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Abstract Plant growth-promoting rhizobacteria (PGPR) are
soil bacteria that are able to colonize rhizosphere and to en-
hance plant growth by means of a wide variety of mechanisms
like organic matter mineralization, biological control against
soil-borne pathogens, biological nitrogen fixation, and root
growth promotion. Avery interesting feature of PGPR is their
ability of enhancing nutrient bioavailability. Several bacterial
species have been characterized as P-solubilizing microorgan-
isms while other species have been shown to increase the
solubility of micronutrients, like those that produce
siderophores for Fe chelation. The enhanced amount of solu-
ble macro- and micronutrients in the close proximity of the
soil-root interface has indeed a positive effect on plant nutri-
tion. Furthermore, several pieces of evidence highlight that the
inoculation of plants with PGPR can have considerable effects
on plant at both physiological and molecular levels (e.g., in-
duction of rhizosphere acidification, up- and downregulation
of genes involved in ion uptake, and translocation), suggesting
the possibility that soil biota could stimulate plants being more
efficient in retrieving nutrients from soil and coping with abi-
otic stresses. However, the molecular mechanisms underlying
these phenomena, the signals involved as well as the potential
applications in a sustainable agriculture approach, and the

biotechnological aspects for possible rhizosphere engineering
are still matters of discussion.
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Introduction

Themaintenance of a high agricultural productivity, combined
with an increasing global demand for food for a growing pop-
ulation and the depletion of natural resources, has become a
major challenge in both developed and developing countries
(Matson et al. 1997; Cassman 1999; Tilman et al. 2002). Up to
now, traditional nutrient management for preserving high crop
productivity has been mainly based on external fertilizer in-
puts (Zhang et al. 2010); however, in the last decades, crop
yield has not increased proportionally with increasing fertiliz-
er inputs, leading to low nutrient use efficiency and enhanced
environmental risks (Zhang et al. 2010). Therefore, the over-
coming of this challenge implies the improvement of crop
nutrient use efficiency by exploiting the intrinsic biological
potential of rhizosphere processes. One of the main driving
forces of the rhizosphere processes is represented by
rhizodepositions, which include low molecular weight
(LMW: organic acids, amino acids, sugars, phenolic acids,
flavonoids, etc.) and high molecular weight (HMW: carbohy-
drates, enzymes, etc.) organic compounds released by roots.
The composition of root exudates is highly variable depending
on plant species and/or environmental conditions (e.g., type of
substrate, soil chemical characteristics, temperature, CO2 con-
centration, light conditions) (Mimmo et al. 2011). LMWexu-
dates could represent an easy accessible C source for
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microorganisms within the rhizosphere where the concentra-
tion of these compounds is usually higher than in the bulk soil
(Hinsinger et al. 2009). As a consequence, microbes are un-
evenly distributed in soil, being the majority of them located
within a radius of 50 μm from the root with a strong increase
in their concentration within a radius of 10 μm (Pinton et al.
2001). This phenomenon is most likely ascribable to the
higher growth of bacteria in the root proximity and
chemoattractant function of LMW root exudates, that makes
chemotaxis and motility fundamental features for root coloni-
zation (Yao and Allen 2006; Miller et al. 2007). This idea is
corroborated by observations like the modulation of chemo-
taxis genes in Pseudomonas aeruginosa induced by the root
exudates of sugar beet (Mark et al. 2005). Most rhizobacteria
are commensals that establish neutral interactions, taking ad-
vantage of root exudates as nourishment without affecting
plants. In negative interactions, pathogenic bacteria can pro-
duce metabolites with toxic effects on plants, thus having
detrimental actions on the overall plant growth. Differently,
there are bacteria that, when associated with roots, are able to
induce positive effects on the plant growth and fitness; they
are commonly termed plant growth-promoting rhizobacteria
(PGPR). They can aggressively colonize the host and stimu-
late plant growth, either indirectly, i.e., acting as biocontrol
agents, or directly, i.e., enhancing nutrient acquisition (Weller
et al. 2002; Vessey 2003).

The colonization of the rhizosphere compartment is the
result of a complex exchange of signals between the two part-
ners and it determines the kind of relationship, which can be
detrimental, neutral, or beneficial to plants (Lynch 1970; Glick
2012). Besides the already characterized molecules involved
in the crosstalk between plant and rhizobacteria, vitamins rep-
resent an emerging class of organic compounds putatively
involved in the plant/bacteria interaction and/or in the growth
promotion mechanism (Palacios et al. 2014).

Even though the growth promotion and the biocontrol
actions of PGPR on plants have been thoroughly studied,
the roles played by these microorganisms on plant nutri-
ent acquisition process and on the biochemical mecha-
nisms underlying the nutritional processes taking place
at the rhizoplane are still not fully explored. In the present
review, we will focus on the interactions between plants
and rhizobacteria that have an impact on plant mineral
nutrition. Among the macro- and micronutrients, N, P,
and Fe are the most critical being the most responsible
of yield limitation of crops in the world (Schachtman
et al. 1998; Zhang et al. 2010). Among macronutrients,
also potassium might represent a limiting factor for plant
fitness, especially in acidic soils and in the case of com-
petition with other essential nutrients, as for instance Ca
and Mg. Despite these aspects, recently, some authors
(Zhang et al. 2010) highlighted that Fe represents one of
the main constraints in plant growth and productivity of

many agronomically important crops (e.g., peanut,
soybean, peach, and apple trees, Marschner 2011) culti-
vated on alkaline/calcareous soils worldwide. Nutrient de-
ficiencies might be overcome by rhizosphere management
(e.g., root exudation, intercropping, and symbiosis with
mycorrhizal fungi) as extensively documented by previ-
ous authors (Zhang et al. 2010); conversely, the likely role
of non-symbiotic bacteria remains to be elucidated. In this
context, soil microorganisms could represent a promising
method to improve plant use efficiency of nutrients, al-
ready present in soil or supplied by fertilizers. In particu-
lar, we will discuss the pieces of evidence highlighting a
possible role of bacteria in affecting nutrient availability
in the rhizosphere and/or biochemical mechanisms under-
lying the nutritional process. The plant’s abilities to shape
the soil microbiome are also described along with prom-
ising approaches used in studies aiming at understanding
these phenomena.

