NATURAL OF PRODUCTS

Limonoids and Triterpenoids from *Dysoxylum mollissimum* var. *glaberrimum*

Mei-Ling Han,[†] Jin-Xin Zhao,[†] Hong-Chun Liu, Gang Ni, Jian Ding, Sheng-Ping Yang,^{*} and Jian-Min Yue^{*}

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China

Supporting Information

ABSTRACT: Seven new limonoids, dysomollides A–G (1– 7), and two new cycloapotirucallane-type triterpenoids, dysomollins A and B (8 and 9), together with three known compounds, dysoxylumin A (10) and toonapubesins A (11) and B (12), were isolated from the twigs of *Dysoxylum mollissimum* var. *glaberrimum*. The structures of 1–9 were elucidated on the basis of spectroscopic methods. Compound 10 showed inhibitory activity against A549 cells with an IC₅₀ value of 2.1 μ M, and compound 11 exhibited activity against P388 cells with an IC₅₀ value of 6.7 μ M.

he plant genus *Dysoxylum* (family Meliaceae) comprises about 75 species in the tropical and subtropical zones globally, of which about 15 species and varieties grow in mainland China.¹ Previous phytochemical investigations on this plant genus have led to the isolation of a series of structurally diverse compounds, including triterpenoids,^{2–5} limonoids,^{6–8} diterpenoids,⁹ sesquiterpenoids,^{10–12} and alkaloids,^{13,14} and some of them have been found to exhibit significant bioactivities, such as cytotoxic, antiviral, and insect antifeedant activities. The plant Dysoxylum mollissimum var. glaberrimum P. Y. Chen, which is a tall tree, is distributed in the southern areas of China,¹ and its chemical components have not been reported hitherto. The present investigation on this plant has led to the isolation of seven new limonoids, dysomollides A-H (1-7), and two new cycloapotirucallane-type triterpenoids, dysomollins A and B (8 and 9), along with three known compounds, dysoxylumin A^{8a} and toonapubesins A and B.¹⁵ Presented herein are the isolation and structural elucidation of these compounds and their inhibitory activity against three tumor cell lines.

RESULTS AND DISCUSSION

The (+) HREISMS of 1 showed a molecular ion $[M + Na]^+$ at m/z 853.3267 (calcd 853.3259) corresponding to a molecular formula of $C_{42}H_{54}O_{17}$ with 16 indices of hydrogen deficiency. The IR absorptions at 3437 and 1741 cm⁻¹ indicated the presence of hydroxy and ester carbonyl groups, respectively. Except for the readily distinguishable resonances of two acetyls ($\delta_{\rm H}$ 2.06 and 2.10, each 3H, s) and a methoxy group ($\delta_{\rm H}$ 3.70, 3H, s), the ¹H NMR data (Table 1) also indicated the presence of three tertiary methyls ($\delta_{\rm H}$ 1.01, 1.06, and 1.32, each 3H, s), four secondary methyls ($\delta_{\rm H}$ 0.71, 0.87, 0.88, and 0.89, each 3H, d, J = 6.8 Hz), and a β -substituted furan ring ($\delta_{\rm H}$ 6.33, 7.26, and

7.40, each 1H, s). All 42 carbons in the molecular formula were resolved as individual carbon resonances (Table 1) in the ¹³C NMR spectrum and classified with the aid of DEPT and HSQC experiments as 10 methyls (one methoxy), two sp³ methylenes (one oxygenated), 11 sp³ methines (six oxygenated), four quaternary carbons (two oxygenated), seven ester carbonyls, and four double bonds (one exocyclic). The aforementioned data indicated that **1** is a ring B-*seco* limonoid bearing a typical $\Delta^{8(30)}$ double bond.^{8a}

Comparison of the NMR data of 1 with those of dysoxylumin B^{8a} revealed that they are structural congeners, with the differences being the absence of an acetoxy group at C-1 and the concomitant presence of a Δ^1 double bond in 1. This deduction was confirmed by the key HMBC correlation (Figure 1A) from H-1 ($\delta_{\rm H}$ 7.02, d, J = 13.0 Hz) to C-3 ($\delta_{\rm C}$ 168.9). The presence of an exocyclic $\Delta^{8(30)}$ double bond was verified by the HMBC correlations of H2-30/C-8, C-9, and C-14. The chemical shifts of C-14 ($\delta_{\rm C}$ 71.4) and C-15 ($\delta_{\rm C}$ 61.1) suggested the presence of an 14,15-epoxy group, which was confirmed by the multiple HMBC correlations of H-15/C-16 and C-17, H₃-18/C-14, and H_2 -30/C-14. The HMBC correlations of H_3 -19/ C-1 and H-1/C-3 and C-5, as well as a ⁴J HMBC correlation of Me-29/C-3 provided evidence of an α_{β} -unsaturated lactone formed between C-3 and C-4. The ROESY correlations of H-9/ H-5, H-9/H-11, H₃-18/H-11, H₃-18/H-16, H-16/H-15, and H-12/H-17 (Figure 1B), as well as the very similar NMR patterns to those of dysoxylumin B,^{8a} suggested that they share the same relative configurations in the limonoid core. The structure of 1, named dysomollide A, was thus assigned as depicted.

