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Abstract Despite the absence of major Quaternary glaciations in arid Northwest China, significant climatic
oscillations definitely impacted the evolution of the biota in situ. Phylogeography has grown as a discipline because it
has provided explicit tools for the study of geographical subdivision among populations. But phylogeographical
application for arid Northwest China has begun to blossom, which has provided evidence that aridification played a
significant role in the increase of genetic diversity and species diversification. The time frame corresponds with
Pleistocene climatic oscillations, which caused extreme aridity and the expansion of sandy deserts. In the Asian desert
flora subkingdom and Eurasian forest subkingdom of Northwest China, the recurrent phylogeographical scenarios,
identified by different case studies, broadly agree with longstanding biogeographic, floristic, and topographic
concepts: (i) aridification promoted diversification and speciation of desert plants; (ii) desert expansion caused
habitat fragmentation; (iii) the Altay–Tianshan Mountains included glacial refugia for plants; (iv) population
expansion and recolonization from glacial refugia occurred during the postglacial period; and (v) desert plants
persistence and alpine plants retreat during climate oscillations. We discuss the main phylogeographical findings in
light of molecular and paleo-environmental evidence, emphasizing notable gaps in our knowledge and outlining
future research perspectives for disentangling the evolutionary history of this arid region’s flora.
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With the development of molecular methods, phylogeography
has grown as a popular discipline investigating geographical
variation by use of molecular markers, and it has explored
explosively in the recent three decades since 1987 (Avise et al.,
1987). At present, it is well appreciated that global climate
fluctuations, in particular the remarkable Quaternary climatic
oscillations, have instigated cycles of habitat contraction and
expansion, and latitudinal–altitudinal shifts of species’ distri-
butions, affecting the genetic structure of many plant and
animal species in temperate zones of the Northern Hemi-
sphere (Hewitt, 2000, 2004; Petit et al., 2003; Hickerson et al.,
2010). Phylogeography has been appreciated as a major focus
of evolutionary biology, using spatiotemporal distribution of
genetic lineages to deduce the influence of historical processes
on species’ evolution. Also, it has provided an effective
approach, when detailed reconstruction of the evolutionary
process of plant species has been hampered by lack of fossil
data, to untangle the evolutionary history of species (Comes &
Kadereit, 1998). In documentation of the effects of climatic
shifts on organisms, numerous phylogeographical surveys of
temperate plant species in Europe (e.g., Demesure et al., 1996;
Comes & Kadereit, 1998; Schönswetter et al., 2005), North
America (e.g., Shaw & Small, 2005; Brunsfeld et al., 2007;
Gonzales et al., 2008), and the Japanese Archipelago (e.g.,

Okaura & Harada, 2002; Ikeda & Setoguchi, 2007) can be
referenced. Phylogeography also addressed the topic in South
America, Africa, and Australia, where research has seen
exponential growth recently (e.g., Lorenz-Lemke et al., 2010;
Lorenzen et al., 2012; Nakamura et al., 2012; Segovia et al.,
2012). Phylogeographical surveys of plant species have been
informative in resolving or further delineating the location of
glacial refugia, and routes of colonization and range expansion
after glacial periods (Petit et al., 2003; McLachlan et al., 2005;
Ikeda & Setoguchi, 2007; Gonzales et al., 2008; Carnicer et al.,
2012). In addition, phylogeographical results, regardless of
whether pertaining to trees, shrubs, or herbs, have proved to
be consistent with fossil pollen evidence in indicating extensive
latitudinal range shifts, typically in the form of retreat
southward and to lower altitudes during glaciation, followed
by rapid expansion northward and to higher altitudes during
postglacial intervals (Comes & Kadereit, 1998; Hewitt, 1999;
Nason et al., 2002; Sakaguchi et al., 2011; Segovia et al., 2012;
Voss et al., 2012).

In China, the progress of plant phylogeographical studies has
been recently outlined (Qiu et al., 2011; Liu et al., 2012). As
pointed out by these authors, most studies have focused on the
Sino-Japanese flora of East Asia, in which harbors the largest
amount of diversity among theworld’s temperate regions (Ying
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et al., 1993; Myers et al., 2000); it was also the most important
glacial refugium for Tertiary representatives (“relics”) through-
out Quaternary ice-age cycles (Qiu et al., 2011). Studies have
often investigated endangered or endemic species, especially
those concentrated in the areas of the Hengduan Mountains
and adjacentQinghai–Tibet Plateau (QTP) regions (Cun&Wang,
2010; Li et al., 2010; Zhang et al., 2011; Jia et al., 2012; Liu et al.,
2013; Wang et al., 2013a; Zhao et al., 2013). These constitute an
area referred to as the core of the Himalayan hotspot,
containing one of the greatest concentrations of biodiversity
in theworld due to its high level of species and generic richness.
In contrast, very few studies have been applied to the
vegetation in arid zones of China.