Microbial effects on plant nutrient acquisition

Rhizobacteria as PGPR can play an important role in promot-
ing nutrient acquisition by plants, favoring factors inducing
root biomass accumulation and/or hindering those that could
have detrimental effects on root system development. This
role of PGPR can be achieved via either an indirect (antago-
nism against pathogens) or direct (e.g., phytohormones pro-
duction) mode of action (Glick 2012). Furthermore, microor-
ganisms can also affect plant nutrient-acquisition processes by
influencing nutrient availability in the rhizosphere and/or
functionality of the biochemical mechanisms underlying the
nutritional process.

Effects on nutrient availability in the rhizosphere

Plant growth and productivity depend considerably on
the availability of nutrients at the soil-root interface,
which in turn is influenced by a wide range of factors
including the soil type and chemical-physical character-
istics, plant species and genotype, soil macro- and micro-
organism communities, and environmental conditions. In
this context, biological activities of both roots and micro-
organisms can play an important role (Marschner 2011).
In addition to a brief introduction about the main mech-
anisms used by plants root for the acquisition of N, P,
and Fe, in the following sections, the contribution of
microbes to the dynamics of these three nutrients in the
rhizosphere is described; moreover, a review of the ef-
fects of PGPRs on physiological and molecular mecha-
nisms underlying the root acquisition of nutrients will be
presented in the next sections.
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Nitrogen

Plants are able to use different N sources, in both inorganic
(i.e., nitrate [NO3

−] and ammonium [NH4
+]) and organic

(e.g., urea, amino acids, and peptides) forms exploiting
specific mechanisms (Nacry et al. 2013; Zanin et al.
2014). The root uptake of NO3

− is a substrate-inducible,
energy-requiring symport H+/NO3

− (Santi et al. 1995; Tou-
raine and Glass 1997); the energy is supplied by a proton
gradient maintained by the activity of plasma membrane
H+-ATPase (McClure et al. 1990a, b; Glass et al. 1992;
Santi et al. 1995). At low NO3

− concentration (below
1 mM), the anion is taken up by two saturable high-
affinity transport systems (HATS, one constitutive and
one substrate-inducible), while other two systems (cLATS
and iLATS, the constitutive and inducible low-affinity
transport systems, respectively) mediate a non-saturable
transport at concentrations higher than 1 mM. Genes be-
longing to the NRT1 and NRT2 family (Plett et al. 2010;
Nacry et al. 2013) have been identified to be involved in
NO3

− transport at the root plasma membrane. In the case of
NH4

+, the uptake of the cation, mediated by proteins be-
longing to the AMT/MEP/Rh family (von Wirén and
Merrick 2004), is accompanied by an about equimolar H+

release, most probably ascribable to the plasma membrane
H+-ATPase activity, leading to rhizosphere acidification
(von Wirén et al. 2000). Urea can contribute to N uptake
of plants via also the NH4

+ pool produced after its hydro-
lysis in soil by microbial urease enzymes (Witte 2011).
Nonetheless, plants are also able to take up directly urea
through the root system (Kojima et al. 2007; Witte 2011)
via a transport of urea exploiting both a high-affinity sys-
tem (urea:H+ symporter AtDUR3, Liu et al. 2003) and a
passive transport system (by members of the major intrinsic
proteins (MIP) family of aquaporins, Witte 2011).

In general, irrespectively to the forms, the extent of N ac-
quisition by roots is strictly dependent on the availability of
the source itself. In soil, about 90 % of total N is present in
organic form (soil organic matter, SOM), and the biogeo-
chemical cycle of the whole N pool (which includes also the
N portion deriving from fertilization) is very important for the
level of soil fertility (Jetten 2008). This cycle is mainly man-
aged by microbial processes (SOM mineralization, atmo-
spheric N2 fixation, denitrification), and the role of microbial
inoculants with an impact on N utilization by plants in both
fertilized and non-fertilized soils has been widely described
(Adesemoye et al. 2009). Considering the great extent of the
organic N pool, it is evident that the mineralization, i.e., nitri-
fication and ammonification, carried out by bacteria is crucial
for plant mineral nutrition. In fact, microorganisms like my-
corrhizal fungi and PGPRs mineralize OM by releasing hy-
drolytic enzymes and thus enhancing the nutrient availability
in soil (Miransari 2011; Ollivier et al. 2011).