Received: December 2, 2014

Chart 1

Compound 2 gave the molecular formula $C_{28}H_{34}O_{10}$ as determined by the (-) HRESIMS ion at m/z 575.2129 [M + HCO_2]⁻ (calcd 575.2129) and from the ¹³C NMR data. The ¹H and ¹³C NMR data (Table 1) of dysomollide B (2) showed high similarities to those of dysoxylin⁶ except for the major changes of the chemical shifts around C-1 and C-2. The proton and carbon signals for a methylene ($\delta_{\rm H}$ 3.19, 3.12; $\delta_{\rm C}$ 36.1), and oxygenated methine ($\delta_{\rm H}$ 4.84; $\delta_{\rm C}$ 71.6), and an acetyl group $(\delta_{\rm H} 2.07; \delta_{\rm C} 20.9, 169.6)$ were observed in 2 instead of those of the Δ^1 double bond in dysoxylin.⁶ The presence of an acetoxy group at C-1 was confirmed by the HMBC correlations (Figure 2A) from H-1 ($\delta_{\rm H}$ 4.84) to C-2 ($\delta_{\rm C}$ 36.1), C-3 ($\delta_{\rm C}$ 168.8), and the carbonyl carbon ($\delta_{\rm C}$ 169.6) of the acetyl group. The AcO-1 group was established as being α -oriented on the basis of the key ROESY correlations (Figure 2B) of H-1/H-2 β and H₃-19. The structure of 2 (dysomollide B) was thus assigned as depicted and further verified by a comprehensive analysis of the 2D NMR data including the HSQC, HMBC, and ROESY spectra.

Compound 3 was found to possess a molecular formula of $C_{33}H_{42}O_{12}$ based on the (+) HREISMS ion at m/z 653.2575 [M + Na]⁺ (calcd 653.2574) and the ¹³C NMR data. Comparison of its NMR data (Table 1) with those of 2 revealed that 3 possesses an additional 2-hydroxy-3-methylbutyryl group, which was confirmed by the related HMBC correlations (Figure S27, Supporting Information) within this moiety. The H-7 resonance ($\delta_{\rm H}$ 5.03) of 3 was deshielded (ca. $\Delta\delta$ 1.46) when compared with 2, indicating that the 2-hydroxy-3-methylbutyryloxy group is located at C-7, which was verified by the key HMBC correlation of H-7/C-1'. The structure of 3 (dysomollide C) was thus assigned as shown.

Compound 4 gave the molecular formula $C_{33}H_{44}O_{13}$, as determined by the ¹³C NMR data and the (+) HREISMS ion peak at m/z 671.2674 [M + Na]⁺ (calcd 671.2680).

Comprehensive analysis of the ¹H and ¹³C NMR data (Table 2) of 4 suggested that it is an isomer of odoralide,¹⁶ with the difference being that an OAc-6 group in 4 replaced the OAc-11 of the latter. This assignment was corroborated by analysis of the HMBC spectrum (Figure S35, Supporting Information), in which the correlations from H-6 ($\delta_{\rm H}$ 5.13) to C-5 ($\delta_{\rm C}$ 48.0), C-7 ($\delta_{\rm C}$ 72.0), and the carbonyl carbon ($\delta_{\rm C}$ 172.0) of the acetyl group were observed. The OAc-6 group was then assigned in an α -configuration from the ROESY cross-peaks of H-6 with H-7, H₃-19, and H₃-30. Thus, the structure of 4 (dysomollide D) was elucidated unequivocally as shown.

Compound **5** gave the molecular formula $C_{29}H_{40}O_7$ as deduced from the ¹³C NMR data and the (+) HREISMS ion at m/z 523.2678 [M + Na]⁺ (cacld 523.2672). Its IR absorptions at 3512, 3460, 1741, and 1724 cm⁻¹ indicated the presence of hydroxy and ester carbonyl groups. The ¹H NMR data (Table 2) of **5** revealed the presence of four tertiary methyls (δ_H 0.90, 0.99, 1.22, and 1.82, each 3H, s), an acetyl (δ_H 1.98, 3H, s), a methoxy group (δ_H 3.59, 3H, s), and a typical β -furan ring (δ_H 6.40, 7.41, and 7.46, each 1H, s). Its ¹³C NMR data (Table 2), with the aid of a DEPT experiment, displayed 29 carbon signals including six methyls, four sp³ methylenes, six sp³ methines (three oxygenated), three sp³ quaternary carbons, four double bonds (one terminal), and two ester carbonyls. The aforementioned analysis suggested that **5** is a ring A-seco limonoid.¹⁷

Four structural fragments in **5** drawn in bold bonds (Figure 3A) in the limonoid core were established by analysis of its HSQC and ¹H–¹H COSY spectra, which were connected with the quaternary carbons, oxygen atoms, and the other structural pieces by analysis of the HMBC spectrum (Figure 3A). In the HMBC spectrum, a methoxycarbonyl group was identified and located at C-2 by the correlations from OCH₃ ($\delta_{\rm H}$ 3.59) and H₂-2 to the carbonyl carbon C-3 ($\delta_{\rm C}$ 174.2). Also a $\Delta^{4(28)}$

