
nature methods | VOL.9 NO.7 | JULY 2012 | 671

FoCus on BIoImaGe InFormatICs hIstorICaL Commentary

Maryland graduate program that would
allow him to pursue his master’s degree
in computer science and thus leave the
service early. One day in 1970, in the
commons at the University of Maryland,
College Park, he saw a notice for a part-
time programming position at the NIH in
Bethesda, Maryland, USA, to work on the
laboratory instrument computer (LINC)
created at the Massachusetts Institute
of Technology. Rasband applied for this
position, was hired and worked at the NIH
until he retired in 2010.

nIh Image: image analysis on the mac
When Rasband began working at the
Research Services Branch at the National
Institute of Mental Health, part of the
intramural campus of the NIH, most
scientific data processing was done on
mainframe computers, and the personal
computer revolution was just beginning.
There was no image-analysis program for
the Macintosh computer, and Rasband
had just obtained one of the first Apple
Macintosh (Mac) II computers. Rasband
realized that it had the appropriate
hardware and low-level software to be
an ideal base for a small, low-cost image-
analysis system; all it needed was some
software for image analysis. Rasband
decided to write that software in support
of the imaging analysis needs he saw at the
time: chiefly, better access in terms both of
ease of adoption and cost.

It was his goal to have a low-cost
image-analysis system that the average
bench scientist could afford and deploy.
Rasband wanted to create a system that
was smaller and more affordable than
his earlier software systems that required
the $150,000 PDP-11 minicomputers

NIH Image to ImageJ: 25 years of image analysis
Caroline A Schneider, Wayne S Rasband & Kevin W Eliceiri

For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the
analysis of scientific images. We discuss the origins, challenges and solutions of these two programs,
and how their history can serve to advise and inform other software projects.

The last 50 years have seen tremendous
technological advances, few greater
than in the area of scientific computing.
One of the fields in which scientific
computing has made particular inroads
has been the area of biological imaging.
The modern computer coupled to
advances in microscopy technology is
enabling previously inaccessible realms
in biology to be visualized. Although the
roles of optical technologies and methods
have been well documented, the role
of scientific imaging software and its
origins have been seldom discussed in any
historical context. This is due in part to the
relative youth of the field, the wide variety
of imaging software tools available, sheer
diversity of subfields and specialized tools,
and the constant creation and evolution of
new tools.

In this great diversity and change, one
software tool has not only survived but
thrived. The scientific image-analysis pro-
gram, ImageJ1,2, known in previous incar-
nations as NIH Image3, was an early pio-
neer in image analysis. Twenty-five years
after its introduction the program not only
persists but continues to push and drive
the field. It does so not by continuously
reinventing itself but by sticking to a core
set of design principles that have allowed
it to become a modern image-processing
platform and yet retain an interface that a
user from over 20 years ago would recog-
nize and readily use.

Given the great success and impact
of ImageJ, one would expect that this
application was a software initiative with
official backing and formal planning by a
central funding body. Despite its original
name, NIH Image, and its home at the US
National Institutes of Health (NIH) for
over 30 years in some form, ImageJ is a
product of need, user-driven development
and collaboration—rather than a specific
plan by the NIH to create it at the onset.

ImageJ became what it is through years
of collaborative effort, and NIH nurtured
it by providing the resources to support
the primary programmer, Wayne Rasband,
throughout this period. In this current
age of careful oversight and scrutiny from
administrative bodies, the story of ImageJ
and the independent track that Rasband
had in its development is both interesting
and telling for other projects. To best
understand this, one needs to look at how
ImageJ started.