Development of deserts in Central Asia was a response to
global climatic change (e.g., long-term cooling and drying
trends) and regional factors (e.g., the environmental effects of
the Himalayas and QTP rising). The India–Asia continental
collision may have begun at ca. 50 Mya; uplift had become
sufficient by late Eocene or early Oligocene for the appearance
of abundant pollen of high altitude conifers in the north of the
QTP and in sediments of the South China Sea (Wu et al., 2003;
Hoorn et al., 2012). Retreat of the Tethys Ocean from the Tarim
Basin also occurred at that time (Hoorn et al., 2012). A
consequent increase in arid Eurasian continental interior is
demonstrated by the first appearance of pollen referable to
Artemisia L., as well as abundant chenopods (Sun & Wang,
2005;Miao et al., 2011; Hoorn et al., 2012). By the earlyMiocene,
central parts of the QTP may have uplifted to present heights
(Wang et al., 2008; Wu et al., 2008), and long-term dust
deposition in the Loess Plateau and Dzungarian Basin were
established (Guo et al., 2002, 2008; Sun et al., 2010). The size of
the QTP appears to have been augmented through times by
successive peripheral uplifts, with presumably increasing
climatic effects (Lu et al., 2004; Clark et al., 2005; Fang
et al., 2005). In addition to these geologic events, the climate of
temperate areas of the earth experienced a general cooling
and drying trend connected with atmospheric CO2 decrease
(Dupont-Nivet et al., 2007; Miao et al., 2012), which reached
their most profound minima during glacial periods of the
Pleistocene. Strong episodic cooling at those times resulted in
sharp increases in aridity of the Chinese deserts (Fang et al.,
2002; Ding et al., 2005).

Deserts make up approximately one-third of Earth’s land
surface, and host a surprisingly rich biodiversity. Geological
processes, such as the dynamics of sand movement, oasis
formation, and river course alterations, often affect population
genetic structure and speciation (Riddle et al., 2000; Nason
et al., 2002; Riddle & Hafner, 2006; Garrick et al., 2009) in
deserts of North America, Africa, and Australia. Geographic
barriers between deserts apparently have led to vicariant
speciation or population differentiation in many desert
organisms (Byrne, 2008; Fehlberg & Ranker, 2009; Rebering
et al., 2010). Climatic oscillations and associated environmental
changes in the Quaternary promoted range fragmentation,
vicariance, and population isolation, providing opportunities
for allopatric speciation through the action of selection and/or
genetic drift in temperate plants. So far, a growing body of
studies, based on pollen cores, fossils, moraines, and
deposition of loess, have begun to elucidate the possible
roles of geology, multiple glaciations and climatic oscillations in
shaping the current geo-ecological system occurring across

these arid zones (Sun, 2002; Wu et al., 2002; Sun & Zhang,
2009; Sun et al., 2010; Guan et al., 2011). However, phylo-
geography of plant species spanning the arid zones of
Northwest China are limited and, to the best of our knowledge,
restricted to regional floras. Thus, a phylogeographical review
on arid Northwest China is now needed.

Our focus is on the effects of Quaternary changes in climate
and topography on the current population genetic structure of
plants in these regions, especially in light of region-specific
paleo-environmental evidence, but also considering major
phylogeographical concepts developed in other temperate
regions of the Northern Hemisphere. We begin with a brief
account of the phytogeographic and vegetational features of
arid Northwest China, followed by some general biogeograph-
ic hypotheses concerning the origin of plant species diversity
and endemism in these regions. In this study, we want to point
out the distinctive features in these regions, because the
influence of the Quaternary cold and dry period on the
geographical distribution of genetic diversity in arid Northwest
China is still not very clear. Based on current research, we
attempted to address these questions: Did aridification
resulting from climatic shifts promote the diversification and
speciation in the vast deserts and steppes or not? Were there
refugia distributed in the arid zones? Howwere the refugia and
biodiversity centers distributed? Were there common phylo-
geographical patterns of the diversification, isolation habitat
fragmentation, and colonization as in other sections (e.g.,
temperate regions and the QTP)? Here, we present a
phylogeographical review of plants in arid Northwest China
and try to elucidate general patterns to address these
questions. We conclude by outlining some future challenges
and research prospects, hoping it will provide future directions
and stimulation for further research on the evolutionary
history and biogeography of the world’s arid flora, especially
that of Central Asia.

Phytogeographic and vegetation features
in arid Northwest China
From the viewpoint of phytogeographic studies, arid North-
west China belongs to the “Central Asia, West Asia–
Mediterranean Kingdom,” which includes the regions sur-
rounding the Mediterranean Sea, regions from West Asia to
South Russia, and Central Asia and Northwest China (e.g.,
Xinjiang, Inner Mongolia Plateau, and the QTP) (Good, 1974).
Generally, we regard these regions as pertaining to (Wu
& Wang, 1983): the Asian desert flora subkingdom and
the Eurasian forest subkingdom (Fig. 1). Both of them are
represented within the deserts and mountains of Northwest
China. We omit the phylogeography of plants occurring in
other parts of the QTP, as they have been reviewed elsewhere
(Qiu et al., 2011).

The distribution of the Asian desert flora subkingdom is
closely related to its geographic position, climate, and
atmospheric circulation. The Northwest arid zones are located
in the interior of Eurasia at a profound distance from the sea,
and are consequently reached by little moisture. Also, the QTP
rising weakens the westerlies and intensifies the Mongolian–
Siberianhighpressure,bringingtheseareasunder thecontrolof
the continental dry air mass, so Asian deserts become the arid
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climatic center of Eurasia. Shrubs, subshrubs, and herbs (e.g.,
Chenopodiaceae, Lamiaceae, Fabaceae, Rosaceae, Zygophylla-
ceae, and Tamaricaceae) are able to withstand drought and
dominate in these regions.