Table 1. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) Data of 1-3

		1^a		2 ^b	3 ^b				
position	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$			
1	150.4	7.02 (d, 13.0)	71.6	4.84 (d, 6.5)	71.4	4.87 (d, 6.7)			
2	124.0	6.27 (d, 13.0)	36.1	α 3.19 (dd, 14.6, 6.5)	36.2	α 3.21 (dd, 14.9, 6.7)			
				β 3.12 (d, 14.6)		β 3.15 (d, 14.9)			
3	168.9		168.8		168.5				
4	86.8		83.1		82.6				
5	52.1	3.50 (m)	46.4	2.97 (d, 12.1)	47.6	2.83 (d, 12.4)			
6	35.7	2.53 (2H, m)	77.9	4.12 (dd, 12.1, 2.5)	76.3	4.21 (dd, 12.4, 2.3)			
7	175.9		70.0	3.57 (br s)	72.6	5.03 (d, 2.3)			
8	136.3		43.8		43.7				
9	54.7	3.23 (d, 7.0)	34.3	2.83 (m)	35.4	2.84 (m)			
10	47.8		42.9		42.9				
11	71.2	5.76 (dd, 11.0, 7.0)	14.3	α 1.42 (m)	14.4	α 1.47 (m)			
				β 1.64 (m)		β 1.72 (m)			
12	75.7	6.05 (d, 11.0)	26.1	α 1.64 (m)	25.4	α 1.65 (m)			
				β 1.44 (m)		β 1.49 (m)			
13	46.7		38.3		39.0				
14	71.4		69.5		69.4				
15	61.1	4.21 (s)	57.7	3.91 (s)	56.7	3.76 (s)			
16	80.1	5.46 (d, 9.0)	167.6		167.2				
17	44.2	3.08 (d, 9.0)	78.2	5.56 (s)	78.0	5.56 (s)			
18	15.8	1.06 (3H, s)	17.3	1.19 (3H, s)	16.8	1.18 (3H, s)			
19	24.9	1.01 (3H, s)	15.6	1.17 (3H, s)	15.5	1.23 (3H, s)			
20	121.2		120.5		120.1				
21	144.8	7.40 (s)	141.1	7.39 (s)	141.2	7.38 (s)			
22	112.8	6.33 (s)	109.9	6.31 (d, 0.8)	109.8	6.29 (s)			
23	143.6	7.26 (s)	143.0	7.40 (s)	141.2	7.40 (s)			
28	64.9	4.22 (d, 12.1)	81.8	α 4.05 (d, 8.5)	81.7	α 3.88 (d, 8.5)			
		5.04 (d, 12.1)		β 3.89 (d, 8.5)		β 3.81 (d, 8.5)			
29	25.2	1.32 (3H, s)	22.3	1.72 (3H, s)	22.3	1.71 (3H, s)			
30	124.8	5.53 (s)	18.0	1.05 (3H, s)	18.9	1.18 (3H, s)			
		5.56 (s)							
1'	175.5				173.4				
2'	76.5	3.40 (d, 2.2)			76.8	4.08 (dd, 5.1, 3.1)			
3'	32.8	1.71 (m)			31.5	2.13 (m)			
4′	16.4	0.71 (3H, d, 6.8)			16.6	0.99 (3H, d, 6.8)			
5'	20.2	0.88 (3H, d, 6.8)			18.9	1.07 (3H, d, 6.8)			
1″	171.3								
2″	78.8	4.70 (d, 4.7)							
3″	31.8	2.15 (m)							
4″	18.1	0.87 (3H, d, 6.8)							
5″	19.1	0.89 (3H, d, 6.8)							
OAc-1			169.6		169.2				
			20.9	2.07 (3H, s)	20.6	2.06 (3H, s)			
OAc-28	172.9								
	20.9	2.10 (3H, s)							
OAc-2"	172.7								
	21.0	2.06 (3H, s)							
HCO ₂ -11	162.9	8.09 (s)							
OMe-7	53.3	3.70 (3H, s)							
Spectra were rec	corded in meth	anol- <i>d</i> ₄ . ^{<i>b</i>} Spectra were reco	orded in CDCl	3.					

double bond was established by the mutual correlations of H₃-29/C-4, C-5, and C-28 and of H₂-28/C-4 and C-5, which is indicative of a ring A-seco limonoid for 5.¹⁷ The presence of a Δ^{14} double bond was assigned by the HMBC correlations from H-15 ($\delta_{\rm H}$ 5.49), H-16 ($\delta_{\rm H}$ 4.97), H₃-18, and H₃-30 to C-14 ($\delta_{\rm C}$ 162.4) and from H-16 to C-15 ($\delta_{\rm C}$ 126.1). An acetoxy group was placed at C-16 by the key HMBC correlation from H-16 to its carbonyl carbon ($\delta_{\rm C}$ 172.9). The β -furan ring was attached to C-17 by the HMBC correlations from H-17 to C-20 and C-21. The chemical shifts of CH-1 ($\delta_{\rm H}$ 5.45, $\delta_{\rm C}$ 79.2) and CH-7 ($\delta_{\rm H}$ 3.93, $\delta_{\rm C}$ 73.6) indicated these to be oxygenated methines both bearing a hydroxy group.

In the ROESY spectrum (Figure 3B), the correlation networks of H₃-19/H-6 β , H-6 β /H₃-30, H₃-30/H-12 β , H₃-30/H-7, and H-12 β /H-17 indicated that H₃-19, H₃-30, H-7, and H-17 are spatially close, and these were randomly proposed in a β -

Article

Figure 1. Selected HMBC (A) and ROESY (B) correlations of 1.

Figure 2. Selected HMBC (A) and ROESY (B) correlations of 2.

configuration. Next, the ROESY cross-peaks of H-5/H-9 and H-21/H-16 indicated that H-5, H-9, and H-16 are α -oriented. The ROESY correlations of H₃-19/H-1 and H-2 β suggested that the H-1, H-2 β , and CH₃-19 are cofacial and β -oriented, which was consistent with the ROESY correlation of H-1/H-11 β . The structure of **5** (dysomollide E) was thus established as depicted.

Compound 6 was assigned the molecular formula $C_{28}H_{42}O_6$ according to the ¹³C NMR data and a (–) HRESIMS ion at m/ $z 519.2961 [M + HCO_2]^-$ (calcd 519.2958). The ¹H and ¹³C NMR data (Table 2) of 6 showed many similarities to those of lenticellatumin,¹⁸ suggesting their structures to be closely related, with the only difference being a hydroxy group attached at C-3 ($\delta_{\rm C}$ 75.9) in 6 replacing the C-3 keto group of the latter. This was confirmed by the HMBC correlations from H₂-1, H₃-28, and H₃-29 to C-3 (Figure S54, Supporting Information). The small coupling constant of H-3 (dd, J = 2.7, 2.7 Hz) indicated that it is equatorially bonded toward the β -orientation (Figure S3, Supporting Information). The only acetoxy group $(\delta_{\rm H}$ 1.98, 3H, s; $\delta_{\rm C}$ 170.4, 21.4) was confirmed to be located at C-7 by the HMBC correlation from H-7 ($\delta_{\rm H}$ 5.18) to the carbonyl carbon of the acetyl group. The other stereocenters of 6 were established as being identical with those of lenticellatumin from the NMR data and ROESY spectrum (Figure S55, Supporting Information). Thus, the structure of 6 (dysomollide F) was elucidated as shown.