Rasband created NIH Image, the
predecessor to ImageJ, at the NIH in
1987, but the foundation for this program
was laid even earlier at the beginning
of Rasband’s career. Rasband received
his bachelor’s degree in math from the
University of New Mexico, Albuquerque,
in 1965. He was involved early on with
the IBM computer punch card systems
while still in school. He leveraged this
expertise to get a job with the State of
New Mexico’s Department of Automated
P r o c e s s i n g , w h e r e h e p e r f o r m e d
common business-oriented language
(COBOL) programming and general
systems programming. Shortly thereafter,
Rasband was drafted by the US Army and
assigned to the Pentagon. While there,
Rasband became aware of a University of

Caroline A. Schneider and Kevin W. Eliceiri are
at the Laboratory for Optical and Computational
Instrumentation, University of Wisconsin at Madison,
Madison, Wisconsin, USA. Wayne S. Rasband is at the
Section on Instrumentation, US National Institutes of
Health, Bethesda, Maryland, USA.
e-mail: eliceiri@wisc.edu

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

mailto:eliceiri%40wisc.edu?subject=

672 | VOL.9 NO.7 | JULY 2012 | nature methods

hIstorICaL Commentary FoCus on BIoImaGe InFormatICs

beyond the Mac platform. The late 1990s
was a notable period in Apple history
as the Mac was in a period of decline,
with the PC rapidly gaining ground. In
scientific research, the Mac still had a
loyal following, but this following, too, was
being eroded both owing to technologies
only being available on the PC platform
and the lower hardware cost of the PC.
Rasband faced a major challenge: how to
continue a program for the Mac and yet
support one for the PC. Rasband did not
want to port NIH Image to the PC and
did not want to maintain two programs or
trust a third party to maintain one.

In 1995 Sun Microsystems created
the Java programming language and
runtime environment in a bid to create an
operating system–agnostic programming
platform that would allow programmers to
‘write once, run anywhere’, freeing them
from having to choose what operating
system to support. Rasband found this
idea appealing and liked the idea of
maintaining a single code base that could
run in any operating system with the
Java runtime environment installed or
on a Web browser as a Java applet, thus
allowing a single program to be run not
only on the Mac and Windows platforms
but also on the Unix operating system that
was becoming popular among scientists.
Furthermore, after using Pascal for over 20
years, Rasband was ready to try another
programming language.

In the transition of NIH Image to Java,
Rasband wanted to retain the elements of
NIH Image that had made it so successful
but felt the software deserved a new
name; he chose ImageJ to maintain the
connection to NIH Image but with a “J” to
indicate its Java foundation.

The transition from NIH Image to
ImageJ was not without its problems,
h o w e v e r, a s t h e c r o s s - p l a t f o r m
compatibility proved difficult at times. The
first public implementation of Java had
many rough edges. Instead of ‘write once,
run everywhere’, Rasband found himself
writing once and debugging everywhere.
As one of the first end-user scientific
programs to widely use Java, there were
many difficulties in getting ImageJ to
work properly on different platforms and
Java environment distributions. As an
early Java adopter, Rasband had to tackle
many software-interface issues—from
talking to native hardware code for data
acquisition to dealing with varying levels

in use at the time. He had developed an
image-analysis program called “Image”
for this platform. The program ran an
imaging system that used a rotating drum
film scanner to digitize images and a
512 × 512 pixel frame buffer to display
the digitized images, and it supported a
custom-built joystick that could be used to
outline objects. The PDP-11 systems were
used to analyze gels, autoradiographs,
and computed tomography, magnetic
re s onanc e and p o s i t ron e miss i on
tomography images.

As a successor to ‘Image’, Rasband
set out to build a program that would
provide the same utility but could be used
on the desktop computers that were just
becoming widely available, chief among
them the Mac II. With its relative low cost
of adoption, widespread use, easy graphic
interface and good developer support, the
Mac II was the ideal platform for a new
‘Image’ program. The Mac II had several
key additions over the earlier Mac that
made Rasband’s vision of NIH Image
possible, specifically (i) expansion slots:
the ability to add third-party acquisition
boards, (i i) advanced graphics: the
ability to handle not only color but most
importantly 8-bit 256 gray colors, the
mainstay format of light microscopy, and
(iii) support for the Pascal programming
language to allow third-party developers
to easily develop their own applications.