Biological N2 fixation (BNF) is carried out by many pro-
karyotic microorganisms, known as diazotrophs, through nor-
mal metabolic activities. The nitrogen fixation primarily oc-
curs in soil by either free-living or plant-associated
diazotrophs (Galloway et al. 2008). Free-living diazotrophs
are those bacteria that are not associated with plants, i.e., in
the bulk soil (Reed et al. 2011), and include Cyanobacteria,
Proteobacteria, Archaea, and Firmicutes (Kahindi et al. 1997;
Widmer et al. 1999; Diallo et al. 2004; Duc et al. 2009).
However, many diazotrophic cyanobacterial species can es-
tablish symbiotic relationships with eukaryotes, such as ter-
restrial plants, and contribute significantly to the N budget
required for the growth of both organisms (Hobara et al.
2006). Nevertheless, the most efficient processes for BNF
involve the formation of highly specialized organs, the so-
called root nodules. The majority of BNF in terrestrial ecosys-
tems is carried out by the well-known association between
bacteria belonging to the family of Rhizobiaceae and legumi-
nous plants. Jones et al. (2007). In addition, the diazothrophs
belonging to the genus Frankia can also colonize a small
group of woody, non-legume plants, known as actinorhizal
plants, inducing the formation of nitrogen-fixing root nodules
(Santi et al. 2013). Such capability of enhancing the N avail-
able fraction is supposed to be a key feature accountable for
the plant growth-promoting activity of a part of the rhizo-
sphere flora (Hurek et al. 2002; Iniguez et al. 2004).

The denitrification, or dissimilatory nitrate reduction, gen-
erates NO2

− from NO3
− anions, as an alternative electron ac-

ceptor in microbial cell respiration. Nitrite can be then con-
verted to nitrogen oxides (NO2 and NO) and eventually to
NH4

+, which can be taken up by plants. The presence of
NOx in the rhizosphere could play an important role having
anyway at the end, even if indirectly, an impact on root-
acquisition process. In fact, in the last decade, NO has re-
ceived great attention considering that it was demonstrated
to act as second messenger in indol-3-acetic acid (IAA) sig-
naling pathway that drives plant developmental processes. It
has been shown that NO plays a role in the induction pathway
of both adventitious and lateral roots (Pagnussat et al. 2003;
Correa-Aragunde et al. 2004). One of the characteristics of the
PGPR Azospirillum brasilense is its ability to induce changes
in plant root architecture, inducing the development of lateral
and adventitious roots (Creus et al. 2005) and root hairs
(Hadas and Okon 1987) in several plant species. Besides ex-
uding IAA, A. brasilense was shown to be able of synthesiz-
ing NO by different aerobic pathways, giving evidence for an
NO-dependent promoting activity on tomato root branching
notwithstanding the capacity of this PGPR to synthesize IAA
(Molina-Favero et al. 2008). Similarly, Pii and colleagues
(2007) demonstrated that Sinorhizobium meliloti can produce
NO through a NO synthase-like enzymatic activity and sug-
gested that it could be implicated in the induction of root
nodule organogenesis in Medicago truncatula roots.
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Moreover, it is well known that NO induces the expression of
genes involved in Fe acquisition (García et al. 2010), but to
our knowledge, no study has demonstrated that microorgan-
isms influence Fe acquisition via NO production.

Phosphorous

The form of P most readily accessed by plants is the monoba-
sic H2PO4

− (Pi) (Marschner 2011), which rarely exceeds
10 μM in soil solutions (Bieleski 1973). Root uptake of Pi is
a process depending on metabolic energy, where the driving
force is guaranteed by the activity of plasma membrane H+-
ATPase (Liang et al. 2014). A high-affinity system, working
in the micromolar range of concentration, and a low-affinity
system, responsible for the Pi uptake when the external con-
centration is in the millimolar range, appear to be involved
(Ullrich-Eberius et al. 1984; Furihata et al. 1992). The phos-
phate/H+ symporter belonging to PHT1 gene family, which is
highly expressed in roots, especially in the rhizodermis, root
hairs, and in the outer cortical cells, is considered the main
molecular entity responsible for Pi transport at the plasma
membrane (Daram et al. 1998; Liu et al. 1998; Chiou et al.
2001; Mudge et al. 2002; Karthikeyan et al. 2002; Schünmann
et al. 2004).

Soils may contain large amounts of P but is very scarcely
available for plant use (Bhattacharyya and Jha 2012), since
both inorganic and organic P forms are very insoluble com-
pounds. The majority of the inorganic P present in soils is
bound to Fe, Al, and/or Ca that reduce its solubility, leading
to precipitation and adsorption processes (Igual et al. 2001;
Gyaneshwar et al. 2002). Furthermore, the application of fer-
tilizers might not solve plant nutritional issues, since P can
easily bind cations and become insoluble once applied to the
soil (Adesemoye and Kloepper 2009). From 20 to 80% of P in
soils is found in the organic form, of which phytic acid (ino-
sitol hexaphosphate) is usually a major component (Richard-
son 1994). Several bacteria belonging to the genera
Azospirillum, Azotobacter, Bacillus, Burkholderia,
Pseudomonas, Rhizobium, and Serratia (Sudhakar et al.
2000; Sturz and Nowak 2000; Mehnaz and Lazarovits 2006)
have been characterized as P-solubilizing microorganisms.
Nevertheless, recent findings highlighted the traditional meth-
od adopted for the screening of P-solubilizing bacteria, based
on the use of tricalcium phosphate, has led to the isolation of
microorganisms whose P-solubilizing ability could not be di-
rectly transferred to field, where the environmental conditions
might be extremely different from those imposed for the se-
lection. As a consequence, the number of bacteria that have
been accounted for P-solubilization might be overestimated
(Bashan et al. 2013a, b). However, microorganisms can have
an impact on the availability of the nutrient in soil, and the
major mechanism responsible for their ability is thought to be
the exudation of organic acids (Bhattacharyya and Jha 2012),