The Eurasian forest subkingdom in arid Northwest China,
including the Altay and Tianshan Mountains, has undergone
glaciation and climatic shifts during the Quaternary (Yi et al.,
2004; Lehmkuhl & Owen, 2005; Xu et al., 2010), which belongs
to the cold temperate and temperate mountain coniferous
forest. The vegetation in these areas consists of shrubs, trees,
and herbs (e.g., Pinaceae, Cupressaceae, Betulaceae, Salica-
ceae, Rosaceae, Ranunculaceae, and Rubiaceae).

General biogeographic hypotheses on the
origin of plants in Northwest China
The origin of plant species diversity and endemism in arid
Northwest China has attracted much attention from phyto-
geographers and paleontologists (Wu &Wang, 1983; Liu, 1985;
Wu & Zhou, 1986; An et al., 2001; Dang & Pan, 2001; Dang et al.,
2002; Zhao, 2003; Zhao & Zhu, 2003). According to these
published works, when the QTP was uplifted catastrophically
by >3000m in the Quaternary, the regression of the Tethys
Sea, initiation of the Asian monsoons, and aridification of the
Asian interior also occurred. The origins of the flora in
northwestern China have frequently been discussed from this
point of view, but the ideas presented may be of value even if
the timelines remain highly discordant. Of course, on the basis
of the viewpoints mentioned above, these geologic events
would have likely affected the origin of interspecific or
intraspecific taxa, or they might relate to genera.

As suggested, the flora of arid Northwest China derived
primarily from Tethys coastal xerophytes (Liu, 1985, 1995;
Dang et al., 2002). From the viewpoint of palynology, Xinjiang
and Kazakhstan had similar paleo-environments, and were
parts of the Tethys vegetational zone (Dang et al., 2002). In
the late Eocene or late Pliocene, abundant pollen of
Asteraceae (e.g., Artemisia) and Chenopodiaceae on the
northern margin of the QTP illustrated that the vegetation
type had been transformed from a deciduous broad-leaved
forest to desert steppe (Guo & Gu, 1993; Sun & Wang, 2005).
There have also been some East Asian floral elements
incorporated into the desert flora, such as Caragana Fabricius,
which originated as a forest species in East Asia in the
Eocene and expanded southwestward and northwestward,
with the northwest clade becoming adapted to arid environ-
ments and there forming Sect. Microphyllae Lam. (Zhang &
Fritsch, 2010).

Phylogeography in temperate steppes and
deserts, the Asian desert flora subkingdom
Aridification promoted diversification and speciation of desert
plants
Pleistocene climatic shifts played important roles in shaping
geographical patterns of intraspecific genetic diversity (He-
witt, 1996, 2000, 2004); however, the role in driving speciation
is less clear (Willis & Niklas, 2004; Futuyma, 2010), especially in
Northwest China. Fortunately, the phylogeography of desert
plants has been increasing to elaborate the speciation and
diversification that resulted from aridity when the climate
shifted in the Quaternary (Ge et al., 2011; Meng & Zhang, 2011,

Fig. 1. Major geographical and phytogeographical features of arid Northwest China and significant locations. The red dashed line
demarcates boundaries in arid Northwest China; blue dashed lines demarcate boundaries of two floristic subkingdoms according
to Wu & Wang (1983). A, Asian desert flora subkingdom; B, Eurasian forest subkingdom. 1, Ili (Yili) Valley; 2, Dzungarian Basin; 3,
Tarim Basin; 4, Helan Mountains; 5, Ulanbuhe Desert; 6, Kubuqi Desert; 7, Yinshan Mountains.
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2013; Su et al., 2011, 2012; Ma & Zhang, 2012; Ma et al., 2012a; Su
& Zhang, 2013; Gao et al., 2014).

Lagochilus ilicifolius Bunge ex Bentham, belonging to the
family Lamiaceae, and with a distribution area ranging from
northern China to parts of Mongolia and Russia, provided the
first molecular evidence from chloroplast DNA (cpDNA)
sequence variation of desert plants. Genetic analyses revealed
high diversity and significant phylogeographical signal among
populations (Meng & Zhang, 2011). Furthermore, there was a
high level of cpDNA haplotype diversity within the desert edge
area, but mainly haplotypic uniformity across the more arid
regions, indicating diversification as the desert range expand-
ed, or perhaps the desert edge acted as a refugium. Given that
presently disjunctive distribution of L. ilicifolius and the other
species of this genus, an early period of expansion was likely
followed by range fragmentation due to additional aridifica-
tion, perhaps during the Pleistocene when the climate became
very cold and dry. These conditions might drive rapid
speciation in the mountains or at the edges of deserts, as
adaption to the environment during these geological events,
especially the extreme aridity imposed by extreme weather
events (Meng & Zhang, 2013).