In the spring of 1987, just a few months
after Rasband had obtained his Mac II,
he handed out copies of the NIH Image
program on floppy disks to anyone who
asked. Rasband also promoted NIH Image
on the Mac forum on the CompuServe
Information Service electronic bulletin
boards and made the program available
on several Mac bulletin board systems.
Rasband wanted to create a general-
purpose extensible image-analysis
program that could be used by anyone
who wanted to capture, display and
enhance images, and he never targeted a
specific biological application or type of
imaging such as microscopy. His goal was
to let the users drive the applications for
NIH Image.

Rasband continued to develop the
program, but—through innovat ive
concepts such as mailing lists, free
reusable code, plug-ins and macros—he
also encouraged the users to develop
their own code to address their own
application needs. Medical researchers

were some of the first users of the program
because autoradiographs, computed
axial tomography or positron emission
tomography scans and X-rays could be
viewed, analyzed and notated. As NIH
Image became increasingly used in many
fields—biological microscopy being the
largest—the functionality of the program
and application base grew.

the move to other operating systems
As the code could be freely used in any
form, NIH Image was used in a variety
of cases, including spinoffs and related
programs such as Scion Image (Scion
Corporation) for the personal computer
(PC) platform. Scion Image was a notable
effort by the Scion Corporation to address
an unmet need—providing an NIH
Image for the PC (Microsoft Windows
operating system) community. In the
early 1990s the PC had caught up to the
Mac and had the graphics functionality
and extensibility needed to run a program
such as NIH Image, but the NIH Image
program was only available for the Mac.
Scion Corporation’s products were very
popular with NIH Image users because they
made a frame-grabber board that was the
principal way users collected their images
in NIH Image, whether from a gel imager
or analog microscopy camera. Scion saw
the opportunity to expand its hardware
framegrabber market to the PC by making
a Windows version of NIH Image. On their
own, with no input from Rasband, they
fully ported the Pascal-based NIH Image to
the C programming language and released
the resulting program as Scion Image.
Unfortunately, users found it to be ‘buggy’,
and because the program was closed-
source, there was no way for Rasband and
the community to fix these problems. Scion
Image never achieved a large user base,
and the need for NIH Image for Windows
largely remained unmet.

After NIH Image had been established,
Rasband started thinking about expanding
it s capabi l i t ies to other operat ing
systems. He saw increasing interest in
the Scion Image program because it ran
on Microsoft Windows and also saw the
frustration that it did not work as well as
NIH Image did. He also saw the danger
in having a separate Windows program,
both in terms of support and in diluting
the user base and plug-ins.

Yet the climate and timing were such
that he felt he had to have a solution

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

nature methods | VOL.9 NO.7 | JULY 2012 | 673

FoCus on BIoImaGe InFormatICs hIstorICaL Commentary

cient for a necessary application and users
need to add new functionality. In 1993,
Rasband saw the great utility of plug-ins
being used by Photoshop (Adobe) to add
new functionality to that software and
decided to add these modular software
elements to NIH Image. NIH Image was
one of the first scientific image-processing
tools to have plug-ins and the first with
such a large user base. Example plug-ins
included facilities for three-dimensional
rendering of images and particle analy-
sis. ImageJ has had plug-in support from
its inception, and the number of plug-ins
has increased rapidly, with over 500 (May
2012) plug-ins that cover a wide range of
functions available on the ImageJ website
(Fig. 2). Some of these plug-ins are dis-
tributed with the core ImageJ and most
are available for separate download and
install by the user. Rasband’s philoso-
phy of limiting complexity drove how he
decided what functionality to integrate
into the program directly in the menus,
distribute as core plug-ins that come pre-
packaged with ImageJ or make available as
downloads from the ImageJ website. Many
of the plug-ins built into ImageJ are from
outside contributors, and the decision to
include a plug-in in the base distribution
was based on whether Rasband thought
it would have widespread use. Additional
ImageJ plug-ins are available at third-party
websites with links to these resources from
the ImageJ website.

