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Summary

Objective: Measurements of cell proliferation and matrix synthesis in cartilage explants have identified regulatory factors [e.g., interleukin-1
(IL-1)] that contribute to osteoarthritis and anabolic mediators [e.g., bone morphogenic protein-7 (BMP-7)] that may have therapeutic potential.
The objective of this study was to develop a robust method for measuring cell proliferation and glycosaminoglycan synthesis in articular car-
tilage that could be applied in vivo.

Methods: A stable isotope-mass spectrometry approach was validated by measuring the metabolic effects of IL-1 and BMP-7 in cultures of
mature and immature bovine cartilage explants. The method was also applied in vivo to quantify physiologic turnover rates of matrix and cells
in the articular cartilage of normal rats. Heavy water was administered to explants in the culture medium and to rats via drinking water, and
cartilage was analyzed for labeling of chondroitin sulfate (CS), hyaluronic acid (HA) and DNA.

Results: As expected, IL-1 inhibited the synthesis of DNA and CS in cartilage explants. However, IL-1 inhibited HA synthesis only in immature
cartilage. Furthermore, BMP-7 was generally stimulatory, but immature cartilage was significantly more responsive than mature cartilage, par-
ticularly in terms of HA and DNA synthesis. In vivo, labeling of CS and DNA in normal rats for up to a year indicated half-lives of 22 and 862
days, respectively, in the joint.

Conclusions: We describe a method by which deuterium from heavy water is traced into multiple metabolites from a single cartilage specimen
to profile its metabolic activity. This method was demonstrated in tissue culture and rodents but may have significant clinical applications.
ª 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Chief among the degenerative changes associated with
osteoarthritis (OA) is the degradation of articular cartilage,
the weight-bearing material found at the end of long bones
that facilitates the motion of joints. On a molecular level,
articular cartilage is a structurally organized connective tis-
sue whose extracellular matrix consists of a cross-linked
network of collagen fibers expanded by water and proteo-
glycans1. The primary proteoglycan in articular cartilage is
aggrecan, a macromolecule composed of a core protein
covalently attached to up to 150 glycosaminoglycan
(GAG) chains, primarily chondroitin sulfate (CS) and kera-
tan sulfate2. Up to 200 aggrecan molecules associate on
a backbone of hyaluronic acid (HA) to form aggregates
reaching molecular weights of over 200 MDa3.

A homeostatic balance between matrix synthesis and deg-
radation is maintained in healthy cartilage by a sparse popu-
lation of chondrocytes4, but these metabolic processes are
disrupted in degenerative joint diseases, in which a net loss
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of extracellular matrix components is observed5. Measure-
ments of critical metabolic pathways, including proliferation
of chondrocytes and synthesis of extracellular matrix compo-
nents, have identified regulatory factors that contribute to de-
generative joint disease, such as the pro-inflammatory
cytokine interleukin-1 (IL-16), as well as anabolic mediators
that have therapeutic utility, such as the growth factor bone
morphogenic protein-7 (BMP-7)7.

Kinetic measurements of these metabolic pathways have
traditionally employed radioactively-tagged precursors.
Methods based on radioactive tracers are sensitive and rel-
atively cost-effective, but their use in vivo is limited by safety
issues, particularly in humans. In addition to safety advan-
tages over radiotracers, stable isotope labeling with mass
spectrometric analysis generates unique information based
on patterns of isotopic isomers (e.g., mass isotopomer dis-
tribution analysis8,9) that can provide critical information
about biosynthetic processes. Stable isotope labeling with
heavy water (2H2O) has been used to label a wide range
of metabolites in vivo10e14, including DNA15, lipids14 and
protein16. Hydrogen-labeled water is an attractive tracer
because it equilibrates quickly and uniformly with body
water and the body water pool turns over relatively slowly
(w8% a week17,18), allowing 2H2O to be maintained easily
at relatively constant label concentrations15,18. Moreover,
protons from water enter CeH bonds at specific enzyme-
mediated steps in nearly every metabolic pathway, making
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2H2O a near universal tracer. We describe here the first
implementation of stable isotopes and mass spectrometry,
specifically heavy water, for quantifying the synthetic rates
of multiple products, including GAGs and cellular DNA,
within articular cartilage in vivo.

