive stoma-

tal response to pCO2 is probably complicated. Stomata play a
central role in the uptake of photosynthetic CO2 and water loss

from the leaf. Both physiological (stomatal aperture change)
and morphological (SD change) strategies can be used by plants
to regulate gas exchange (Haworth et al., 2013). The positive
stomatal response to pCO2 may be contributed by multiple fac-
tors. One of the factors is possibly leaf nitrogen content.
Previous studies found that elevated CO2 concentration can in-
crease leaf nitrogen content in jack pine and white birch seed-
lings (Zhang and Dang, 2005). Plants of Q. pannosa (¼ Q.
guyavifolia) and Q. aquifolioides grown at lower altitudes
(higher atmospheric pCO2) have higher leaf nitrogen content
(or higher nitrogen allocation in the photosynthetic system),
stomatal conductance, photosynthetic rate and carboxylation
rate (Zhang et al., 2005; Feng et al., 2013). High leaf nitrogen
content significantly increases carboxylation capacity (Rogers
et al., 1998; Pérez et al., 2011) and consequently results in a de-
crease in the ratio of the intercellular to atmospheric CO2
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FIG. 4. Relationship between stomatal frequency (A, B, stomatal density; and C, D stomatal index) and CO2 partial pressure of Quercus guyavifolia sun (A, C) and
shade (B, D) leaves. Error bars are 61 s.d. The solid line indicates the best fit in classical regression analysis. Dashed lines are 95 % confidence limits.
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concentration and an increase in d13C values (Sasakawa et al.,
1989; Cordell et al., 1999), and therefore an increase of SD
(Qiang et al., 2003).

Differences in stomatal frequency between sun and shade leaves

Our results confirm that distinguishing sun leaves from shade
leaves is necessary when using the stomatal method to estimate
palaeo-CO2 levels (Kürschner, 1997). Stomatal frequency of
both sun and shade leaves in Q. guyavifolia decreased with de-
creasing pCO2. However, SI of shade leaves was lower than
that of sun leaves although the SD was not different between
sun and shade leaves. This corroborates results from previous
studies which showed that stomatal frequency of sun leaves is
higher than that of shade leaves (Kürschner, 1997; Wagner,
1998; Royer, 2001; Kouwenberg et al., 2007) resulting from
the positive effect of light intensity on stomatal frequency
(Lake et al., 2001, 2002; Kouwenberg et al., 2007). Kürschner
(1997) reported that the SD of Q. petraea sun leaves was about
45 % higher than that of shade leaves, and up to 60 % higher in

fossil leaves of Q. pseudocastanea. Kouwenberg et al. (2007)
also observed a higher SD and SI in sun leaves compared with
shade leaves in both Q. kelloggii (up to 38 % higher) and
Nothofagus solandri.

Comparison of stomatal density and stomatal index

The SD and SI gave different estimates for palaeo-CO2. The
SI is a more precise proxy for palaeo-CO2 estimation than SD
because SI removes the effect of other environmental factors
such as temperature, water stress and humidity on the size and/
or spacing of epidermal cells, which will result in higher or
lower SDs (Salisbury, 1927; Kürschner et al., 1996; Kürschner,
1997; Royer, 2001; Sun et al., 2003; McElwain, 2005;
Kouwenberg et al., 2007; Haworth et al., 2010a). Here we
showed that the SI of historical herbarium samples had a signif-
icant positive response to atmospheric pCO2 but SD did not,
confirming that SD is more variable than SI and therefore not
as reliable as SI for palaeo-pCO2 estimation. However, in prac-
tice, many fossil leaves are not well preserved and epidermal
cells are difficult to identify. Thus SI analysis is impossible and
SD becomes the sole option but may give rise to error.
Fortunately, our fossils were well preserved and SI could be ac-
curately calculated. Therefore, our results are probably more
precise than those derived only by SD. We also used SD for
palaeo-pCO2 calculation in order to compare with the results
derived from SI (Table 1). Our comparison of palaeo-pCO2

levels estimated from SD and SI provides an example of
overpredicting pCO2 levels using SD.