It is important to note that Rasband
never sought to replace commercial
image-analysis solutions. In part, this is
because a good part of the functionality
of NIH Image or ImageJ was created as
a result of there not being another solu-
tion, commercial or open-source, to do
it. Of course, out of necessity to be a full-

of Java support on different operating
systems. But over time, as the Java runtime
environments improved and coding
problems were solved, porting NIH Image
to Java set the stage for ImageJ to achieve
even greater success.

D u r i n g R a s b a n d ’s m a n y y e a r s
developing NIH Image and ImageJ at
NIH, occasionally a concerned lawyer or
administrator would come see him with
questions or concerns about the open
nature of ImageJ and its commercial
p otent ia l . Not hing came of t hes e
infrequent meetings, and Rasband was
left unfettered to develop the program as
he wanted.

A driving design criterion of both
NIH Image and ImageJ was to keep the
program simple with no complex user
interfaces. Upon opening ImageJ, just
a single toolbar appears, and it is from
this straightforward interface that all of
the capabilities of ImageJ can be found
and used. The ImageJ toolbar has stayed
essentially the same for 15 years, similar
to how NIH Image has remained largely
the same (Fig. 1). Rasband wanted a stable
program interface that would not change,
but he also needed a way to add new
functionality based on user needs. This
philosophy of limiting complexity also
drove how he decided what functionality
to integrate into the program directly or
distribute as plug-ins.

Plugins and macros
To facilitate community input into NIH
Image and ImageJ, Rasband established
a community-driven development model
with several key elements: (i) user-driven
need and request for Rasband to address;
(ii) user-driven need that another member
of the community can address; (iii) user
developer can create a solution to his or
her own need but then share it with the
community, and (iv) user feedback can
be provided on an existing feature to
either improve functionality or add new
functionality.

A single developer–driven model such
that all code is developed by one person
would have resulted in a monolithic pro-
gram. Although this would provide the
simplicity of having only one way of doing
things, the breadth and depth of the solu-
tions would be greatly attenuated. Rasband
instead chose a more flexible approach
that would allow users to add functionality
on their own, but in a manner that would

allow the functionality to be shared with
others. This was accomplished through
the use of macros and plug-ins.

Macros are simple, custom program-
ming scripts that automate tasks inside a
large piece of software. Because of macros’
rather basic programming format, general
users can create macros with no formal
programming experience. Rasband added
a macro language to NIH Image in 1989
after he saw an article titled “Building your
own C interpreter.” He realized he could
use the source code that was included
in the article to create a Pascal language
interpreter for NIH Image.

When Rasband later developed ImageJ,
he based the macro language on the one
in NIH Image. Similar to how the Pascal-
based macro language remained very con-
stant in NIH Image, ImageJ’s macro lan-
guage has remained very stable over the
last 15 years. Many new commands have
been added, but the early commands all
still work. Although macros are used by
programmers, they are especially useful
to the bench biologist, with ~325 macros
currently available on the ImageJ website.

The use of macros requires little or no
programming experience. New features
such as the macro recorder directly facili-
tate this, allowing users to record any
actions they manually do. This recording
is put into a macro syntax that users can
execute for future application of this work-
flow, modify it as necessary and share it
with others. ImageJ has since evolved in its
scripting capabilities and now allows other
scripting environments to be harnessed,
such as JavaScript, or other languages to be
called, such as Python, through an ImageJ
Jython Bridge.

In many cases, linking together exist-
ing functionality using macros is insuffi-

a b

Figure 1 | Appearance of NIH Image and ImageJ. (a,b) Screenshots of NIH Image 1.62, released in
1999 (a), and ImageJ 1.45, released in 2011 (b). Although the look is slightly different, the overall
feature layout and menu structure is basically the same.

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

674 | VOL.9 NO.7 | JULY 2012 | nature methods

hIstorICaL Commentary FoCus on BIoImaGe InFormatICs

image workflows and take advantage of
algorithm capabilities provided by Matlab.

ImageJ connectivity with other software
programs, such as Imaris, Cell Profiler5
and Knime6–8, has also been established.
Although Rasband did not specifical-
ly envision these collaborations when
designing the program, they have enabled
a variety of new functionality ranging
from automated screening and segmenta-
tion-based measurements to sophisticated
signal processing analysis, thus extending
the utility of ImageJ.