Compound 7 gave the molecular formula $C_{33}H_{40}O_5$ on the basis of the ¹³C NMR data and the (-) HRESIMS ion peak at m/z 561.2838 [M + HCO₂]⁻ (calcd for $C_{34}H_{41}O_7$, 561.2852). Initial analysis of the ¹H and ¹³C NMR data of 7 (Table 3) revealed that it possesses the same tetranortriterpenoid skeleton as that of **6**. Further comparison of its NMR data with those of meliatoosenin B¹⁹ indicated that they are structural analogues except for the presence of one more trisubstituted double bond ($\delta_{\rm H}$ 5.79, d, J = 1.5 Hz; $\delta_{\rm C}$ 117.0, 169.7) and an additional benzoyl group in 7. The trisubstituted $\Delta^{20(22)}$ double bond was located by the chemical shifts of C-20 ($\delta_{\rm C}$ 169.7) and C-22 ($\delta_{\rm C}$ 117.0) and the HMBC correlations from H₂-21 to C-22 and C-23 and from H-17 to C-20 and C-21(Figure S63, Supporting Information). The H-7 ($\delta_{\rm H}$ 5.53) signal was deshielded as compared with that of meliatoosenin B, indicating that the benzoyloxy group could be placed at C-7, which was confirmed by the key HMBC correlations from H-7 and H-3' (or H-7') ($\delta_{\rm H}$ 7.95) to C-1' ($\delta_{\rm C}$ 165.5). The relative configurations of the tetracyclic core were assigned from the ROESY spectrum (Figure S64, Supporting Information) to be the same as those of meliatoosenin B. The structure of 7 (dysomollide G) was thus elucidated as shown.

Compound 8 was assigned a molecular formula of $C_{40}H_{\varsigma_8}O_8$ as determined by the ¹³C NMR data and the (+) HREISMS ion peak at m/z 689.4034 [M + Na]⁺ (calcd 689.4029). Analysis of the ¹H and ¹³C NMR data (Table 3) of 8 revealed this molecule to have an apotirucallane scaffold, and its structure proved to be very similar to that of 3α -(3-methyl-2butenoyloxy)-21,23 β -epoxy-21 α -methoxyapotirucallane- 7α ,24 α ,25-triol.²⁰ The major structural differences between these compounds were found to be the substitutions at C-3 and C-7. A benzoyloxy group was located at C-3 by the HMBC correlation from H-3 ($\delta_{
m H}$ 4.86) to C-1' ($\delta_{
m C}$ 165.6), and an acetoxy group was located at C-7 by the HMBC correlations from H-7 ($\delta_{\rm H}$ 5.03) to its acetyl carbonyl carbon ($\delta_{\rm C}$ 169.9) (Figure S72, Supporting Information). The ROESY spectrum verified that the relative configuration of 8 is consistent with that of 3α -(3-methyl-2-butenoyloxy)-21,23 β -epoxy-21 α methoxyapotirucallane- 7α ,24 α ,25-triol.²⁰ The structure of compound 8 was thus assigned as shown, and this compound has been named dysomollin A.

Table 2. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) Data of 4-6

	4 ^{<i>a</i>}		5 ^{<i>a</i>}		6 ^b		4 ^{<i>a</i>}		4 ^{<i>a</i>}	5 ^{<i>a</i>}		6 ^b	
position	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	position	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$
1	78.4	7.00 (br s)	79.2	5.45 (d, 10.3)	32.6	1.38 (2H, m)	17	79.9	5.62 (s)	63.0	2.63 (d, 8.6)	60.3	1.94 (m)
2	37.2	α 2.85 (d, 13.4)	36.7	α 2.93 (d, 14.3)	25.0	α 1.58 (m)	18	18.0	1.25 (3H, s)	23.6	0.90 (3H, s)	20.9	1.18 (3H, s)
		β 2.42 (dd, 13.4,		β 2.36 (dd, 14.3,		$eta \ 1.98 \ (m)$	19	16.1	1.31 (3H, s)	16.0	0.99 (3H, s)	15.4	0.90 (3H, s)
		9.9)		10.5)			20	121.9		124.3		79.3	
3	174.1		174.2		75.9	3.42 (dd, 2.7, 2.7)	21	142.8	7.51 (s)	142.1	7.46 (s)	78.4	4.25 (2H, s)
4	74.1		148.1		36.9		22	111.0	6.43 (s)	112.9	6.40 (s)	42.4	α 2.57 (d,
5	48.0	2.16 (d,	44.7	2.67 (dd,	41.8	1.84 (dd,							17.5)
		11.8)		13.9, 2.7)		13.0, 2.3)							β 2.67 (d, 17.5)
6	73.9	5.13 (dd,	32.8	α 1.60 (m)	23.2	1.68 (2H,	23	144.5	7.52 (s)	144.4	7.41 (s)	175.5	
		2.0)				m)	28	36.9	1.43 (3H, s)	116.8	a 4.98 ^e	28.0	0.85 (3H, s)
				$\beta 2.27^{a}$							b 4.92 ^c		
7	72.0	4.80 (d, 2.0)	73.6	3.93 (br s)	75.3	5.18 (dd, 2.6, 2.6)	29	28.1	1.19 (3H, s)	23.9	1.82 (3H, s)	21.9	0.83 (3H, s)
8	43.5		45.4		42.4		30	18.4	1.25 (3H.	28.0	1.22 (3H.	27.7	1.09 (3H.
9	36.9	2.63 (m)	34.9	2.23 ^{<i>a</i>}	42.6	2.07 (m)			s)		s)		s)
10	48.3		46.1		37.4		OAc-1	171.7					
11	18.3	α 2.08 (m)	19.8	α 1.77 (m)	16.3	α 1.78 (m)		21.3	1.96 (3H, s)				
		β 1.93 (m)		β 1.88 (m)		β 1.53	OAc-6	172.0					
						(m)		21.0	2.00 (3H,				
12	27.4	α 1.50 (m)	35.0	α 1.65 (m)	34.6	α 1.96			s)				
		β 175 (m)		(0, 1, 70, (m))		(III) R 1 52	OAc-7	172.0				170.4	
	2 2 (ρ 1./3 (m)	10 =6	ρ 1./8 (m)	17 0	p 1.52 (m)		21.1	2.15 (3H, s)			21.4	1.98 (3H, s)
13	39.6		49.7		47.8		OAc-16			172.9			
14	71.0	()	162.4	()	158.9	(1				21.5	1.98 (3H,		
15	57.1	3.59 (s)	126.1	5.49 (s)	117.7	5.28 (d, 2.1)	OMe-3	52.6	3.64 (3H	52.9	s) 3 59 (3H		
16	169.6		79.7	4.97 ^e	31.6	α 2.34 (m)	one s	52.0	s)	52.7	s)		
						β 2.12 (m)	"Spectra CDCl ₃ . "(signals.	were re Overlapj	corded in n ping signals	nethanol- with the	d ₄ . ⁶ Spectra solvent pea	were re aks. ^{<i>d,e</i>} O	corded in verlapping