Further evidence of diversification and speciation has come
from subsequent studies in other desert plants, such as those
highly drought-tolerant shrub species widely distributed across
the deserts of western China, Reaumuria soongarica (Pall.)
Maxim. (Tamaricaceae) (Li et al., 2012), Nitraria sphaerocarpa
Maxim. (Nitrariaceae) (Su & Zhang, 2013), Pugionium cornutum
(L.) Gaertn., and P. dolabratum Maxim. (Brassicaceae) (Wang
et al., 2013b; Yu et al., 2013). Within R. soongarica, phylogeo-
graphical patterns of the cpDNA sequence variation revealed
that the desert shrub occurred near to the QTP and
experienced deep intraspecific divergence, which have been
triggered by the latest tectonic uplift of the QTP since the
Pliocene, as well as indications that recent regional expansion
of R. soongarica followed desert development occurring during
glacial periods (Li et al., 2012). Likewise, in the populations of
N. sphaerocarpa, compared with total gene diversity, within-
population gene diversity was rather insignificant, resulting in a
high level of differentiation among populations (Su & Zhang,
2013), which indicated that aridification played a part in
differentiation of populations. Within P. cornutum and P.
dolabratum, the combined results from single sequence repeat
loci and internal transcribed spacer (ITS) sequence suggested
that the two species shared numerous ancestral cpDNA
polymorphisms, and pointed to the importance of nuclear DNA
(ITS or accumulation of multiple genetic loci) in delimiting
recently diverged species (Yu et al., 2013). The assessments of
species boundaries and interspecific delimitation at different
DNA loci will provide a solid basis for the further study of
species identity, taxonomy, and speciation. Surveying from
sequence variation within ITS, cpDNA fragments, and eight
low-copy nuclear genes among individuals revealed the
importance of Pleistocene climate change, especially an
increase in aridity as a cause of speciation, suggested the
divergence of plants in different habitats associated with the
expansion of deserts (Wang et al., 2013b). The results
regarding Ammopiptanthus suggested that genetic differenti-
ation might be due to a possible vicariant event from a single
common ancestor through the fragmentation of its natural
distribution range, giving rise to A. mongolicus (Maxim. ex

Komarov) S. H. Cheng and A. nanus (Popov) S. H. Cheng (Ge
et al., 2005). In addition, the extrinsic factors (e.g., climate or
environment factors) and the intrinsic factors also contribute
to the high diversity of intraspecific genetic diversity. The
dispersal ability of pollen (or seed) and/or physiological
tolerance to aridity might cause the capability of adaptation
to the arid environment, and this phenomenon is usual for
desert plants in Northwest China.

Habitat fragmentation and recolonization in arid Northwest
China
During the Pleistocene glaciations, species at high to mid-
latitudes were affected by the spread of large ice sheets,
whereas at lower latitudes they were subjected to extreme
aridity as well as lower temperatures (Willis & Niklas, 2004),
which caused sandy desert and gobi (stony desert) expansion
in Northwest China. As a consequence, the geographical
distribution areas of many species in the arid zones became
fragmented, promoting conditions for allopatric divergence
among isolated populations, and possibly speciation, such as
shown in the phylogeography of Gymnocarpos przewalskii
Maxim. (Ma & Zhang, 2012; Ma et al., 2012b). The studies
suggested that regional genetic differentiation of G. przewal-
skii has resulted mainly from geographic isolation posed by the
development of mountains and large deserts; it also resulted
from range contraction and population fragmentation induced
by climate oscillations. The duration of glacial periods has been
insufficient for speciation to occur, so speciation was more
likely the outcome of repeated Pleistocene cycles of range
fragmentation and reunification (Bennett, 2004). Arid con-
ditions have caused habitat fragmentation and population
isolation of many plant species in the area (Su et al., 2011; Su &
Zhang, 2013; Wang et al., 2013b). Within populations of
Helianthemum songaricum Schrenk, nested clade phylogeo-
graphical analysis diagnosed allopatric fragmentation over the
total cladogram (Su et al., 2011). During the last interglacial
period, a warmer and wetter climate contributed to range
expansion of this species within portions of the Hexi Corridor.
By contrast, based on ecological niche modeling, N. sphaer-
ocarpa indicated that populations had a shrunken and more
fragmented range during the Last Glacial Maximum (LGM) (Su
& Zhang, 2013). Population genetic analyses of Pugionium
showed that the species diverged within the Pleistocene,
possibly as a result of adaptation to dissimilar desert habitats
(Wang et al., 2013b).

Geographical barriers between deserts also caused vicariant
speciation or population differentiation in many desert
organisms, especially animals (Castoe et al., 2007; Phillipsen
& Metcalf, 2009). Repeated desert expansions and contrac-
tions, in response to glaciation cycles and the existence of
Pleistocene refugia, may explain a large part of the current
distribution patterns of many desert species. Fragmentation
events during desert formation were also detected in
populations of Hexinia polydichotoma (Ostenf.) H. L. Yang
(Asteraceae), which indicated that, during the interglacial
period of the middle Pleistocene, a large amount of snow and
glacial ice melted from the mountains surrounding the Tarim
Basin, causing increased water in the desert. These events and
the dispersal ability of Hex. polydichotoma were important
factors driving not only geographic range expansion, but also
the current phylogeographical structure of the species (Su
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et al., 2012). It is possible that during the middle Pleistocene,
climatic fluctuations resulted in expansion and contraction
cycles of river systems and oases, and may consequently
have caused population fragmentation. Deserts in Central
Asia have perhaps the most complex geological history
and geographic features. Few studies have focused on the
influence of extensive development of the deserts on
the phylogeographical and genetic structures of species in
the region, although there are abundant desert plants
alongside the rivers in the arid zone, such as the Yellow,
Tarim, and Shule Rivers (Fig. 1). River diversion and appearance
or shrinkage of oases caused the shifting of habitats of desert
plants, playing significant roles in changing genetic structure
and diversity. It will be of great interest in the future to analyze
the details of how desert plants have adapted to their
alternative habitats and the genetic basis of these adaptive
differences.