A prominent example of how ImageJ
has been adopted by the community is Fiji
(Fiji Is Just ImageJ) and ImageJ2. The goal
of Fiji9 was to design a complete instal-
lation that was identical on any platform
and which was easy to download and
unpack. ImageJ2 (http://developer.imagej.
net/), the next generation of ImageJ, is an
NIH-funded collaboration between sev-
eral institutions, groups and individuals,
including Rasband. The ImageJ2 collabo-
ration hopes to create more extensibility,
modularity and interoperability as well
as extend ImageJ community resources.
ImageJ2 retains the interface of ImageJ
but adds new architecture to remove some
of the current limitations of ImageJ, such
as data types, image size and dimensions.
In addition to Fiji and ImageJ2, several
other variants and programs based on
ImageJ are currently available (Table 1).
These variants all developed from target-
ing a specific community need that NIH
Image or ImageJ did not have, organizing
or adding additional tools for convenience
in one bundle or making a custom version
that is very use case–specific.

Rasband more than just tolerated this;
he has encouraged it as another mecha-
nism for addressing the diverse needs
of the ImageJ analysis community. For
example, when NIH Image core devel-
opment ceased in favor of focusing on
ImageJ, this resulted in NIH Image not
being ported to the OSX (Apple) oper-
ating system. There was a population of
electron microscopists that did not want
to change their workflow and ported NIH
Image as a new program, ImageSXM that
runs on OSX with a focus on electron-
microscopy analysis.

Other variants arose because of the
desire to improve access to new users and
provide documentation. MBF_ImageJ was
developed by Tony Collins and colleagues
to provide a comprehensive user manual

A major example of this—and a vast
improvement to ImageJ’s ability to read
and parse proprietary image data—was
the advent of Bio-Formats4, a library
from the Open Microscopy Environment
(http://www.openmicroscopy.org/)
for reading proprietary image formats.
Whereas Bio-Formats is a general library
used by many programs, ImageJ is its big-
gest user with the Bio-Formats ImageJ
plug-in used in over 30,000 laboratories.
ImageJ has been far more than just a user
of Bio-Formats; without the community-
driven model of ImageJ and the resulting
vetting and testing process for every new
format, Bio-Formats arguably would not
have the performance and functionality it
currently has. In this way ImageJ contin-
ues to benefit other programs that do not
directly use ImageJ but that take advan-
tage of its framework and plug-ins and
other code such as Bio-Formats.

Integration with other tools
Biologists often need to use a variety
of different software to acquire and
analyze data, and connectivity between
these tools can be crucial. Owing to the
Mac-only support of NIH image and its
pioneering status, there were few early
examples of NIH Image connecting with
external programs. There were several
prominent examples mediated by export
of an open file format, however, such
as the export of a .csv file for statistical
analysis. From the beginning of ImageJ
there was interest in directly connecting
to external toolkits without the need
to export and open f i les, and early
connections to Matlab (MathWorks) are
a prime example. ImageJ’s third-party tool
connections have allowed it to be used in

featured program, NIH Image and ImageJ
recapitulated many of the features present
in a commercial image-processing pro-
gram such as Adobe Photoshop. Certainly,
many of the NIH Image and ImageJ users
were first attracted to using the software
because they could not afford an expen-
sive seat (per computer) license for spe-
cialized commercial image-analysis pack-
ages. But many users of ImageJ also use
commercial software, so clearly that is not
the only draw. In fact, many imaging-soft-
ware companies also use and recommend
ImageJ. As well, many commercial tools
have emulated the key concepts of ImageJ,
for example, most modern analysis pro-
grams now offer some sort of scripting
functionality.

File format challenges
One of the main challenges of image-
analysis programs is being able to open
any of the myriad image file formats
that have been developed over the years.
Owing to code contributions and add-
ons from various sources through its
community development model, NIH
Image could read multiple image types—a
rare capability among the early image-
analysis programs. Needing support for
proprietary formats from microscopes
and other imaging equipment, users added
support for the majority of formats.