Relatively few studies have attempted to perform direct
metabolic measurements on articular cartilage in vivo. Mea-
surements in living animals are important because articular
cartilage interacts with other tissues that comprise the syno-
vial joint and are important in the pathology of OA, but such
interactions are difficult to reproduce in vitro19. Here, we
present a stable isotope-mass spectrometric technique
through which a single tracer can be used to quantify mul-
tiple aspects of extracellular matrix synthesis and cell prolif-
eration reliably and accurately in a sample of articular
cartilage. To validate the method in a well-characterized
model, we quantified CS, HA, and DNA synthesis rates in
bovine cartilage explants maintained in tissue culture and
examined the effects of IL-1 and BMP-7. The methods
were then extended to articular cartilage in vivo to measure
physiologic rates of extracellular matrix synthesis and artic-
ular chondrocytes proliferation in normal, growing rats.
Materials and methods
TISSUE CULTURE OF BOVINE CARTILAGE EXPLANTS
Bovine stifle joints with intact joint capsules were obtained within 24 h after
slaughter from three 1e3-week old calves (San Jose Valley Veal, San Jose,
CA, USA) and three 12e18-month old steers (Animal Technologies, Dallas,
TX, USA). Osteochondral blocks were harvested under sterile conditions
from the distal femur using a reciprocating saw (Johnson and Johnson, New
Brunswick, NJ, USA). Tissue samples were secured to a sledge microtome
(Microm GmbH, Walldorf, Germany), and plane-parallel 1 mm thick sections
of articular cartilage were obtained after discarding at least 200 mm from the ar-
ticular surface. For calf tissue, two sequential 1 mm thick cartilage sections
were obtained, whereas the adult articular cartilage layer was only thick
enough to yield one section of 1 mm thickness. From each of the cartilage sec-
tions, 3 mm diameter disks were obtained using a stainless-steel dermal punch
(Miltex GmbH, Tuttlingen, Germany). Cartilage disks were maintained at 37�C
and 5% CO2 in a basal medium consisting of Dulbecco’s modified Eagle’s me-
dium supplemented with 10% fetal bovine serum, 25 mg/ml ascorbate, antibi-
otics, and either 4 or 8% 2H2O (Spectra Stable Isotopes, Columbia, MD,
USA). In some samples, recombinant human IL-1a (R&D Systems, Minneap-
olis, MN, USA) was added to the medium at a final concentration of either 0.5 or
5 ng/ml. IL-1a was chosen because bovine chondrocytes are more responsive
proteinase K,
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Fig. 1. Protocol for isolating several metabolites from a single specimen o
lized cartilage is subjected to sequential digestion steps with hyaluronidas
HA, CS, and DNA. Further hydrolysis and derivatization steps (not shown

providing indices of the fractional synthe
to the a- than the b-isoform20,21. This concentration range induces a significant
loss of tissue sulfated GAG (sGAG) and inhibits sGAG biosynthesis in adult bo-
vine cartilage explants21,22. Some cultures included 100 ng/ml recombinant
human BMP-7 (R&D Systems, Minneapolis, MN, USA) throughout the culture
period, previously shown to stimulate the biosynthesis of sGAG in adult bovine
cartilage in the presence of serum23e25. Individual cartilage disks were incu-
bated in 1 ml of medium and transferred to new culture wells containing fresh
medium every 2 days to minimize the impact of cell migration onto tissue cul-
ture plastic. Explant disks were maintained in culture for 5 or 10 days. Spent
medium was frozen and analyzed for released extracellular matrix molecules.
TIME COURSE OF LABEL INCORPORATION IN ARTICULAR