Late-Pliocene atmospheric CO2 levels

As a test of the applicability and reliability of the positive re-
lationship of stomatal frequency and pCO2 in Q. guyavifolia as
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FIG. 5. Relationship between stomatal frequency (A, stomatal density and B, sto-
matal index) and CO2 partial pressure of Quercus guyavifolia historical herbar-
ium specimens. Error bars are 61 s.d. The solid line indicates the best fit in

classical regression analysis. Dashed lines are 95 % confidence limits.
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a proxy for palaeo-pCO2 levels, palaeo-pCO2 was estimated us-
ing Q. preguyavaefolia fossils. Our results derived using the SI
calibration data set indicate late-Pliocene atmospheric CO2

levels of approx. 210 and 240 ppm derived using extant field
collections and approx. 180 and 210 ppm derived from herbar-
ium samples, which are consistent with most other estimates.
Beerling and Royer (2011) compiled 370 estimates of Cenozoic
atmospheric CO2 levels obtained using different protocols; they
show that since the Miocene most atmospheric CO2 estimates
were lower than present-day levels of approx. 390 ppm. We
compared our palaeo-CO2 estimates during the late Pliocene
with those based on stomatal frequency of other species (terres-
trial-based proxy) and other proxies such as alkenone and boron
(marine-based proxies) for the same time period (Fig. 7). All of
the estimates indicate palaeo-CO2 levels between approx. 190
and approx. 430 ppm for the late Pliocene, with the majority
indicating that atmospheric CO2 levels in the late Pliocene were
lower than at present. However, even atmospheric CO2

estimates derived from the same source (terrestrial-based or
marine-based proxies) are still quite different. Therefore, atmo-
spheric CO2 estimates to date have not been sufficient to ac-
count for the warm climate interval during the late Pliocene.
More research is required to obtain more precise estimates of
palaeo-CO2 during this period.

In addition, our comparatively low atmospheric CO2 values
may be related to elevations in the fossil sites. It is generally ac-
cepted that the Qinghai-Tibet Plateau reached its current height
in the late Miocene and retained it (Spicer et al., 2003); previ-
ous studies have also showed that western Yunnan had ap-
proached its highest altitude before the late Pliocene (Sun et al.,
2011). The palaeoaltitude of the Xianfeng flora, about 60 km
away from the Hunshuitang locality, was about 1936 m in the
late Miocene (Jacques et al., 2014). This means that the
altitudes of our fossil sites in the late Pliocene were probably
similar to present-day altitudes (approx. 2000–2500 m). If the
palaeoaltitudes of the two sites are taken into account, atmo-
spheric CO2 levels during the late Pliocene should be approx.
270 and 320 ppm derived by extant field collections and
approx. 240 and 280 ppm derived by herbarium samples. Thus,
these results are very similar and correspond well to other esti-
mates, confirming that the positive relationship between

stomatal frequency and atmospheric pCO2 in Q. guyavifolia is
reliable as a proxy for estimating palaeo-CO2 levels.

Actually, a correction for pCO2 at the elevation is necessary
to obtain more accurate results. Clearly, when attempting to re-
construct palaeo-pCO2 using the stomatal frequency of fossils,
the pCO2 estimates will be influenced by the elevation at which
the now-fossilized plants were growing. Thus, to obtain more

TABLE 1. Estimates of CO2 partial pressure (pCO2) derived by using the calibration curves of stomatal frequency and pCO2 in Quercus
guyavifolia sun leaves from both extant field samples (Fig. 4A, C) and historical herbarium samples (Fig. 5B)

Sample Age No. of
fossils

Total
image
counts

SF (mean 6 s.d.) pCO2-E (mean 6 s.e.) pCO2-H (mean 6 s.e.)

Hunshuitang flora Late Pliocene 5 46 SD: 516 6 91 mm�2 31�46 6 2�79 Pa
(310�51 6 27�51 ppm)

–

SI: 6�69 6 0�76 % 21�01 6 3�47 Pa
(207�36 6 34�25 ppm)

18�60 6 5�53 Pa
(183�52 6 54�63 ppm)

Qingfucun flora Late Pliocene,
3�6 Ma

4 34 SD: 496 6 24 mm�2 30�59 6 1�57 Pa
(301�92 6 15�47 ppm)

–

SI: 7�79 6 0�1 % 23�84 6 2�57 Pa
(235�26 6 25�37 ppm)

21�15 6 3�84 Pa
(208�77 6 37�87 ppm)