As one of the first programs to widely
support proprietary formats, NIH Image
had the best-supported and functional
readers, which are modular software code
used to read a file format and translate it
into the open formats used by the software.
These readers led to the development of a
reader code used not only in NIH Image
and ImageJ but other programs as well.

Figure 2 | ImageJ plug-ins bundled with each ImageJ release over time. Each data point is labeled with
the version number and letter.

500

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

N
um

b
er

 o
f I

m
ag

eJ
 p

lu
g-

in
s

Year

400

300

200 1.23y
1.29w

1.33u 1.34s 1.35s
1.36b

1.37v
1.38x 1.39u 1.41c

1.42n

1.43u 1.44o 1.45s
1.46p

100

0

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://developer.imagej.net/
http://developer.imagej.net/
http://www.openmicroscopy.org/

nature methods | VOL.9 NO.7 | JULY 2012 | 675

FoCus on BIoImaGe InFormatICs hIstorICaL Commentary

aCKnoWLedGments
We thank members of our research groups and
software projects for helpful feedback on the
manuscript, in particular C. Rueden, J. Fong and
J. Schindelin for input on the manuscript and help
with the figures. This work was supported in part
by NIH grant RC2 GM092519 (to K.W.E.), but the
opinions expressed are solely those of the authors.

ComPetInG FInanCIaL Interests
The authors declare no competing financial interests.

1. Abramoff, M., Magalhaes, P. & Ram, S.
Biophotonics Int. 11, 36–42 (2004).

2. Collins, T.J. Biotechniques 43, 25–30 (2007).
3. Girish, V. & Vijayalakshmi, A. Indian J. Cancer

41, 47 (2004).
4. Linkert, M. et al. J. Cell Biol. 189, 777–782

(2010).
5. Kamentsky, L. et al. Bioinformatics 27, 1179–

1180 (2011).
6. Lindenbaum, P., Le Scouarnec, S., Portero, V.

& Redon, R. Bioinformatics 27, 3200–3201
(2011).

7. Jagla, B., Wiswedel, B. & Coppee, J.Y.
Bioinformatics 27, 2907–2909 (2011).

8. Saubern, S., Guha, R. & Baell, J.B. Mol. Inform.
30, 847–850 (2011).

9. Schindelin, J. et al. Nat. Methods 9, 676–682
(2012).

10. Edelstein, A., Amodaj, N., Hoover, K., Vale, R.
& Stuurman, N. Curr. Protoc. Mol. Biol.
14.20.1–14.20.17 (2010).

11. de Chaumont, F. et al. Nat. Methods 9, 690–
696 (2012).

12. Carpenter, A.E. et al. Genome Biol. 7, R100
(2006).

13. Lamprecht, M.R., Sabatini, D.M. & Carpenter,
A.E. Biotechniques 42, 71–75 (2007).

14. Burger, W. & Burge, M.J. Digital Image
Processing: an Algorithmic Introduction Using
Java (Springer, 2010).

with an organized preloaded plug-in
and macro structure for ImageJ so that
users could follow the instructions to do
certain steps such as thresholding and
three-dimensional rendering. ImageJA
was developed to allow for an applet ver-
sion of ImageJ that could be run in any
web browser, and this is now integrated
into Fiji. SalsaJ was a targeted version of
ImageJ with an interface and content for
astronomy users. There have also been
several attempts to extend the functional-
ity and data model of ImageJ, including
ImageJX and ImageJ2X. These are no lon-
ger active initiatives, but ideas from those
projects have been incorporated in cur-
rent ImageJ efforts, including the ImageJ2
project. Other applications are not vari-
ants of ImageJ but use components of
ImageJ, such as the plug-ins; these include
mManager10, Icy11, CellProfiler5,12,13 and
Bio7.