such as acetate, oxalate, succinate, citrate, and gluconate
(Bulgarelli et al. 2013). Once released, organic acids can de-
sorb Pi from soil adsorption sites by ligand exchange and thus
solubilizing Pi from Ca/Fe/Al-Pi minerals (Tomasi et al.
2008). With respect to the organic P pool, plants can use this
source only after its transformation in the Pi form. In this
respect, it is well demonstrated that bacteria-derived phospha-
tases are able to mineralize P-containing organic molecules of
soil (like phosphoesters, phosphodiesters [i.e., phospholipids
and nucleic acids], and phosphotriesters) releasing conse-
quently orthophosphate groups (Rodríguez et al. 2006). How-
ever, the mechanisms underlying the improved plant P nutri-
tion by PGPRs are still largely unknown, considering that the
increase in P content of plants might result from at least two
concurrent processes, i.e., the increased nutrient bioavailabil-
ity at the root/soil interface and the enhanced capacity of
plants to take up Pi, or from a combination of these two
mechanisms.

Iron

Plants are able to acquire Fe using mechanisms that are dif-
ferent between monocots and dicots (Kobayashi and
Nishizawa 2012). In dicots, classified as strategy I plants
(Marschner and Römheld 1994), the Fe acquisition is based
on a mechanism at the plasma membrane level that involves
the reduction of FeIII to FeII and the uptake of FeII thanks to the
transmembrane electrochemical gradient guaranteed by the
activity of plasma membrane H+-ATPase. In the case of Fe
shortage, strategy I plants enhance the release of proton in the
rhizosphere, causing the increase of Fe concentration in the
close proximity of roots (Colombo et al. 2013). In addition,
strategy I plants increase the FeIII reduction activity, that is
carried out by the ferric chelate reductase oxidase (FRO),
and the transport of FeII across the membranes, that occurs
through the iron-regulated transporter (IRT)-like protein
(Connolly et al. 2003). Differently, grasses, also termed strat-
egy II plants, base their capacity to take up Fe on the biosyn-
thesis and exudation of phytosiderophores (PSs), which dis-
play a strong chelation affinity for FeIII (Schaaf et al. 2004).
PSs are released in the rhizosphere via the transporter of
mugineic acid family phytosiderophores1 (TOM1) (Nozoye
et al. 2011), while the complexes FeIII-PS are then transported
into root cells through specific transporters, the yellow stripe1
(YS1) and YS1-like (YSL) transporters (Curie et al. 2001;
Inoue et al. 2009). Recent evidence suggested that the distinc-
tion between strategy I and strategy II plants might not be so
sharp-cut (Ishimaru et al. 2006; Xiong et al. 2013).

In order to improve Fe availability in soil, plants and mi-
crobes have evolved similar strategies for the Fe mobilization
from barely available sources relying on the exudation of a
huge variety of organic compounds (e.g., organic acids, phe-
nolic compounds, siderophores) that are able to complex Fe
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(Mimmo et al. 2014). Once mobilized, these complexed Fe
forms can represent an available source for Fe uptake by
plants and microorganisms. However, at the rhizosphere level,
where the nutritional needs of plants and microorganisms co-
exist and must be satisfied, a competition for the nutrient up-
take between these organisms could easily occur (Colombo
et al. 2013; Mimmo et al. 2014). In this context, microorgan-
isms seem to be more competitive than plants. In fact, they are
able not only to use the Fe complexes formed with their own
exudates but also to degrade plant-derived exudates as C
source (reducing their effectiveness in the nutrient mobiliza-
tion process) and to immobilize nutrients in their biomass
before the Fe complexes get in contact with the root surface.
In root exudates of Fe-deficient grasses, for instance, non-
proteinogenic amino acids named PSs are the main com-
pounds; the exudation process takes place at the root tip and
in the root zone immediately behind (i.e., root elongation
zones) (Römheld 1991). Considering that the higher microbial
growth rate (and hence the higher rate of C source consump-
tion) is estimated to be in correspondence of the root distal
elongation zone (Marschner et al. 2011), the very localized
release of exudates (root tip) can prevent microbial degrada-
tion, enhancing their effectiveness in nutrient mobilization/
solubilization. In this vision, the uneven distribution of the
exudation process along the root axis might constitute a strat-
egy to limit/counteract the competition for nutrients with soil
bacteria.

Concerning the relation between soil pH and Fe availability
in soil solution, microbes are able to give their contribution to
soil acidification via their metabolism. In fact, as a conse-
quence of their respiration, pCO2 is increased, enhancing the
concentration of carbonic acid in the surrounding soil
(Hinsinger et al. 2003). The concomitant acidification activi-
ties of both plants and microorganisms can lead to an overall
drop of 1–2 units in the pH of the rhizosphere as compared to
bulk soil with a consequent increase of Fe mobilization from
barely available forms (Pinton et al. 1997; Santi et al. 2005;
Tomasi et al. 2009).

In addition, some compounds (mainly phenolics) are able
to reduce FeIII in the soil, thereby increasing its solubility. In
the last years, many evidences about release of Fe-reducing
compounds from roots have been published (Tomasi et al.
2008; Cesco et al. 2010, 2012). It can be reasonably hypoth-
esized that this kind of compounds might also be released by
some bacteria and thus might be important for Fe nutrition.