CARTILAGE OF NORMAL RATS
Fifty male Sprague Dawley rats (initial weights 254e279 g, Charles River,
Wilmington, MA, USA) were administered 2H2O under isoflurane anesthesia.
Intraperitoneal injection of a priming bolus (35 ml/g body weight) consisted of
100% 2H2O in sterile 0.9% saline. Drinking water was replaced with water con-
taining 8% 2H2O, and animals drank ad libitum. Plasma was collected at sac-
rifice via cardiac puncture. The hind legs were removed, stored at�20�C until
processing and articular cartilage was then carefully scraped from the surface
of the medial tibia plateaus (MTP) using a scalpel, taking care not to penetrate
the subchondral bone. All animal experiments received IACUC approval.
ISOLATION OF DNA, CS, AND HA (FIG. 1)
Cartilage was solubilized by overnight digestion with 500 mg/ml proteinase
K at 55�C. The digest was then boiled for 10 min to deactivate proteinase K26

and portions were transferred to microfiltration tubes with 5 kDa cellulose fil-
ters (Millipore, Billerica, MA, USA) and centrifuged (60 min, 5000g) to retain
macromolecular material. A 50 mM acetate (pH 6) including 10 TRU/ml
streptomyces hyaluronidase (Seikagaku, Tokyo, Japan) and 0.02% bovine
serum albumin (BSA; SigmaeAldrich, St. Louis, MO, USA) were added,
allowed to incubate at 55�C for 2 h, centrifuged (60 min, 5000g) and the fil-
trate was collected. Residual macromolecular material was digested over-
night with 0.1 U chondroitinase ABC (SigmaeAldrich, St. Louis, MO) in
200 ml 50 mM Triseacetate (pH 8) including 0.01% BSA, and centrifuged.
The two solutions containing hyaluronidase or chondroitinase digestion prod-
ucts were hydrolyzed separately by incubation with equal parts 3 N metha-
nolic HCl (1 h, 20�C). DNA was collected by reconstituting the filter
retentate with water, then digested to free deoxyribonucleosides as
described previously10.
MEASUREMENT OF MASS ISOTOPOMER ABUNDANCES BY GAS

CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)
CS-, HA- and DNA-hydrolysis products were derivatized to the pento-
fluorobenzyl derivatives and acetylated, as described elsewhere10.
N-Acetyl glucosamine (glcNAc), N-acetyl galactosamine (galNAc) and
GC/MS
of dR

(cell proliferation)ChABC

GC/MS of
galNAc

(CS synthesis)

f articular cartilage and analyzing by GC/MS. Proteinase K-solubi-
e and chondroitinase ABC to separate the molecular constituents of
) are used to prepare glcNAc, galNAc, and dR for GC/MS analysis,
sis HA, CS and DNA, respectively.
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deoxyribose (dR) were analyzed by GC/MS as representative analytes of
each polymer (CS, HA, and DNA, respectively). GC retention times were
established with unlabeled standards, and the abundances of M0, M1,
and M2 mass isotopomers were analyzed by selected ion monitoring, using
a model 5973 mass spectrometer attached to a 6890 gas chromatograph
(Agilent, Palo Alto, CA) and negative chemical ionization (NCI). GC column
was DB17 (30 m, 0.25 mm i.d., 0.25 mm film thickness, J&W Scientific, Fol-
som, CA), the helium gas flow rate was adjusted to 1.0 ml/min, and the
temperature was programmed, following an initial hold at 140�C for
1 min, to rise from 140 to 300�C at 15�C/min. Isotope enrichments of
the M1 and M2 mass isotopomers of 2H-labeled samples (EM1 and EM2,
respectively) were calculated by subtracting the fractional abundances of
unlabeled standards.
MEASUREMENT OF 2H2O ENRICHMENTS IN CULTURE MEDIUM

AND TERMINAL RAT PLASMA
Aliquots of plasma (100 ml), placed into the caps of tightly sealed, inverted
screw-capped vials, were kept at 60�C in a heating block overnight. The 2H
BMP-7
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Fig. 2. Age-dependent effects of IL-1 and BMP-7 on the biosynthesis of CS
medium containing 0 (-), 0.5 ( ), or 5 (,) ng/ml IL-1a, with or without 1
after (A) 5 and (B) 10 days in culture, as well as that in immature bovine e