In combination with studies of population structure and
evolutionary history, phylogeography offers opportunities to
elucidate the factors that affect the evolution of organisms
over time and space. Migration and gene flow are important
factors affecting the genetic structure and demography of
populations (Templeton, 1998), playing important roles in
desert plants when the plants migrated southward during ice
ages and northward during interglacials. The phylogeography
of L. ilicifolius possibly explained the migration route of desert
plants in the northern arid section of China (Meng & Zhang,
2011). Physiographical heterogeneity in the Helan Mountains
area gave rise to geographical and, probably, ecological
isolation, which was responsible for population differentiation

along the ridges and adjacent areas. To the north of the
mountains are the Ulanbuhe and Kubuqi Deserts; and on the
west and east are the Tengger Desert and Mu Us Sandy Land,
respectively; at the southeast is the Loess Plateau (Fig. 1).
Interestingly, the Loess Plateau, which presents an apparently
desolate and fragmented landform with hundreds and
thousands of hills and gullies, and the Inner Mongolian
Plateau, considered the flattest plateau in China, were not
enough to have served as geographical barriers to L. ilicifolius.
Instead, the Loess Plateau appears to have provided an
ecological corridor for northward migration of the species
during the interglacial phase (Fig. 2) (Meng & Zhang, 2011).
Although no evidence of common phylogeographical histories
across the arid region have been found, recolonization routes
show some interesting concordances. The mountains (e.g.,
Tianshan, Altay, and Helan) in the vast arid zones were not only
the geographical barriers, but also the migration corridors for
recolonization after the cold periods.

Conservation implications of desert plants in arid Northwest
China
Conservation of the genetic resources of desert plants,
especially the endemic desert plants, is crucial to worldwide
efforts to combat desertification, to prevent further degrada-
tion of the fragile ecosystems in arid and semi-arid regions, and
to sustain desert biodiversity. Several conservation genetic
and phylogeographical studies of DNA sequence variation have
now also been completed in endangered and endemic desert
shrubs in recent years, for example, Tetraena mongolica
Maxim. (Zygophyllaceae) (Ge et al., 2003, 2011), Hex.

Fig. 2. Locations of potential major refugia (dashed circles) and the most common genetic discontinuities (solid lines), and
putative colonization routes (dashed arrows) reported by phylogeographic studies of plant species in arid Northwest China. The
red dashed lines demarcate boundaries of arid zones. 1, Karakoram–Tianshan Mountains junction; 2, Ili (Yili) Valley; 3, Altay
Mountains; 4, East Tianshan Mountains; 5, Northeast Qinghai–Tibet Plateau edge; 6, Helan Mountains; 7, Badan Jaran-Tengger
Desert; 8, Ulanbuhe Desert–Yinshan Mountains–Kubuqi Desert.
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polydichotoma (Su et al., 2012), Hel. songaricum (Su et al., 2011),
G. przewalskii (Ma & Zhang, 2012; Ma et al., 2012b), and
Ammopiptanthus S. H. Cheng (Ge et al., 2005). Phylogeography
and conservation of T. mongolica indicated limited seed
dispersal and past fragmentation were likely associated with
the Yellow River flooding (Ge et al., 2011). The endangered
species are narrowly distributed and have a small population
size, which would heighten the risk of extinction, especially
when gene flow between populations is restricted. Helianthe-
mum songaricum showed genetic drift and inbreeding within
populations, indicating a significant extinction risk (Su et al.,
2011).

The genealogical relationships among haplotypes of
G. przewalskii, as well as their geographic distribution across
the species range indicate that ex situ conservation is
necessary to maximize the probability of successful reintro-
duction of G. przewalskii, because the species has become
extinct in wild areas. Also, management plans would be
expected to focus on the maintenance of effective population
sizes and reduction of human disturbance (Ma & Zhang, 2012;
Ma et al., 2012b).

In arid Northwest China, the Helan Mountains–Alxa region,
considered one of eight endemic genus diversification centers
in China, contains several endemic genera (Wu et al., 2010),
such as Potaninia Maxim., Ammopiptanthus, Tetraena Maxim.,
Stilpnolepis Krasch., Tugarinovia Iljin, Kaschgaria Poljakov,
Elachanthemum Y. Ling and Y. R. Ling, Synstemon Botsch.,
Timouria Roshev., Sympegma Bunge, Iljinia Korovin, and
Sarcozygium Bunge (Zhao & Zhu, 2003). MAXENT and DOMAIN