Figure 3. ¹H-¹H COSY (A), key HMBC (A), and ROESY (B) correlations of 5.

Compound **9** shared the same molecular formula of $C_{40}H_{58}O_8$ with **8** as determined by the ¹³C NMR data and the (+) HREISMS ion peak at m/z 689.4027 [M + Na]⁺ (calcd 689.4029). Comparison of the ¹H and ¹³C NMR data (Table 3) of **9** with those of **8** revealed that they are C-21 stereoisomers. As a result, the chemical shifts of C-17 and C-22 of **9** were shifted upfield as compared with those of **8** due largely to the γ -gauche effects of OCH₃-21 β .^{21,22} Furthermore, the ¹³C NMR data of C-20 to C-23 of **9** matched well those of 3α -(3-methyl-2-butenoyloxy)-21,23 β -epoxy-21 β -methoxyapotirucallane- 7α ,24 α ,25-triol,¹⁹ indicating that OMe-21 adopts a β -

configuration. The structure of **9** (dysomollin B) was therefore defined as shown.

Three known compounds, dysoxylumin A $(10)^{8a}$ and toonapubesins A (11) and B (12),¹⁵ were also isolated. Their structures were identified by NMR and MS analysis as well as by comparison with reported data.

The cytotoxic activities of the isolated compounds (1-12) against HL-60, P388, and A549 cells were tested by an MTT method²³ and the SRB protein staining method,²⁴ and doxorubicin²⁵ was used as a positive control. Compounds 10 and 11 displayed inhibitory activities against A549 and P388

Ε

Table 3. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) Data of 7-9 (in CDCl₃)

	7		8		9			7		8		9		
position	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$		position	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$
1	38.8	$\alpha 1.99 \ (m)^a$	34.4	α 1.28 (m)	34.5	α 1.28 (m)						b 0.41 (d, 5.4)		b 0.37 (d, 5.4)
		β 1.60 (m)		β 1.47 (m)		$eta \ 1.47 \ (m)$		19	15.0	1.12 (3H, s)	15.9	0.95 (3H, s)	15.9	0.96 (3H, s)
2	33.9	α 2.43 (m)	22.6	α 1.76 (m)	22.7	α 1.78		20	169.7		49.1	2.03 (m)	48.7	1.81 (m)
		β 2.61 (m)		β 1.98 (m)		(m) β 1.98		21	73.3	α 4.75 (dd, 17.1, 1.5)	109.1	4.85 (d, 3.8)	105.3	4.77 (d, 4.0)
		F		P and a Carl		(m)				β 4.64 (d,				,
3	216.3		78.8	4.86 (s)	78.9	4.88 (br				17.1)				
4	46.9		36.7		36.7	s)		22	117.0	5.79 (d, 1.5)	32.1	1.80 (2H, m)	30.8	1.85 (2H, m)
5	48.7	1.98 ^{<i>a</i>}	42.4	2.10 (dd, 11.8,	42.4	2.10 (m)		23	173.8		77.0	4.23 (dd, 8.7, 5.3)	78.9	4.41 (td, 7.9, 2.0)
				3.2)				24			75.5	3.22 (d,	76.6	3.15 (dd,
6	24.4	α 2.02 (m)	22.9	1.63 (2H, m)	23.0	1.66 (2H, m)		25			52.1	8.2)	73 0	8.0, 2.0)
		β 1.90 (m)))		25			73.1	1.25 (211	72.9	1.26 (211
7	75.0	5.53 (br s)	76.2	5.03 (br s)	76.3	5.05 (br		20			20.3	1.25 (3П, s)	20.5	1.20 (3П, s)
				()		s)		27			26.4	1.28 (3H,	26.4	1.26 (3H,
8	42.4		38.1		38.1							s)		s)
9	43.2	2.18 (m)	45.4	1.41 ^{<i>a</i>}	44.5	2.12 (m)		28	25.9	1.05 (3H, s)	27.9	0.82 (3H,	28.0	0.84 (3H,
10	37.1	,	37.2	,	37.2	,		20	21.1	0.04 (2H a)	21.4	s) 0.02 (211	21.5	s) 0.04 (211
11	16.5	1.57 (2H, m)	16.6	1.29 (2H, m)	16.8	1.30 (2H, m)		29	21.1	0.94 (311, 8)	21.4	s)	21.5	s)
12	33.1	α 1.87 (m)	26.1	1.84 (2H, m)	25.8	α 1.65 (m)		30	27.5	1.26 (3H, s)	19.5	1.10 (3H, s)	19.6	0.96 (3H, s)
		β 1.63 (m)		,		β 1.95		1'	165.5		165.6		165.6	
		, , ,				(m)		2'	130.2		130.9		131.0	
13	48.1		28.4		28.9			3'+7'	129.3	7.95 (d, 7.1)	129.3	8.05 (d, 7.3)	129.4	8.07 (d, 7.1)
14	137.9	5.42 (s)	36.5 26.1	α 1.42	37.2 26.4	α 1.43		4'+6'	128.5	7.43 (t, 7.7)	128.4	7.44 (t,	128.4	7.45 (t,
				$(m)^a$		(m)		5'	133.1	757 (t. 74)	132.8	7.77) 7.57 (t.	132.8	7.58 (t.
				β 1.77 (m)		β 1.85 (m)		5	100.1	7.37 (G 7.1)	102.0	7.4)	102.0	7.4)
16	33.0	2.29 (2H,	26.3	1.58 (2H,	27.6	1.59 (2H,		OAc-7			169.9	/	169.8	/
17	54.4	m) 267 († 86)	48 3	m) 196 (m)	45.5	m) 1 39 (m)					21.3	2.06 (3H, s)	21.3	2.09 (3H, s)
18	20.4	0.89 (3H, s)	15.0	a 0.73 (d, 5.4)	14.8	a 0.66 (d, 5.4)		OMe-21			55.7	3.33 (3H, s)	55.1	3.38 (3H, s)
				,		,		^{<i>a</i>} Overlappi	ing sign	als.				