Another factor influencing Fe availability in soil is its redox
status. In fact FeII, compared to FeIII, is much more soluble
(Marschner 2011). Many bacterial strains are able to use FeIII

as acceptor of electrons in anaerobic conditions. For instance,
in anoxic paddy soils used for rice cultivation, the bacterial
community is able to catalyze the reduction of Fe, nitrate, and
sulfate, thus greatly influencing the availability of the nutrient
in these flooded environments (Achtnich et al. 1995; Hori

et al. 2009). On the contrary, in well-aerated soils, the impor-
tance of these anaerobic bacteria is limited, even if it is possi-
ble that within the heterogeneity of the soil, some anaerobic
microenvironments exist and in densely compacted soil the
oxygen might become scarce. In these environments, the
availability of FeII might increase and be readily available
for nearby roots.

Effects on the biochemical mechanisms underlying
the nutritional process in plants

The PGPR-induced plant growth, clearly described by
Vacheron et al. (2013), entails an increase in the amount of
nutrients acquired by roots and accumulated in plant tissues,
that can be achieved not exclusively via increased availability
of nutrients but also via the functionality of plasma membrane
entities involved in the nutrition process at the root level.

The transmembrane electrochemical gradient is the driving
force governing the movement of the different ions across the
membrane (White 2003); since this gradient is maintained by
the plasma membrane H+-ATPase, the activity of this enzyme
is very important for the movement of solutes and, consider-
ing nutrient-acquisition process in plants, of nutrients. In this
respect, it has been demonstrated that the inoculation of wheat
seedlings with A. brasilense Cd increased proton efflux from
roots (Bashan et al. 1989). The partial restoration of H+ efflux
in seedlings pretreated with orthovanadate (a plasma mem-
brane H+-ATPase inhibitor) and then inoculated with this
strain clearly indicated that A. brasilense Cd might have an
effect on plasma membrane H+-ATPase activity, most likely
through diffusible signal(s) released in the growth medium
(Bashan et al. 1989; Bashan 1990). Also, in oil-seed-rape
plants treated with a PGPR, an increased H+ efflux from roots
has been recorded (Bertrand et al. 2000). More recently, it has
been shown that the treatment of maize seedlings with humic
substances extracted from vermicompost and Herbaspirillum
seropedicae, a diazotrophic endophytic bacterium that mostly
colonize graminaceous plants, caused a stimulation of plasma
membrane H+-ATPase in maize roots (Canellas et al. 2013).
Since Canellas et al. (2002) have demonstrated an IAA-like
activity of humic substances and thatH. seropedicae is able to
produce IAA in vitro (Radwan et al. 2002), the bacterial stim-
ulation of plasma membrane H+-ATPase activity has been
attributed to an IAA-derived effect (Canellas et al. 2013).

It has been demonstrated that the influx of H+ is coupled
with the transport of several nutrients (e.g., Pi and NO3

−)
(White 2003) and that the hyperpolarization of transmem-
brane electrochemical gradient favors nutrients movement
across the membranes. For these reasons, the enhanced H+

extrusion by PGPR inoculation might hold a crucial role in
the nutritional process. However, indications about the mech-
anisms through which PGPRs are able to exert their stimula-
tion of the plasma membrane H+-ATPase activity (both at the
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transcriptional and posttranscriptional level) are still lacking.
With respect to the plant- and microbe-induced acidification
of the rhizosphere soil, it is also important to highlight that,
besides nutrients (e.g., Fe and P), the solubility of elements
potentially toxic for plants (e.g., Al, Mn, Cd) could also be
increased in the rhizosphere soil. For this reason, the possibil-
ity of using biological activities of both plants and microor-
ganisms in relation to phytoremediation practices at the rhizo-
sphere level has been extensively investigated (Rajkumar
et al. 2012).

Nitrogen

Concerning the mechanisms underlying N acquisition by
plants (reviewed by Nacry et al. 2013), Bertrand et al.
(2000) observed an enhanced uptake of NO3

− in roots of oil-
seed rape (Brassica napus) inoculated with the soil-isolate
Achromobacter bacteria with a consequent higher content of
this anion in the plant tissues. The authors hypothesized an
action of Achromobacter bacteria on the cHATS transport
system. Further pieces of research highlighted that the inocu-
lation of Arabidopsis thaliana plants with Phyllobacterium
STM196 prevented the inhibition of root growth in the pres-
ence of high concentration of NO3

− (Mantelin et al. 2006).
Interestingly, the inoculation caused also an overexpression
of the NRT2.5 and NRT2.6 genes (Mantelin et al. 2006) that
are required for the plant growth-promoting activity of
Phyllobacterium (Kechid et al. 2013). In the light of the facts
that both NRT2.5 and NRT2.6 are expressed in A. thaliana
leaves and do not play an important role in NO3

− transport,
it was hypothesized that they might act as transceptors
(Kechid et al. 2013). In such scenario, NRT2.5 and NRT2.6
might be involved in the perception of a systemic signal, from
root-to-shoot and vice versa, elicited by rhizosphere bacteria
(Kechid et al. 2013). Despite these observations, the possible
involvement of rhizosphere microorganisms in altering the
NO3

− fluxes at the root plasma membrane are still contradic-
tory (Bertrand et al. 2000; Mantelin et al. 2006). On the other
hand, no indications regarding microbial effects on the mech-
anisms underlying the plant acquisition process of NH4

+ and
urea are available.