main effect; *P< 0.05 compared with IL-1-free c
enrichment of the condensate collected in the vial was measured by reacting
with calcium carbide to form acetylene. Acetylene samples were then ana-
lyzed using a Series 3000 cycloidal mass spectrometer (Monitor Instruments,
Cheswick, PA, USA), modified to record ions at m/z 26 and 27 (M0 and M1)
and calibrated against a standard curve prepared by mixing 99.9% 2H2O with
unlabeled water.
CALCULATIONS
In order to interpret label incorporation from 2H2O into an end-product, it is
necessary to determine the number of hydrogen atoms (n) in the molecule that
originated from body H2O during biosynthesis. While n has been established
by use of long-term labeling or combinatorial analysis of mass isotopomer la-
beling patters for DNA15 and other metabolic products15,27e30, it was not
known for GAG molecules, and it may vary under different in vivo and in vitro
labeling conditions. Once the number of sites of 2H incorporation has been de-
termined for a molecule, the asymptotic EM1 value corresponding to 100%
newly-synthesized molecules (A1*) can be calculated for any 2H2O concentra-
tion, as discussed previously16,31. Since the measured EM1 of a labeled
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in bovine cartilage explants. Cartilage explants were maintained in
00 ng/ml BMP-7. Fractional CS synthesis in mature bovine explants
xplants after (C) 5 and (D) 10 days is shown. **P< 0.05 for BMP-7
ontrols. n¼ 8 from triplicate experiments.
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molecule represents the weighted average of unlabeled (old) and fully labeled
(new) molecules, the fraction of molecules that were newly-synthesized ( f )
can be calculated. Specifically, n for galNAc and glcNAc was determined to
4.3� 0.8 in 10 tissue culture experiments and 6.1� 0.7 in eight rat experi-
ments (additional details available as online Supplementary material). For
2H2O enrichments of 7.2% in vitro and 5% in vivo, A1* for newly-synthesized
GAG molecules is 16.0 and 16.3%, respectively. Values of f for CS and HA
were calculated by dividing the measured EM1 of galNAc and glcNAc mole-
cules by their asymptotic A1* value. For fractional DNA synthesis, measured
EM1 in dR was divided by its A1* value, based on n¼ 5, as established pre-
viously10,15,31. Absolute synthesis rates were calculated by multiplying f by
pool sizes, measured biochemically (see below).
BIOCHEMISTRY
Cartilage digest solutions and spent medium were analyzed for sGAG con-
tent after incubation with dimethylmethylene blue (DMB, Polysciences, War-
rington, PA)32, using type C CS from shark cartilage (SigmaeAldrich, St.
Louis, MO) as a standard. DNA content in the cartilage digests was
assessed by fluorometry after incubation with PicoGreen� (Molecular Probes,
Eugene, OR)33 and converted to cell number, assuming 7.7 pg DNA/cell34.
STATISTICAL ANALYSIS
All data are expressed as mean� standard deviation. Statistical analysis
was implemented with Systat 5.2 (Systat, Inc., Evanston, IL, USA). For most
comparisons, the main treatment effects (IL-1 or BMP-7) were assessed by
one- or two-way analysis of variance (ANOVA), with Tukey post hoc testing. In
all statistical tests, independent experiments were introduced as a random vari-
able. For rat studies, deuterium incorporation curves were fit to a first-order ex-
ponential rise-to-plateau function (SigmaPlot, Systat, Inc., Evanston, IL, USA),
and half-lives (t1/2) were calculated from the time constant (k) as t1/2¼ ln 2/k. Cu-
mulative f over the first 14 days in rats also was analyzed by linear regression.
Results
EFFECT OF IL-1 AND BMP-7 ON CS SYNTHESIS IN BOVINE

EXPLANTS IN VITRO
Adult bovine cartilage explants incubated with serum-
supplemented control medium (without IL-1 and BMP-7)
maintained a relatively constant sGAG content between 5
and 10 days (350� 50 and 330� 30 mg/disk, respectively;
P¼ 0.9, n¼ 8). Under these steady-state culture conditions,
the explants released sGAG into the medium at a rate
of 7� 2 mg/day, representing an sGAG turnover of
2.2� 0.7%/day.

For tissue CS, f was determined from deuterium-la-
beled galNAc molecules in CS chains. In control studies,
the measured fractional CS synthesis did not vary when
different enrichments of 2H2O were used in the culture
medium ( f¼ 13.2� 1.1 and 13.9� 1.9% after 5 days,
for 4 and 8% 2H2O, respectively; P¼ 0.9, n¼ 4), confirm-
ing that heavy water exposure at these concentrations
did not affect cartilage physiology. For adult bovine ex-
plants maintained under control conditions, 10� 1% of
the total CS was newly-synthesized over the first 5
days of serum-supplemented culture [Fig. 2(A)], and f
increased over time, reaching 18� 2% in the day 10
samples [Fig. 2(B)]. This isotopic result represents an f
of 1.9%/day, quantitatively similar to the turnover rate es-
timated from sGAG release into the medium in the same
samples (see above).