cells with IC₅₀ values of 2.1 and 6.7 μ M, respectively. The other compounds exhibited inhibition rates lower than 50% at 10 μ M against the three tested cell lines and were inactive. The positive control doxorubicin showed IC₅₀ values of 1.2, 0.058, and 0.20 μ M against A549, HL60, and P388 cells, respectively.

EXPERIMENTAL SECTION

General Experimental Producedures. Optical rotations were run on a PerkinElmer 341 polarimeter. UV spectra were recorded on a Shimadzu UV-2550 spectrophotometer. IR spectra were made on a PerkinElmer 577 IR spectrometer with KBr disks. NMR spectra were acquired on a Bruker AM-400 spectrometer. ESIMS and HRESIMS were obtained on an Esquire 3000 Plus (Bruker Daltonics) and a Waters-Micromass Q-TOF Ultima Global electrospray mass spectrometer, respectively. Semipreparative HPLC was performed on a Waters 1525 pump equipped with a Waters 2489 detector (210 nm) and a YMC-Pack ODS-A column (250 \times 10 mm, S-5 μ m, 12 nm). Silica gel (200-300 mesh) (Qingdao Haiyang Chemical Co. Ltd., Qingdao, People's Republic of China), C18 reverse-phased silica gel (20-45 µM, Fuji Silysia Chemical Ltd.), MCI gel (CHP20P, 75-150 µm, Mitsubishi Chemical Corporation), and Sephadex LH-20 gel (Amersham Biosciences) were used for column chromatography (CC). Precoated silica gel GF254 plates (Qingdao Haiyang Chemical Co. Ltd.) were used for TLC. All solvents used for CC were of analytical grade (Shanghai Chemical Reagents Company, Ltd.,

Shanghai, People's Republic of China), and those used for HPLC were of HPLC grade (J&K Scientific Ltd.).

Plant Material. The twigs of *Dysoxylum mollissimum* var. *glaberrimum* were collected in June 2008 from Xishuangbanna in Yunnan Province, People's Republic of China, and were authenticated by Prof. Y.-K. Xu of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences (CAS). A voucher specimen (accession number Dymo-2008YN-1Y) has been deposited at the Shanghai Institute of Materia Medica, CAS.

Extraction and Isolation. The air-dried, powdered twigs of D. mollissimum (6 kg) were percolated with 95% ethanol (25 L) five times. After removal of the solvent under reduced pressure, the EtOH extract (280 g) was partitioned between H₂O and EtOAc to give an EtOAc-soluble fraction (130 g), which was fractionated via a column of MCI gel eluted with mixtures of MeOH/H₂O (4:6 to 9:1) to obtain six fractions (A-F). Fraction B was subjected to passage over a silica gel column eluted with petroleum ether/acetone mixtures (50:1 to 1:3) to yield 17 fractions (B1-B17). Fraction B13 was separated over a column of RP-18 silica gel (CH₃OH/H₂O, 11:10 to 3:1) to give five subfractions (B13a-B13f). Fraction B13b was purified by semipreparative HPLC (3.0 mL/min, 55% CH₃CN in H₂O isocratic elution) to yield compounds 4 (30 mg, 0.00050% dry wt) and 5 (10 mg, 0.00017% dry wt). Fraction B14 was separated over a column of RP-18 silica gel (CH₃OH/H₂O, 1:1 to 3:1), and each of the major components was purified by semipreparative HPLC (CH₃OH/H₂O, 1:1 to 3:1) to furnish 1 (4 mg, 0.000067% dry wt), 2 (23 mg,

0.00038% dry wt), 3 (12 mg, 0.00020% dry wt), 7 (3 mg, 0.000050% dry wt), and 10 (25 mg, 0.00042% dry wt). Fraction C was chromatographed on a column of silica gel (ether/acetone, 50:1 to 1:3, v/v) to give five major subfractions, with each of these purified by semipreparative HPLC to yield compounds 7 (3 mg, 0.000050% dry wt), 8 (15 mg, 0.00025% dry wt), 9 (12 mg, 0.00020% dry wt), 11 (3 mg, 0.000050% dry wt), and 12 (5 mg, 0.00083% dry wt).

Dysomollide A (1): white powder; $[\alpha]^{20}_{\rm D}$ +103 (*c* 0.17, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 207 (3.99) nm; IR (KBr) $\nu_{\rm max}$ 3437, 2966, 2935, 1741, 1637, 1466, 1375, 1234, 1132, 1034, 604, 557 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; (+) EISMS *m*/*z* 831.4 [M + H]⁺; (-) ESIMS *m*/*z* 875.7 [M + HCO₂]⁻; (+) HREISMS *m*/*z* 853.3267 [M + Na]⁺ (calcd for C₄₂H₅₄O₁₇Na, 853.3259).