Phosphorus

Concerning the root mechanisms of Pi uptake (Liang et al.
2014), evidence showing that PGPR directly affect plant Pi
acquisition are still missing. Nonetheless, the symbiotic inter-
action between roots and AMF favoring the P supply of plant
(Smith et al. 2011) is a valid example of nutrient interplay
between two different organisms. It is interesting to note that
the establishment of the root/AMF symbiosis is a consequence
of a complex exchange of signals between host plants and
fungi, causing also cell reprogramming (Parniske 2008). In

fact, plants colonized by AMF can exploit an additional path-
way for P acquisition, occurring in different cell types, based
on different molecular entities (i.e., transporters) and
accessing P in different regions of soil. Pi uptake is achieved
by the expression, in colonized cortical cells, of Pi transporters
that can be either specifically induced by AMF symbiosis
(Harrison et al. 2002; Paszkowski et al. 2002; Glassop et al.
2005; Nagy et al. 2005) or strongly induced during the sym-
biosis but having also a basal expression in non-mycorrhizal
roots (Rausch et al. 2001; Chen et al. 2007). It is also worth
noting that the activities of PGPR might also have a direct
beneficial effect on AMF, as for instance enhanced germina-
tion of fungal spores and mycorrhization (Artursson et al.
2006; Pivato et al. 2009), and thus, they could indirectly affect
the Pi availability for host plants associated with mychorrhizal
fungi.

Iron

Even though Fe deficiency is one of the major causes of agri-
cultural yield limitation, the literature does not report any ex-
perience of using PGPRs to induce a better utilization in crops
of barely available Fe naturally present in soils. To our knowl-
edge, evidence has been obtained with A. thaliana plants
grown in vitro; the presence of Bacillus subtilis GB03 caused
an increased accumulation of Fe in the plant tissues and an
enhanced photosynthetic capacity (Zhang et al. 2009). It is
interesting to highlight that in Fe-deficiency conditions, also
rhizosphere microorganisms can synthesize and exude micro-
bial siderophores (MSs) (Lemanceau et al. 2009) that show
very high affinity for FeIII (Guerinot 1994); the FeIII-MSs
complexes are acquired by bacterial cells through specific
transporters (Neilands 1981). Interestingly, besides taking up
the Fe complexed with their own MSs, bacteria can also ab-
sorb MSs produced and released by other bacterial species
(Raaijmakers et al. 1995). Considering their very high stabil-
ity, the FeIII-MSs could hardly act as substrate for ligand ex-
change reactions with PSs in order to be acquired by grasses
(Colombo et al. 2013; Mimmo et al. 2014). Nevertheless,
recent evidence showed that purified Pseudomonas
fluorescens-derived siderophore pyoverdine, as well as
siderophores synthesized by the fungus Trichoderma
asperellum, complexed with FeIII, can directly act as Fe donor
for plants, restoring the Fe-deficiency condition in hydroponic
culture (de Santiago et al. 2009; Nagata et al. 2013). However,
the mechanisms involved are still unknown and, since no ev-
idence of the pyoverdine-FeIII complex uptake were found, a
two-step process was hypothesized: the pyoverdine-FeIII com-
plex reduction by SlFRO1 with the release of FeII that is
transported into cells by SlIRT1 (Nagata et al. 2013). Anyhow,
information concerning the possible applicability of PGPR to
overcome the limited availability of Fe for crops in field con-
ditions and/or to restore plants from Fe deficiency is not yet
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available. In addition, these aspects are mainly related to the
availability of the micronutrient in the soil; up to now, no
evidence is available concerning the capability of microorgan-
isms to influence the mechanisms responsible for Fe acquisi-
tion in strategy I and strategy II plants.

However, the molecular mechanisms involved in such
Bbacteria-stimulated^ plant nutrition (i.e., nutrient uptake
and translocation) are far from being elucidated in order to
think to a rational application of PGPR alone or, in combina-
tion with fertilizers, to restore crops from nutritional disorders.
It has been largely demonstrated that the capability of plants to
recover from nitrate starvation (i.e., adaptation to adverse en-
vironmental conditions) is based on the increased expression
(known as induction phenomenon) of a set of genes encoding
proteins involved in the uptake and assimilation of the anion,
with a subsequent feedback inhibition governed by the plant N
nutritional status (Nacry et al. 2013). Similar responses to
nutrient shortage have been also described for NH4

+, P, and
Fe (Kobayashi and Nishizawa 2012; Nacry et al. 2013; Liang
et al. 2014). In this vision, it might be conceivable that PGPR
could influence the molecular machineries that are physiolog-
ically involved in nutritional process, so as to stimulate uptake
of nutrients from the rhizosphere. However, evidence showing
that bacteria are able to increase the expression of the molec-
ular entities involved in plant mineral nutrition is still lacking.

Despite being not strictly related to nutrient acquisition,
there is further evidence concerning modifications of gene
expression in the root tissue of abiotically stressed plants as
a consequence of PGPR inoculation. In maize plants inoculat-
ed with Bacillus megaterium, the hydraulic conductance value
was increased, regardless the plants were stressed or not
(Marulanda et al. 2010). The enhanced water transport was
in good agreement with both the higher expression of some
aquaporin genes and the increased amount of aquaporin pro-
teins. Similarly, the inoculation of A. thaliana plants with
B. subtilis GB03 resulted in a tissue-specific modulation of
high-affinity K+ transporter (HKT1, a low-affinity Na+ trans-
porter, Rubio et al. 1995) expression, i.e., downregulation in
roots and upregulation in shoots, determining the limitation of
Na+ intake into plants and the remobilization of Na+ from
shoot to root (Zhang et al. 2008). Considering that B. subtilis
GB03 was demonstrated to emit volatile compounds able to
induce a modulation of A. thaliana gene expression (Ryu et al.
2003, 2004), the author ascribed the tissue-specific regulation
ofHKT1 to not yet identified volatile signal(s) released by the
PGPR (Zhang et al. 2008).