To induce catabolic changes in the cartilage explants, cul-
tures were stimulated with IL-1. The inclusion of IL-1 did not
detectably alter the sGAG content of adult explants at day 5
(P¼ 0.7), but by day 10, tissue sGAG content was diminished
by 27% with 0.5 ng/ml IL-1 (P¼ 0.02) and by 86% with
5 ng/ml (P� 0.001; data not shown). The addition of BMP-7
at 100 ng/ml had no effect on total sGAG content at either
timepoint (P¼ 0.8 and 0.7 for days 5 and 10, respectively).

Heavy water labeling revealed that IL-1 dose-depen-
dently inhibited the synthesis of CS in the adult explants
maintained for 5 and 10 days by up to 63%, down to f of
1.2%/day [Fig. 2(A,B); P< 0.001 at both timepoints]. The
inclusion of 100 ng/ml BMP-7 stimulated fractional CS syn-
thesis by 32% at day 10 (Tukey P¼ 0.01), unless IL-1 was
present (interaction P¼ 0.03).

Biosynthesis of CS was also measured in explants of
immature, growing articular cartilage, harvested from knee
joints of 1e3-week old newborn calves. Like the adult
explants, calf explants maintained in basal medium
exhibited constant levels of tissue sGAG content between
5 and 10 days of culture (531� 42 and 538� 74 mg,
respectively). In these immature cartilage explants, the
cumulative f increased over time, from 14� 2% new CS at
day 5 to 29� 4% at day 10 [Fig. 2(C,D); n¼ 8]. The daily f
was 2.9� 0.4%/day, which was similar to the rate at which
sGAG was released into the medium (2.6� 0.9%/day), but
53% higher than that in mature tissue [Fig. 2(A,B);
P< 0.01]. In contrast, the absolute synthesis rate of sGAG
was only 15% higher when expressed on a per cell basis
[80� 19 and 98� 11 pg/day over the first 5 days for adult
and calf chondrocytes, respectively; Fig. 3(A,C)]. The highest
dose (5 ng/ml) of IL-1 inhibited f by 60e61% in the calf-
derived explants labeled for 5 or 10 days [Fig. 2(C,D);
P< 0.01 at both timepoints], similar to the response of adult
cartilage, but inhibition of f by the intermediate dose of IL-1
(0.5 ng/ml) was modest at day 5 (Tukey P< 0.05) and unde-
tectable at day 10 [Tukey P¼ 0.3; Fig. 2(D)]. The inclusion of
100 ng/ml BMP-7 stimulated f by an average of 30% (ANOVA
P< 0.05 for both timepoints) without a statistically significant
interaction with IL-1 (interaction P¼ 0.13e0.15) [Fig. 2(C,D)].
EFFECT OF IL-1 AND BMP-7 ON HA SYNTHESIS IN BOVINE

EXPLANTS IN VITRO
Fractional synthesis of tissue HA wasdetermined by [2H]-la-
bel incorporation into glcNAc molecules in HA chains. For HA,
f was 1.3� 0.2%/day in adult cartilage explants maintained
under control conditions, 32% slower than f for CS. HA synthe-
sis increased by an average of 32% (P¼ 0.03) by addition of
IL-1 at the early timepoint [Fig. 4(A)], but by day 10, the stimu-
lation had dissipated [Fig. 4(B); P¼ 0.6]. BMP-7 had no effect
on HA synthesis at either timepoint (P¼ 0.7e0.8).

In contrast, in immature bovine cartilage, f for HA was 2.3
times higher than in the adult cartilage [w3%/day;
Fig. 4(C,D)], but regulation by IL-1 and BMP-7 more closely
resembled the CS response, in that IL-1 was markedly
inhibitory (P¼ 0.02 at both timepoints) and BMP-7 was
markedly stimulatory (P¼ 0.02e0.03).
EFFECT OF IL-1 AND BMP-7 ON DNA SYNTHESIS IN BOVINE

EXPLANTS IN VITRO
In adult cartilage explants, chondrocyte proliferation was
generally low, with 0.2e0.4% of the total cell population pro-
liferating per day. This low basal level of cell turnover was
not detectably affected by either BMP-7 or IL-1
[Fig. 5(A,B); P¼ 0.2e0.4].