Two properties of $G_{42}(r_{43}^{-1}G_{12}^{-1}A_{43}^{-1}G_{12}^{-1}G_{12}^{-1}A_{43}^{-1}G_{12}$

Dysomollide C (**3**): white powder; $[\alpha]^{20}_{D}$ +8 (*c* 0.25, MeOH); UV (MeOH) λ_{max} (log ε) 206 (3.99) nm; IR (KBr) ν_{max} 3440, 2962, 1738, 1631, 1466, 1396, 1373, 1230, 1200, 1124, 1061, 1026, 876, 820, 604, 480 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; (+) EISMS *m/z* 631.3 [M + H]⁺, 653.3 [M + Na]⁺, 1283.5 [2 M + Na]⁺; (-) ESIMS *m/z* 675.8 [M + HCO₂]⁻; (+) HREISMS *m/z* 653.2575 [M + Na]⁺ (calcd for C₃₃H₄₂O₁₂Na, 653.2574).

Dysomollide D (4): white powder; $[α]^{22}_{D} + 19$ (c 0.11, MeOH); UV (MeOH) λ_{max} (log ε) 206 (4.09) nm; IR (KBr) ν_{max} 3502, 2958, 1745, 1437, 1367, 1232, 1174, 1026, 876, 604 cm⁻¹; ¹H and ¹³C NMR data, see Table 2; (+) EISMS m/z 671.3 [M + Na]⁺, 1319.5 [2 M + Na]⁺; (-) ESIMS m/z 693.7 [M + HCO₂]⁻; (+) HREISMS m/z 671.2674 [M + Na]⁺ (calcd for C₃₃H₄₄O₁₃Na, 671.2680).

Dysomollide E (5): white powder; $[\alpha]^{20}_{D} - 18$ (c 0.05, MeOH); UV (MeOH) λ_{max} (log ε) 214 (4.07) nm; IR (KBr) ν_{max} 3512, 3460, 2952, 2881, 1741, 1724, 1633, 1441, 1385, 1300, 1232, 1026, 876, 604, 471 cm⁻¹; ¹H and ¹³C NMR data, see Table 2; (+) EISMS *m*/*z* 523.7 [M + Na]⁺, 1023.9 [2 M + Na]⁺; (-) ESIMS *m*/*z* 545.8 [M + HCO₂]⁻; (+) HREISMS *m*/*z* 523.2678 [M + Na]⁺ (calcd for C₂₉H₄₀O₇Na, 523.2672).

Dysomollide *F* (**6**): white powder; $[\alpha]^{20}_{D}$ +5 (*c* 0.10, MeOH); UV (MeOH) λ_{max} (log ε) 203 (2.97) nm; IR (KBr) ν_{max} 3429, 2922, 2852, 2131, 1770, 1728, 1633, 1379, 1254, 1165, 1032, 561 cm⁻¹; ¹H and ¹³C NMR data, see Table 2; (+) EISMS *m*/*z* 497.3 [M + Na]⁺, 971.5 [2 M + Na]⁺; (-) ESIMS *m*/*z* 519.6 [M + HCO₂]⁻; (-) HRESIMS *m*/*z* 519.2961 [M + HCO₂]⁻ (calcd for C₂₉H₄₃O₈, 519.2958).

 $\begin{array}{l} \text{Dysomollide G (7): white powder; } [\alpha]^{20}{}_{\mathrm{D}} + 20 \ (c \ 0.05, \text{MeOH}); \text{UV} \\ \text{(MeOH) } \lambda_{\max} \ (\log \varepsilon) \ 219 \ (4.24), 270 \ (3.01) \ nm; \ \text{IR} \ (\text{KBr}) \ \nu_{\max} \ 3433, \\ 2920, 2850, 1782, 1751, 1707, 1628, 1464, 1275, 1113, 1028, 715, 565 \\ \text{cm}^{-1}; \ ^{1}\text{H} \ \text{and} \ ^{13}\text{C} \ \text{NMR} \ \text{data, see Table 3; (+) EISMS } m/z \ 517.3 \ [M + \text{H}]^+, \ 1033.7 \ [2 \ M + \text{H}]^+, \ 1055.7 \ [2 \ M + \text{Na}]^+; \ (-) \ \text{HRESIMS } m/z \\ 561.2838 \ [M + \text{HCO}_2]^- \ (\text{calcd for } C_{34}\text{H}_{41}\text{O}_7, \ 561.2852). \end{array}$

Dysonollin A (8): white powder; $[\alpha]^{20}_{D} -93$ (c 0.35, MeOH); UV (MeOH) λ_{max} (log ε) 228 (4.15), 273 (3.62) nm; IR (KBr) ν_{max} 3450, 2949, 2873, 1718, 1637, 1452, 1375, 1300, 1275, 1252, 1117, 1028, 889, 714 cm⁻¹; ¹H and ¹³C NMR data, see Table 3; (+) EISMS m/z 689.4 [M + Na]⁺, 1355.7 [2 M + Na]⁺; (-) ESIMS m/z 711.7 [M + HCO₂]⁻; (+) HREISMS m/z 689.4034 [M + Na]⁺ (calcd for C₄₀H₅₈O₈Na, 689.4029).

Dysomollin B (9): white powder; $[\alpha]^{20}_{D}$ -36 (c 0.35, MeOH); UV (MeOH) λ_{max} (log ε) 230 (4.11) nm; IR (KBr) ν_{max} 3444, 2949, 2873, 1734, 1718, 1633, 1452, 1375, 1275, 1252, 1174, 1117, 1028, 712 cm⁻¹; ¹H and ¹³C NMR data, see Table 3; (+) EISMS *m/z* 689.4 [M + Na]⁺; (+) HREISMS *m/z* 689.4027 [M + Na]⁺ (calcd for C₄₀H₅₈O₈Na, 689.4029).