species distribution model (SDM) simulations of the distribu-
tion areas of 13 genera indicated that Alxa–Inner Mongolia is
the most noticeable endemic area (Ma et al., 2012a). However,
these noticeable diversification and endemic areas have not as
yet been brought to conservational attention. Desert plants
play a key role, as the primary producers, in maintaining these
ecosystems. Desert ecosystems currently cover about 35%
of the Earth’s land surface (Hellden, 1991), and they are
expanding. Moreover, the history of long-term human
disturbance, especially human overexploitation of resource
plants, has inevitably caused dramatic declines in population
sizes of desert plants. The natural vegetation landscape of arid
Northwest China is mainly dominated by steppes and deserts,
with a relatively homogeneous overall environment, and
genetic variation is usually not concentrated in a single site.
Thus, effective strategy for ex situ conservation of the species
should be carried out to protect the larger number of plants
from one or two populations rather than to smaller numbers
from many different sites. In order to develop an effective
strategy for conservation, Evolutionarily Significant Units
(ESUs) need to be defined. Various criteria for ESUs have
been suggested, including reciprocal monophyly (Moritz,
1994), adaptive variation, and reproductive separation.
Recognizing ESUs as reciprocally monophyletic groups pro-
motes maintenance of the entire evolutionary heritage
within a species, and the separatemanagement of populations
belonging to different lineages. So, taking into account
the very large numbers of desert plant species that are
currently under threat, the immediate challenge will be to
prioritize where future research efforts should be focused, and
to relate research closely to the needs of conservation
practitioners.

Phylogeography in the Altay–Tianshan
Mountains, the Eurasian forest subkingdom
Glacial refugia in the Altay–Tianshan Mountains

The environments in the Mongolian Altay and Tianshan
Mountains of the temperate arid zones of Central Asia were
influenced by multiple Pleistocene glaciations and fluctuated
between arid and semi-arid conditions due to climatic
fluctuations (Grunert & Lehmkuhl, 2004; Xu et al., 2010). The
extent of Pleistocene ice in the Altay is still under debate,
however, in the eastern Altay, especially the northern part of
the Mongolian Altay, Pleistocene glaciers were restricted to
several isolated mountain systems (Lehmkuhl et al., 2004). In
the Tianshan regions, glacier fluctuations (Xu et al., 2010) and
fossil pollen from lake sediments (Wen & Shi, 1993) indicated
climatic cycles consisting of dry glacial and humid interglacial
periods during the Pleistocene. Thus, species still experienced
glacial-time retreats and interglacial recolonizations in re-
sponse to cold–warm climatic cycles; separate refugia during
glacial episodes are hypothesized to have triggered lineage
divergence in many plant species. There is now firm molecular
evidence that populations of temperate plant species (Zhang&
Zhang, 2012a, 2012b; Xie & Zhang, 2013; Zhang et al., 2013; Jiang
et al., 2014), including alpine plants presently distributed in the
Altay–Tianshan Mountains and QTP, such as Picea A. Dietr. (Li
et al., 2010) and Hippophae L. (Jia et al., 2012), are derived from
populations that recolonized these areas from glacial refugia
located at lower elevations in valleys and/or at the mountain
edges.

In Northwest China, deserts seem to have promoted
allopatric divergence of the studied species, and the divergent
populations must have survived in separate refugia during the
LGM (Liu et al., 2012). Phylogeographical study of Clematis
sibiricaMill. has shown significant phylogeographical structure,
and the location of refugia in the Tianshan–Altay Mountains
(Fig. 2). Two independent lineages, the possible postglacial
colonization routes of the two phylogeographic lineages of
C. sibirica in the Tianshan and Altay Mountains, and a contact
zone between the Tianshan Mountains and eastern Altay
Mountain lineages were found (Zhang & Zhang, 2012b) (Fig. 2).
In order to endure the cold-dry glacial climate, two phylogeo-
graphical groups of the forest species C. sibirica retreated to
more mesic refugial areas (Zhang & Zhang, 2012b). Phylogeo-
graphical studies have sprung up like mushrooms after rain in
China, however, plant phylogeography in arid Northwest
China, especially the Tianshan andAltayMountains abundant in
alpine plants that were influenced by glacial-dry environments,
are generally lacking. Thus, refugia for plant species in the
regions remain rather cryptic. In the absence of an ice sheet,
the flora of the area was deemed to have been influenced
primarily by Pleistocene fluctuations, from glacial-dry to
interglacial-humid conditions (Wen & Shi, 1993). Under the
pressure of arid local climates, forest species in the mountains
are expected to migrate to more humid locations. The humid
valleys may provide refugial habitats for these species. For
instance, the Gongnaisi valley in the western Tianshan, and the
Kanasi valley in the Altay have been suggested as refugia for
green toads, a widespread terrestrial vertebrate (Zhang et al.,
2008). Because the valleys received moisture fromwesterly air
movements, species in arid Northwest China were less
influenced by the high barrier of the QTP and surrounding
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mountains, and the western portions were more humid than
the eastern Tianshan and Altay Mountains. Thus, western
locations in the mountains were likely to have served as
refugia, allowing plant persistence during arid-glacial climates.
Genetic structure of the Delphinium naviculare W. T. Wang
species group suggested that cold and drought were primary
drivers of lineage migration during glacial periods, and the
humid valleys at mid-elevation served as refugia at these times
in the Tianshan Mountains (Zhang & Zhang, 2012a) (Fig. 2).
During the latest two glacial episodes, new refugia likely
appeared, corresponding to a decreased extent of glaciation.
In accordance with the glacial chronology derived from proxy
data such as glacial tills, lacustrine sedimentary sequences and
oxygen isotope records, the genetic structure of the D.
naviculare species group revealed a paleoclimatic history of
three glacial/interglacial cycles and an overall trend towards
aridity during the course of the Pleistocene (Zhang & Zhang,
2012a).