In contrast, cell proliferation in newborn cartilage exhibited
a temporal lag, with the average f for DNA initially similar to
that in the adult [0.55� 0.25%/day; n¼ 8; Fig. 5(C)], but in-
creasing 6.5-fold between days 5 and 10 to an average of
2%/day [Fig. 5(D)]. Proliferation was inhibited by IL-1 at
both timepoints (P¼ 0.03 on day 5 and P< 0.001 on day
10) and there was an overall 2-fold stimulation by BMP-7
(P¼ 0.02 on day 5 and P< 0.001 on day 10), except at the
highest IL-1 dose (interaction P¼ 0.001 on day 10).
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Fig. 3. Age-dependent effects of IL-1 and BMP-7 on the biosynthesis rate of sGAG in bovine cartilage explants, expressed as sGAG synthe-
sized per day. Cartilage explants were maintained in medium containing 0 (-), 0.5 ( ), or 5 (,) ng/ml IL-1a, with or without 100 ng/ml
BMP-7. Absolute CS deposited is determined from the product of fractional CS synthesis and total tissue content of sGAG and presented
normalized to cell number. CS biosynthesis was determined for mature bovine explants maintained for (A) 5 and (B) 10 days and for immature
bovine explants maintained for (C) 5 and (D) 10 days. **P< 0.05 for BMP-7 main effect; *P< 0.05 compared with IL-1-free controls. n¼ 8 from

triplicate experiments.

927Osteoarthritis and Cartilage Vol. 17, No. 7
IN VIVO MEASUREMENTS OF CS SYNTHESIS AND CELL

PROLIFERATION IN ARTICULAR CARTILAGE
After receiving 2H2O, the average body water enrichment
of rats sacrificed at timepoints ranging from 2 to 365 days
was 5.2� 0.5% (n¼ 50). Based on the measured value of
n¼ 6 CeH bonds (see online Supplementary material), this
2H2O enrichment (P) corresponds to an asymptotic EM1
(A1*) of 16.3% for newly-synthesized galNAc in CS. After
365 days of 2H2O, enrichment of CS from the cartilage of
the MTP reached 95� 0.2% of this asymptote, confirming
the calculated theoretical maximum enrichment and indicat-
ing virtually complete CS turnover (Fig. 6). Over the initial
17 days of 2H2O labeling, fractional CS synthesis in the rat
MTP appeared to be relatively linear (r2¼ 0.94, P< 0.01,
n¼ 48), averaging 2.6� 0.5%/day, similar to the turnover
rate of CS seen in adult and immature bovine cartilage in vitro
over 10 days in culture. Overall, the kinetics of CS in the rat
MTP exhibited a first-order half-life of 22 days.

In contrast to the CS turnover rate in articular cartilage of
the rat, chondrocyte proliferation was only 44� 4% after 1
year (t1/2¼ 862 days), and the initial rate of cell proliferation
(0.68� 0.09%/day; n¼ 2) was comparable to values in the
explants from newborn calves at the onset of culture. Of
note, articular cartilage in vitro in rats and from newborn
calf explants both exhibited detectable cell proliferation,
unlike adult bovine explants.
Discussion

We describe here a method for direct measurement of the
synthesis rates of multiple metabolites simultaneously from
a single specimen of cartilage that is also applicable in vivo.
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Fig. 4. Age-dependent effects of IL-1 and BMP-7 on the biosynthesis of HA in bovine cartilage explants. Cartilage explants were maintained in
medium containing 0 (-), 0.5 ( ), or 5 (,) ng/ml IL-1a, with or without 100 ng/ml BMP-7. Fractional HA synthesis in mature bovine explants
after (A) 5 and (B) 10 days in culture, as well as that in immature bovine explants after (C) 5 and (D) 10 days is shown. **P< 0.05 for BMP-7

main effect; *P< 0.05 compared with IL-1-free controls. n¼ 8 from triplicate experiments.
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The data presented here validate in several ways the stable
isotope-mass spectrometric techniques for monitoring artic-
ular biology in vivo. First, a widely-used in vitro model sys-
tem was characterized kinetically, followed by the in vivo
application of the method over an extended period of
time. The similarities between isotopically measured CS
synthesis rates and CS release in steady-state culture of
cartilage explants and the finding that rat cartilage-derived
CS was enriched with deuterium to 95% of the theoretical
maximum value after a year on heavy water both support
the quantitative nature of this method.