SF, stomatal frequency; pCO2-E, estimates of CO2 partial pressure from extant field samples; pCO2-H, estimates of CO2 partial pressure from historical her-
barium samples.
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FIG. 7. Estimates of palaeo-CO2 concentration during the late Pliocene derived
using different methods. The palaeo-CO2 estimates derived from alkenone (see
key; black lines above and below represent uncertainties) and boron (purple) are
cited from Seki et al. (2010) modified by Beerling and Royer (2011); alkenone
(blue lines above and below represent uncertainties; Zhang et al., 2013); alke-
none (dark green lines above and below represent uncertainties; Badger et al.,
2013); boron data (orange; Bartoli et al., 2011); stomata data (van der Burgh
et al., 1993; Kürschner et al., 1996); stomata data (Stults et al., 2011); stomatal
data (red) and stomatal data (purple) are palaeo-CO2 levels estimated from field
collections along an altitudinal gradient and from historical herbarium samples
respectively (this study). Error bars represent uncertainties (see Materials and
Methods). One of our fossils is 3�6 Ma, and the other is unknown (sometime
during the late Pliocene). The period between the two vertical dashed lines is the
late Pliocene (3�6–2�588 Ma) (International Chronostratigraphic Chart; version
2013). The blue horizontal dashed line indicates recent levels of atmospheric

CO2 concentration (390 ppm).
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precise pCO2 estimates it is essential to apply a correction fac-
tor for pCO2 related to altitude. This should also be done for
samples collected along an altitudinal range (McElwain, 2004)
and for historical herbarium samples (Greenwood et al., 2003)
when constructing the stomatal frequency–pCO2 curve.
Unfortunately, few previous studies have made this correction
on either extant specimens, herbarium specimens or fossils.
Therefore, we suggest that future studies should incorporate a
correction factor related to altitude for all specimens and
samples.

Recently, there has been much debate about whether the lin-
ear relationship between stomatal frequency and pCO2 con-
tinues when the ambient CO2 concentration rises beyond
approx. 500 ppm, because the stomatal frequency of some plant
species may lose sensitivity at these high levels (Woodward
and Bazzaz, 1988; Kürschner et al., 1997; Beerling and Royer,
2002a, b; Beerling et al., 2009; Haworth et al., 2011a).
Nevertheless, the pCO2 estimate reported in this study, and the
stomatal frequency–pCO2 training sets are applicable because
atmospheric CO2 levels during the Pliocene remained below
500 ppm according to our results and those of previous esti-
mates (Fig. 7).

Conclusions

We have shown a significant positive relationship between
atmospheric pCO2 and stomatal frequency in Q. guyavifolia
that can be used as a proxy to estimate late-Cenozoic palaeo-
CO2 concentrations. This is the first study in which both field
samples collected along an altitudinal gradient and historical
herbarium samples of a single species have been used to esti-
mate palaeo-CO2 concentration. In addition, a positive relation-
ship between stomatal frequency and pCO2 has seldom been
used to estimate palaeo-CO2 concentration. Our estimated
palaeo-CO2 concentration provides new independent data for
late-Cenozoic CO2 estimates derived using vascular land plants.
There are, however, three sources of variation. First, sun and
shade leaves give different results of stomatal frequency, con-
firming that it is necessary to analyse sun and shade leaves sep-
arately when using the stomatal method to estimate palaeo-
CO2. Secondly, the estimates derived from SD and SI using sun
leaves were also different, so more precise estimates will be pos-
sible when we find and analyse fossils that have well-preserved
shade leaves in addition to sun leaves. Thirdly, our research
concluded that atmospheric CO2 levels in the late Pliocene
were approx. 180–240 ppm. Although these results are consis-
tent with other studies reporting CO2 levels lower than modern
atmospheric concentrations, when more appropriate fossil ma-
terial becomes available then much more accurate estimates
will be possible.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford
journals.org and consist of the following. Table S1: location,
altitude, pCO2, stomatal density and stomatal index of Q. guya-
vifolia sun and shade leaves where extant field samples were
collected. Table S2: collection time, location, altitude, pCO2,

stomatal density and stomatal index of Q. guyavifolia sun
leaves from historical herbarium specimens.
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Kouwenberg LLR, McElwain JC, Kürschner WM, et al. 2003. Stomatal fre-
quency adjustment of four conifer species to historical changes in atmo-
spheric CO2. American Journal of Botany 90: 610–619.
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