Further evidence that plants retreated to refugia in the
arid zones of China has come from subsequent studies in
other alpine plants. In particular, the Ili Valley, as a
biodiversity hotspot of Northwest China (Tang et al., 2006)
located near the juncture between the northern and
southern branches of the Tianshan Mountains, is shown to
have been a biotic glacial refugium where plants persisted
during glacial periods (Zhang et al., 2008; Zhang & Zhang,
2012a) (Fig. 2). In terms of genetic structure analysis of
Aconitum L., the Ili Valley and another locality somewhat
farther to the east were inferred probable glacial refugia for
the Acon. nemorum Popov species group (Jiang et al., 2014)
(Fig. 2). High intrapopulation genetic diversity within this
species indicates that it contracted to several refugia of the Ili
Valley during the glacial periods, with divergence in situ.
Additional evidence for in situ refugia recently emerged from
cpDNA data of Ribes meyeri Maxim. in arid Northwest China
that strongly suggested glacial refugia in the Helan Mountain
areas, and that the plants underwent postglacial expansion as
the climate became relatively warm and moist (Fig. 2) (Xie &
Zhang, 2013).

Postglacial expansion and recolonization from glacial refugia
Postglacial expansion and recolonization are significant
aspects of phylogeographical study. The demographic histo-
ries of species are universally associated with the dynamics of
paleoclimatic fluctuations (Hewitt, 2011), especially the Pleis-
tocene glacial–interglacial cycles. With the onset of interglacial
warming, these species would have undergone demographic
expansion (Comes & Kadereit, 1998). Species migrations are
thus strongly related to glacial cycles, enabling us to use the
migration of a species to track how changes between glacial
and interglacial climates affected their demographic history.
Most parts of China are deemed to have been free of an
extensive ice sheet (Shi et al., 2006); however, species
experienced glacial-time retreats and interglacial recoloniza-
tions in response to cold–warm climatic cycles. During glacial
episodes, separate refugia are hypothesized to have triggered
lineage divergence inmany species, especially the alpine plants
in the Altay–Tianshan Mountains. Clematis sibirica suggested
that Pleistocene climatic oscillations have significantly affected
the current spatial genetic structure, and the separate glacial
refugia led to the origin of the two phylogeographical lineages

of this forest species during the Pleistocene maximum glacial
stage (Zhang & Zhang, 2012b).

In the Tianshan Mountains, Pleistocene cold–dry glacial
climates produced the simultaneous effects of mountain
glacier advance (Shi et al., 2006; Xu et al., 2010) and arid steppe
expansion (Ni et al., 2010). Following interglacial warming and
moistening, demographic expansions were identified for these
phylogeographical lineages in the mountain ranges surround-
ing the Dzungarian Basin, which were hypothesized to have
served as migration corridors for the species (Zhang & Zhang,
2012b). The evolutionary history of the D. naviculare species
group, focused on the locations of glacial refugia and lineage
divergence or expansion, indicated a stepwise demographic
expansion scenario and a hierarchical structure of multiple
refugia, in response to an increase in aridity in the eastern
Tianshan (Zhang & Zhang, 2012a). Divergence and expansion
time estimates for the D. naviculare species group inferred
frommolecular data are consistent with the Pleistocene glacial
chronology of the Tianshan Mountains. With the expansion of
steppes, populations of the D. naviculare species group in the
lowlands (approximately 1290m a.s.l.) were enabled to
migrate upwards along the mountains to higher, moister
areas. Thus, lowland areas did not act as glacial refugia under
the pressure of aridity. The phylogeographical patterns of the
Acon. nemorum species group in the Tianshan Mountains and
their surroundings also indicate that in the intervals between
glaciations during the late Quaternary (Jiang et al., 2014), Acon.
nemorum underwent at least two periods of eastward
expansion from glacial refugia. So, ancient geological and
climatic events likely affected the evolution and current
distribution of the Acon. nemorum species group. As
demonstrated by the aforementioned inferences, the genetic
structure of plant species can provide additional insights into
the history of climatic change in the Pleistocene.