Matrix and cell turnover in articular cartilage were quan-
tified after the administration of 2H2O from the labeling of
glcNAc, galNAc and dR derived from HA, CS and DNA,
respectively. Sufficient yields of the latter two analytes
were obtained from a single specimen of cartilage at least
0.3 mg (by wet weight); ca. 1 mg of cartilage was neces-
sary to reproducibly analyze HA. While the enzyme-based
methods used to isolate these metabolites do not achieve
purity, the subsequent GC/MS analysis (which involves
both GC separation and mass identification) ensured
the purity of the analytes. The degree to which cultured
cartilage explants incorporated 2H into newly-synthesized
HA, CS, and DNA was quantified, enabling measure-
ments of matrix synthesis and cell proliferation that
were modulated positively by BMP-7 and negatively by
IL-1.

IL-1 is a pro-inflammatory cytokine that contributes to
the disruption of matrix homeostasis in joint diseases35,
in part by exerting inhibitory effects on aggrecan gene
expression36 and the deposition of newly-synthesized
sGAG6,20,22,37. In bovine explant cultures, we show that
IL-1 inhibits the fractional synthesis of CS in both adult
and immature cartilage by as much as 63% at a concen-
tration of 5 ng/ml. This result is quantitatively similar to
previous studies on cartilage metabolism, in which bovine
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Fig. 5. Age-dependent effects of IL-1 and BMP-7 on cell proliferation in bovine cartilage explants. Cartilage explants were maintained
in medium containing 0 (-), 0.5 ( ), or 5 (,) ng/ml IL-1a, with or without 100 ng/ml BMP-7. Fractional DNA synthesis in mature bovine
explants after (A) 5 and (B) 10 days in culture, as well as that in immature bovine explants after (C) 5 and (D) 10 days is shown.

**P< 0.05 for BMP-7 main effect; *P< 0.05 compared with IL-1-free controls. n¼ 8 from triplicate experiments.
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cartilage maintained under similar culture conditions
exhibited a 50e65% inhibition in radiosulfate incorporation
when exposed to such high doses of IL-121,38. Further-
more, we found that under the serum-supplemented con-
ditions used here, 0.5 ng/ml IL-1 inhibited fractional CS
synthesis in mature, but not immature, bovine cartilage,
indicating higher sensitivity of mature cartilage to degener-
ative changes. This is consistent with in vivo studies in
mice39,40 and rabbits37 but other in vitro studies that di-
rectly compare the inhibition of GAG by IL-1 on young
and old cartilage have shown mixed results40e43, perhaps
due to differences in culture conditions. Indeed, van Beu-
ningen and co-authors reported that age-related differ-
ences in IL-1 sensitivity dissipated when using defined,
rather than serum-supplemented, medium40, a finding
that underscores that the counteracting response to ana-
bolic growth factors modulates the effect of IL-1. In our
study, IL-1 also suppressed the rates of fractional HA syn-
thesis and cell proliferation in immature bovine cartilage,
whereas adult cartilage exhibited a moderate upregulation
of HA synthesis in response to IL-1, which has been dem-
onstrated previously for chondrocytes isolated from bovine
animals44,45. In immature cartilage especially, the stimula-
tion of DNA and GAG synthesis by BMP-7 was sufficient
to offset the inhibitory effects of IL-1, consistent with the
chondroprotective role of BMP-7 shown in vitro46 and in
animal studies47. Although BMP-7 had been thought to
exert negligible effects on chondrocyte proliferation7, our
data indicate that BMP-7, in combination with serum, in-
duced a marked stimulation of DNA synthesis in immature
chondrocytes. This finding extends a recent report in
which the proliferation of adult chondrocytes, isolated
from their native cartilage matrix, was enhanced by the
synergistic effects of BMP-7 combined with insulin-like
growth factor-148. Age-dependent variations in the re-
sponse to regulatory factors such as IL-1, BMP-7 and
those found in serum, as demonstrated here and else-
where6, may clarify why young cartilage is less
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susceptible to the degenerative changes associated with
OA. Of interest, we found that the fractional synthesis
rates of CS were 53% higher in calf cartilage than in adult
cartilage, but that the absolute synthesis rate was only
15% higher when expressed on a per cell basis, suggest-
ing that reduced cellularity at later stages of growth
accounts for the majority of the age-related decline.