Plants are able to shape the soil microbiome

Soil microbiota, being biofilm-forming bacteria, endophytes,
or nitrogen-fixing bacteria, colonizes the root system and can

influence plant fitness and plant functional traits. On the other
hand, also plants have the ability to manipulate bacteria and
modulate their activities in order to enhance those interactions
that would help them overcoming stressed environments.
Therefore, it is interesting to review how beneficial plant-
associated microbes and plants respond to and influence each
other by changing their transcriptomes and their phenotypic
plasticities.

The ability of plants to select a species-specific microbiome
was first postulated by cultivation-dependent approaches
(Germida and Siciliano 2001) and afterwards further con-
firmed by molecular fingerprinting of the microbial commu-
nities inhabiting the rhizosphere of three different plant spe-
cies (i.e., strawberry, oilseed rape, and potato) (Smalla et al.
2001). Plant genotype plays a crucial role in determining the
core microbiome associated to the root system (Lundberg
et al. 2012; Bulgarelli et al. 2013); this aspect is supported
by the observation that genetically modified crops might af-
fect, both positively and negatively, the biodiversity of soil-
borne microorganisms as fungi, as well as their life cycle and
their ecological roles that have a paramount importance in the
functioning of agroecosystems (Hannula et al. 2014). Howev-
er, notwithstanding plant genetic traits, there are several other
factors, such as soil properties, plant nutritional status, and
climatic conditions, influencing composition and activity of
microbial community of rhizosphere soil (Berg 2009).

In the last 10 years, several experimental approaches have
been applied to study the interaction between plants and mi-
croorganisms and some of them will be discussed in the fol-
lowing section. Furthermore, the analytical tools available and
the relative target of investigation are summarized in Table 1.

Bacillus amyloliquefaciens FZB42 has been described as a
PGPR that exerts great influence on plant growth, as it pro-
duces the plant hormone IAA and some secondary metabo-
lites with antibacterial and antifungal activities. Microarray
experiments have been performed to investigate the
transcriptomic response of FZB42 to maize root exudates
(Fan et al. 2012). The expression of 302 genes, representing
8.2 % of its whole transcriptome, was significantly modulated
by the presence of plant exudates, being 260 of them upregu-
lated (Fan et al. 2012). The induced genes with known func-
tion were mainly involved in nutrient utilization, chemotaxis
and motility, and antibiotic production. Besides sigma factor
and other transcriptional regulators, some small RNAs were
also found to have a possible role in plant-microbe interaction
(Fan et al. 2012).

In order to determine how a PGPR and its plant host bio-
chemically and physiologically influence one another,
proteome-level changes of both the PGPR Pseudomonas
putida UW4 and its host B. napus were investigated by two-
dimensional gel electrophoresis and mass spectrometry
(Cheng et al. 2009).Many proteins resulted to be up- or down-
regulated; mass spectrometry, sequence determination, and
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comparison with related species allowed the assessment of
proteins with altered expression levels. In particular, three
unique P. putida UW4 proteins that mediate interactions be-
tween the bacterium and its plant host were identified. On the
plant side, proteins with significantly altered expression levels
in the presence of the bacterium were identified by mass spec-
trometry, too.With a similar approach, the interaction between
Gluconacetobacter diazotrophicus and two varieties of sugar-
cane (i.e., SP70-1143 and Chunee) was studied (Lery et al.
2011). The most striking difference between the two sugar-
cane cultivars was their ability to benefit from biological ni-
trogen fixation, having SP70-1143 higher efficiency to profit
from the symbiosis than Chunee. It was observed that, inde-
pendently from the host genotype, root exudates elicited in
G. diazotrophicus the upregulation of proteins involved in
the colonization process. On the other hand, the presence of
G. diazotrophicus caused reactions dependent on plant geno-
type. Sugarcane SP70-1143 expressed protein involved in cell
adaptation and signaling aiming at favoring bacterial coloni-
zation, while Chunee variety elicited a strong defense reaction
preventing G. diazotrophicus from colonizing roots (Lery
et al. 2011).

Complementary DNA microarrays, representing approxi-
mately 14,300 genes, allowed the comparison of RNA tran-
script levels of A. thaliana infected by Pseudomonas
thievervalensis and axenic control plants. The results, present-
ed by Cartieaux et al. (2003), suggested that colonization af-
fected the expression of both plant defense genes and
photosynthesis-associated genes. In particular, inoculation

led to the repression of chloroplast-associated genes, occur-
ring for the first 2 weeks after colonization. A possible expla-
nation is that the energy used for the synthesis of highly abun-
dant messenger RNAs (mRNAs), such as those of
photosynthesis-associated genes, is temporarily reallocated
for the production of mRNA coding for proteins directly in-
volved in the colonization.