As the ImageJ family of programs
moves forward, Rasband continues to play
a large part in maintaining and support-
ing ImageJ. Although he retired in 2010
after 40 years as a programmer at the
Research Services Branch, he now volun-
teers with the Section of Instrumentation
at the NIH and works closely with the
Center for Information Technology at the
NIH, which hosts the ImageJ website and

mailing list. Rasband fixes bugs, adds fea-
tures requested by users, and manages the
website and mailing list.

The continued popularity and growth
of ImageJ throughout the scientific com-
munity has surprised Rasband. The
ImageJ website has ~7,000 visitors a day,
and there are ~1,900 subscribers to the
ImageJ mailing list as of May 2012. A
recent PubMed Central search (May 2012)
of “ImageJ” returned over 20,000 papers.
Furthermore, ImageJ has been used in
teaching, such as in an image-processing
textbook14 that illustrates imaging pro-
cessing examples using ImageJ. Rasband
hopes to see the continued use and evolu-
tion of ImageJ as a teaching and research
tool as more people recognize and under-
stand its capabilities.

Ten years from now, Rasband expects
to still be working on ImageJ. Although
the program and its variants will continue
to develop, and other programs will be
developed based on ImageJ, he expects the
program and its variants to retain the two
fundamental hallmarks of ImageJ: flex-
ibility and extensibility developed over 25
years ago. He also expects ImageJ to con-
tinue to be used for diverse applications
ranging from materials science and soil
science, astronomy and climate science,
to medical imaging and crystallography.

table 1 | List of NIH Image and ImageJ variants

date initiated description
NIH Image 1987 The predecessor of ImageJ, created by Rasband; made for the Macintosh; no longer under active development

ImageSXM May 1993 A version of NIH Image for OSX extended by Steve Barrett; intended to handle loading, display and analysis of
images from the scanning microscope

ImageJ 1997 The current version of ImageJ developed by Rasband; sometimes called ImageJ1

ImageJ2x Unknown An offshoot of ImageJ; modified to use Swing interface; no longer under active development

ImageJA July 2005 An offshoot of ImageJ developed by Johannes Schindelin; used as the core of Fiji

Fiji December 2007 A ‘batteries included’ distribution of ImageJ popular in the life sciences

ImageJX March 2009 Created by Grant Harris to discuss improvements to ImageJ; formed the basis of an application to NIH that launched
ImageJDev

ImageJ2
(ImageJDev)

December 2009 Under development by the ImageJDev project; a complete rewrite of ImageJ; includes ImageJ1 to allow for old-style
plug-ins and macros

MBF_ImageJ 2005 Bundle developed by Tony Collins for light microscopists; plug-ins from MBF_ImageJ can be installed on Fiji,
combining the programs

SalsaJ Unknown An offshoot of ImageJ intended for astronomy applications; designed for use in classrooms; available in over 30
languages

CellProfiler 2006 Free, open-source software started by Anne Carpenter and Thouis Jones; aids biologists without computer-vision
training to quantitatively measure cell images automatically

Icy 2011 Created by the Quantitative Image Analysis Unit at Institut Pasteur, Icy provides integrated software to bridge the
gap between users and developers through open-source software and a central website

Bio7 Unknown Application used for ecological modeling; integrated development environment; focuses on individual-based
modeling and spatially explicit models

mManager 2005 Open-source microscopy software; controls automated microscopes; comprehensive imaging solution when used
with ImageJ; developed by Arthur Edelstein, Ziah Dean, Henry Pinkard and Nico Stuurman

np
g

©
 2

01
2

N
at

ur
e

A
m

er
ic

a,
 In

c.
 A

ll
rig

ht
s

re
se

rv
ed

.

	NIH Image to ImageJ: 25 years of image analysis
	NIH Image: image analysis on the Mac
	The move to other operating systems
	Plugins and macros
	File format challenges
	Integration with other tools
	ACKNOWLEDGMENTS
	Competing financial interests
	References
	Figure 1 | Appearance of NIH Image and ImageJ.
	Figure 2 | ImageJ plug-ins bundled with each ImageJ release over time.
	Table 1 | List of NIH Image and ImageJ variants