Stable isotope-mass spectrometric approaches are par-
ticularly well-suited for kinetic studies that require in vivo
measurements. In 1952, 16-day pulse-chase studies using
adult rats estimated the half-life of incorporated radiosulfate
to be 17 days in rib cartilage49, comparable to the physio-
logical turnover rate of articular cartilage CS reported here
(t1/2¼ 22 days). More recently, ex vivo tissue culture
models have been more commonly used. Maroudas and
coworkers demonstrated in rabbits and dogs that in vitro
labeling of freshly harvested cartilage corresponded with
in vivo labeling50, suggesting that under controlled condi-
tions, it is possible to obtain a quantitative measure of
sGAG synthesis on the basis of ex vivo experiments.
When interpreting data from such assays in vitro, however,
it is important to consider the injurious effects of tissue lac-
erations on the viability of adjacent cells51, the diffusivity of
the tracer in short-term labeling protocols, and the presence
or absence of confounding medium components, such as
serum. Moreover, OA, in particular, is a disease that
involves interaction between multiple tissues, and as
such, many relevant aspects of the pathology are difficult
to reproduce in vitro.

Measurement of cartilage-related kinetics using heavy
water allows for in vivo metabolic measurements over
a range of labeling intervals. The incorporation of deute-
rium into newly-synthesized CS in rat articular cartilage
was approximately linear for the first 2 weeks when heavy
water was administered, with cumulative values of f
reaching 35� 4% after 14 days. On the other hand, mito-
sis occurred in vivo on a much slower timescale, with only
44% of the chondrocytes labeled as new after 1 year. We
began labeling in rats at an age that is considered skele-
tally mature52. In rats53 and in other skeletally-mature an-
imal models54e56, chondrocyte proliferation has been
reported to be a rare event when tritiated thymidine was
used as a label. Since those studies involved short-term
labeling periods (e.g., 4 h56), low labeling indices on the
order of one mitotic cell per 1000 would result if only
0.68% of chondrocytes turnover per day, as we mea-
sured, which may be difficult to detect with autoradiogra-
phy. The ability of heavy water labeling techniques to
make metabolic measurements over an extended period
of time is a potential advantage for monitoring the effects
of regulatory factors that are expected to exert their influ-
ence over long periods of time, such as the cumulative,
time-averaged effects of exercise (joint loading), the
chronic effects of OA, or the in vivo pharmacodynamics
of therapeutic interventions.

This kinetic approach has potential clinical applications.
Heavy water has been studied in animal models as well
as humans for over 60 years. Extensive studies with long-
term administration in animal models indicate that there
are no adverse effects on normal physiology, including
growth, appetite, reproduction, neoplasia or hematological
parameters, at 2H2O levels several-fold higher than in the
present studies57,58. Indeed, at levels of deuterium enrich-
ment in body water below 15%, harmful effects in mammals
have not been detected58,59. Moreover, maintenance of
>15% deuterium enrichment in body water requires ongo-
ing intake of drinking water at even higher enrichments
(20e25% or higher). These enrichments of body water or
drinking water are several-fold higher than those in the
present studies, or in any human studies carried out
with this method. Heavy water has also been given
alone10,16,18,60e63, or as part of doubly labeled water proto-
cols for measuring energy expenditure64e68, to thousands
of human subjects without observable adverse effects.
The heavy water labeling approach described here has
been successfully applied in preliminary studies of non-
load-bearing articular cartilage sampled in humans at the
time of routine notchplasty surgery, following a few weeks
of oral heavy water intake (unpublished observations).
Moreover, it may be possible to develop synovial fluid bio-
markers of cartilage metabolism following heavy water
intake, raising the prospect of using less invasive methods.
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