Cytotoxicity Assays. Compounds 1-12 were evaluated for cytotoxicity against three tumor cell lines, with the MTT method²³ used for HL-60 (human premyelocytic leukemia) and P-388 (murine leukemia) cells and the SRB protein staining method²⁴ used for A-549 (human lung adenocarcinoma) cells, according to reported protocols

in triplicate independent experiments. Doxorubicin $^{25}\xspace$ was used as a positive control.

ASSOCIATED CONTENT

Supporting Information

Key HMBC and ROESY correlations of compounds 2, 4, 6, 7, and 8 and IR, ESIMS, HRESIMS, and 1D and 2D NMR spectra of compounds 1-9. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: spyang@whu.edu.cn (S.-P. Yang).

*Tel: +86-21-50806718. Fax: +86-21-50806718. E-mail: jmyue@simm.ac.cn (J.-M. Yue).

Author Contributions

[†]M.-L. Han and J.-X. Zhao contributed to this work equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation (21072203) of P. R. China is gratefully acknowledged. We thank Prof. Y.-K. Xu of Xishuangbanna Tropical Botanical Garden, CAS, for the identification of the plant material.

REFERENCES

(1) Chen, S. K.; Li, H.; Chen, P. Y. In Chinese Flora (Zhongguo Zhiwu Zhi); Science Press: Beijing, 1997; Vol. 43 (3), pp 87–97.

(2) Liu, H. M.; Heilmann, J.; Rali, T.; Sticher, O. J. Nat. Prod. 2001, 64, 159–163.

- (3) Huang, H. L.; Wang, C. M.; Wang, Z. H.; Yao, M. J.; Han, G. T.; Yuan, J. C.; Gao, K.; Yuan, C. S. J. Nat. Prod. 2011, 74, 2235–2242.
- (4) Hu, J.; Wang, X.; Shi, X. D. Eur. J. Org. Chem. 2011, 7215–7223.
 (5) Wang, F.; Guan, Y. J. Fitoterapia 2012, 83, 13–17.
- (6) Jogia, M. K.; Andersen, R. J. Phytochemistry 1987, 26, 3309-3311.
- (7) Chen, J. L.; Kernan, M. R.; Jolad, S. D.; Stoddart, C. A.; Cooper, R. J. Nat. Prod 2007, 70, 312-315.

(8) (a) Luo, X. D.; Wu, S. H.; Yang, X. S.; Teng, R. W.; Ma, Y. B.;
Wu, D. G.; Hao, X. J.; Lu, Y.; Liu, X. N.; Zheng, Q. T. *Heterocycles*2000, 53, 2225-2232. (b) Luo, X. D.; Wu, S. H.; Wu, D. G.; Ma, Y. B.;
Qi, S. H. *Tetrahedron* 2002, 58, 7797-7804.

(9) (a) Fujioka, T.; Yamamoto, M.; Kashiwada, Y.; Fujii, H.; Mihashi, K.; Ikeshiro, Y.; Chen, I. S.; Lee, K. H. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 3479–3482. (b) Duh, C. Y.; Wang, S. K.; Chen, I. S. J. Nat. Prod. **2000**, *63*, 1546–1547.

(10) Xie, B. J.; Yang, S. P.; Yue, J. M. *Phytochemistry* **2008**, *69*, 2993–2997.

(11) Nishizawa, M.; Inoue, A.; Sastrapradja, S.; Hayashi, Y. *Phytochemistry* **1983**, *22*, 2083–2085.

(12) Liu, H. B.; Zhang, C. R.; Dong, S. H.; Yang, S. P.; Geng, M. Y.; Yue, J. M. J. Asian Nat. Prod. Res. 2012, 14, 224–232.

(13) (a) Aladesanmi, A. J.; Kelley, C. J.; Leary, J. D. J. Nat. Prod. 1983, 46, 127–131. (b) Aladesanmi, A. J.; Adewunmi, C. A.; Kelley, C.

J.; Leary, J. D.; Bischoff, T. A.; Zhang, X. L.; Snyder, J. K. *Phytochemistry* **1988**, 27, 3789–3792. (c) Aladesanmi, A. J.; Hoffmann, J. J. *Phytochemistry* **1994**, 35, 1361–1362.

(14) Zhang, X. Y.; Li, Y.; Wang, Y. Y.; Cai, X. H.; Feng, T.; Luo, X. D. J. Nat. Prod. **2010**, 73, 1385–1388.

(15) Wang, J. R.; Liu, H. L.; Kurtan, T.; Mandi, A.; Antus, A.; Li, J.; Zhang, H. Y.; Guo, Y. W. Org. Biomol. Chem. **2011**, *9*, 7685–7696.

(16) Kipassa, N. T.; Iwagawa, T.; Okamura, H.; Doe, M.; Morimoto,

Y.; Nakatani, M. Phytochemistry 2008, 69, 1782–1787.

(17) Maclachlan, L. K.; Taylor, D. A. H. Phytochemistry 1982, 21, 1701–1703.

(19) Zhang, Y.; Tang, C. P.; Ke, C. Q.; Yao, S.; Ye, Y. J. Nat. Prod. 2010, 73, 664–668.

(20) Mitsui, K.; Maejima, M.; Saito, H.; Fukaya, H.; Hitotsuyanagi, Y.; Takeya, K. *Tetrahedron* **2005**, *61*, 10569–10582.

(21) Chen, H. D.; Yang, S. P.; Wu, Y.; Dong, L.; Yue, J. M. J. Nat. Prod. 2009, 72, 685-689.

(22) Xie, B. J.; Yang, S. P.; Chen, H. D.; Yue, J. M. J. Nat. Prod. 2007, 70, 1532–1535.

(23) Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R. *Cancer Res.* **1988**, 48, 589–601.

(24) Xiao, D.; Zhu, S. P.; Gu, Z. L. Acta Pharmacol. Sin. **1997**, 18, 280–283.

(25) Laginha, K. M.; Verwoert, S.; Charrois, G. J. R.; Allen, T. M. Clin. Cancer Res. 2005, 11, 6944–6949.