Microbial populations inhabiting the bulk soil as well as
those colonizing plant roots show a quorum sensing (QS)
system based on N-acyl homoserine lactone (AHLs) produc-
tion to monitor their own population abundance. Several bac-
terial species that interact with plants produce AHL auto-
inducer compounds in order to control a broad range of traits
such as growth inhibition, nodulation, production of antibi-
otics, and others, still unknown (Brelles-Mariño and Bedmar
2001). Very interestingly, some bacterial auto-inducers seem
to affect an extensive range of functional responses in plants
as well as plants can manipulate bacterial QS by secreting
compounds that mimic the bacterium own sensing signals
(Teplitski et al. 2000; Pérez-Montaño et al. 2013). Quorum
sensing mimics from host plants, as well as from other bacte-
ria, may stimulate or disrupt bacterial sensing. Since plants
and microorganisms coexist in the soil, it is not surprising that
they sense each other.

Proteome analysis has been also used to show that a model
eukaryotic hostM. truncatula is able to detect up to nanomolar
concentrations of bacterial AHL, by significantly accumulat-
ing more than 150 proteins, most of which have been identi-
fied by peptide mass fingerprinting. Of the known proteins,

Table 1 Methods to study the relationships between plants and rhizobacteria

Methodological approach Analytical tools Aim

Culture-dependent approach Plate counting on selective media;
confocal laser scanning microscopy;
electron microscopy; biofilm assays;
biosensors; imaging

Isolate novel beneficial microorganisms;
clarify the molecular mechanisms of
cell-to-cell interactions, colonization,
phytostimulation

Metabolomics HPLC-MS; GC-MS Identification and characterization of novel
bacterial secondary metabolites with plant
growth potentials

Proteomics Two-dimensional gel electrophoresis; MALDI-ToF/MS Elucidation of the proteins prospective of
plant-bacteria interactions; determine how
a plant growth-promoting bacterium and
its plant host biochemically and
physiologically influence one another

Metagenomics/metatranscriptomics RT-PCR; microarray; mutagenesis and library
screening; DGGE; high-throughput
sequencing and bioinformatics sequences
processing

Provide a snapshot of transcriptional profiles that
correspond to discrete populations within a
microbial community and a certain environment
at the time of sampling; offer novel insights into
the functional potential of microbial communities;
provide reference genes and genomes for
metatranscriptomics; identify key plant and
microbial genes that are responsible
of plant-microorganisms interactions; estimate
the active and potentially active microorganisms
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approximately 25 % had a role in host defense responses;
others are involved in primary metabolism, plant hormone
responses, regulation of transcription, and protein processing.
AHL structure, concentration, and time of exposure affected
the accumulation of specific proteins and isoforms exhibiting
also tissue-specific responses. Interestingly, AHLs increased
the expression of IAA-induced and flavonoid-related genes; it
is noteworthy that the induction of gene expression is not only
restricted to cells at the local site of AHL contact (Mathesius
et al. 2003). These results indicate that plants are able to detect
at least two different AHLs (3-oxo-C12-HL and 3-oxo-C16:1-
HL) even below the threshold concentrations used in vivo by
bacteria, using this information for global and sophisticated
responses.

Young seedlings of M. truncatula and seedling exudates
were systematically extracted with organic solvents and the
extracts were characterized by HLPC, demonstrating that this
model legume plant produces at least 15 to 20 separable sub-
stances capable of specifically stimulating or inhibiting re-
sponses in reporter bacteria (Gao et al. 2003). Similarly,
Teplitski et al. (2000) demonstrated that exudates from Pisum
sativum seedlings contained several activities that mimicked
AHL signals in reporter bacteria, stimulating AHL-regulated
behaviors in some strains, while inhibiting such behaviors in
others. Very recently, Oryza sativa and Phaseolus vulgaris
have been found to produce, in roots and seeds, compounds
that specifically interfere with the capacity of plant-associated
bacteria to form biofilms, an essential trait for bacteria-
eukaryotic host interaction (Pérez-Montaño et al. 2013).

These results support the idea that plants are not only af-
fected by PGPRs but also have important tools to manipulate
gene expression and behavior in the bacteria they encounter
for their own benefits. However, the molecular mechanisms
responsible for these interferences are currently unknown. Al-
though the above data do not deal specifically with PGPRs
affecting mineral nutrition of plants, it is very likely that future
investigations will demonstrate that plant-microorganism
sensing has a key role in this topic too and that the understand-
ing of those relationships might lead to an improvement in
crop production and agricultural management.

Conclusions

In the next decades, food supplies and agricultural productiv-
ity need to meet the requirements determined by the increas-
ing human population. Plant growth and productivity depend
on the availability of nutrients at the soil-root interface, and
such availability is influenced by different factors, among
which the biological activities of both roots and microorgan-
isms in the rhizosphere. Up to now, crop nutrition has
depended on the application of high amounts of fertilizers;
however, in order to limit and/or prevent future environmental

and economic issues, agricultural practices are moving to-
wards more sustainable systems. In this context, the employ-
ment of PGPR as bioinoculants might represent a very prom-
ising approach, considering that they were capable of enhanc-
ing both plant development (increase in root and shoot bio-
mass, more branched root system) and nutrient bioavailability.

Despite these encouraging evidence, there are still many
aspects that have to be explored in order to gain a better un-
derstanding of all the interactions involved between plant and
PGPRs, aiming at an increased nutrient use efficiency. The
elucidation of the molecular mechanisms underlying the ef-
fects induced by bacteria on plants and vice versa as well as
the derived physiological and ecological implications could
allow the development of innovative fertilization practices in
agriculture based on biotechnological approaches for rhizo-
sphere engineering and management.
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