Local persistence and retreat in arid Northwest China
The phylogeography of forest and desert steppe species to
climatic change in arid Northwest China showed opposite
responses: persistence or retreat. Evaluation of published
works show a number of phylogeographical patterns in biota
of arid Northwest China. The most striking pattern is the
presence of high intraspecific and interspecific diversity that is
geographically structured. Studies revealed the presence and
retreat of multiple divergent lineages, and their dating
indicated Pleistocene divergence, most frequently in the
mid-Pleistocene, in these regions (Meng & Zhang, 2011, 2013;
Su et al., 2011, 2012; Ma & Zhang, 2012; Ma et al., 2012b; Zhang &
Zhang, 2012a; Su & Zhang, 2013; Xie & Zhang, 2013; Jiang
et al., 2014). Most of these species occupy arid and semi-arid
habitats, including alpine plants in the Altay–Tianshan
Mountains. So their intra/interspecific or species group
divergent lineages are geographically structured, showing
high geographic structure of haplotypes. Evidence of multiple
levels of persistence and retreat implied divergence through
multiple glacial/interglacial cycles. In general, there is little
evidence of widespread expansion of divergent lineages. The
combined approach of phylogeography and SDM of the two
Clematis species, forest species C. sibirica and desert steppe
species C. songorica Bunge, indicated that the forest species
would likely have experienced range reduction, though
without genetic diversity loss, in the face of climate change;
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whereas the steppe species should maintain a consistently
stable potential distribution under the LGM and future climatic
conditions, in reference to its existing potential distribution
(Zhang et al., 2013). Based on Mismatch analyses and Bayesian
skyline plot analyses of genetic variation of Lagochilus Bunge
ex Benth., along with the results of demographic analyses, it
was proposed that regional demographic expansion of the
species probably resulted from the large deserts that
developed during the Pleistocene in Northwest China (Meng
& Zhang, 2013). These regions were characterized by intense
arid conditions and propelled the organisms to migrate from
extremely cold and dry environments to warmer and more
humid habitats (Zhang et al., 2000). Compared with alpine
plants, which retreated when the ice expanded and the global
climate cooled, while aridification intensified, the drought-
tolerant desert plants might have expanded during such
conditions, and therefore they have driven rapid speciation in
the mountains or at the edges of deserts as an adaption to the
environment during these geological events. In addition,
habitat destruction and fragmentation and misapplication of
human activity may cause a decline in population size of desert
plants (Ge et al., 2011; Su et al., 2011, 2012; Ma & Zhang, 2012; Ma
et al., 2012b). The presence and retreat of highly divergent
lineages is an indicator of major contraction to geographically
isolated refugia during climatic cycles in the early to mid-
Pleistocene; geographic structuring of the lineages implies
subsequent expansion during favorable conditions with
retreat during unsuitable conditions. However, the existence
of highly localized haplotypes within lineages indicates a
different pattern in later Pleistocene cycles, with multiple
refugia on amicrogeographic scale throughout the distribution
of the species. This is consistent with expectations from a
hypothesis of local persistence and extinction, with limited
migration from individual populations in more recent geologi-
cal time, and divergence through repeated cycles of contrac-
tion and expansion.

Perspectives and future directions
Over the past three decades, phylogeography has been
developing rapidly. Its perspectives have provided insights into
evolutionary genetic processes, including the mitochondrial
and other gene-tree systems from which these perspectives
arose (Avise, 2007), and it shows no signs of slowing down.
Phylogeographical study of arid Northwest China is also on the
rise, so we have briefly summarized the typical phylogeo-
graphical patterns of different plant species in this region
(Table 1).

With the development of molecular technology, it will be
exciting to address future studies in arid zones with the
development of next-generation sequencing (NGS) and
extended phylogeographical analyses. The NGS (e.g., restric-
tion-site-associated DNA sequencing, RAD-seq) approaches to
the ultra-high-throughput sequencing of DNA are currently
transforming the ways that phylogeographers can track the
dynamics of genetic diversity in space and time. Historically,
methods to identify large numbers of genetic markers and
characterize their geographic distribution in natural popula-
tions were labor-intensive and cost-prohibitive for almost any
species, particularly those lacking extensive resources. The

appearance of RAD-seq may open new avenues to resolve
these questions for the generation of large numbers of
molecular markers in a panel of individuals to better
characterize the ecology and evolution of traditionally non-
model species (Rowe et al., 2011). The power of these
approaches mainly lies in their ability to yield hundreds of
millions of short sequence reads per run (Metzker, 2010),
which differs from conventional Sanger sequencing that
typically yields only a few hundreds of reads. So, phylogeo-
graphical studies in our reviewed area using current NGS-based
biogeography and phylogeography may develop a better
understanding on the evolutionary history of taxa. Through the
phylogeographical patterns of multiple-species groups, inte-
grated NGS may enable us to better understand the plant
diversity in arid Northwest China, and set up concrete
hypotheses for studying plant speciation and diversification
mechanisms in these regions. Although the potential of RAD-
seq for marker discovery and trait mapping in non-model
systems remains undisputed, caution is required when
applying this technique to make population genetic inferences
(Arnold et al., 2013).

Most studies focus on individual species, with a preferential
bias of using sequence information from uniparentally
inherited and non-recombining cpDNA, with a few using
nuclear DNA (Table 1). It is worth noting that more and more
cases have suggested that the phylogeographical structure of
cpDNA is very different from that of nuclear DNA or
mitochondrial DNA (mtDNA) in plant phylogeographical
studies (Liepelt et al., 2002; Du et al., 2009; Zhou et al.,
2010). That means that pollen gene flow and incomplete
lineage sorting would result in the non-significant population
structure of nuclear DNA. For example, mtDNA haplotypes are
often shared among related conifer species, whereas cpDNA
haplotypes are more species-specific, which indicates that
increased intraspecific gene flow appears to decrease
differentiation within species but not among species (Du
et al., 2009). So, we should notice the difference between the
nuclear DNA and mtDNA or cpDNA in future research.

In addition, using ecological niche models (Gugger et al.,
2011), Geographic Information Systems (Chan et al., 2011), and
SDM (Barve et al., 2011) will bring new power to phylogeo-
graphical studies in these regions, which use associations
between environmental variables and known species’ occur-
rence localities to define abiotic conditions within which
populations can be maintained. The historical constraints on
current distribution and abundance of organisms in the past
are key issues for phylogeography as well as for its parent
disciplines, geology and biology.

Moreover, comparative phylogeography has been proved
useful for investigating biological responses to past climatic
change and postglacial colonization routes in Europe (Taberlet
et al., 1998). This is strong when combined with extrinsic
hypotheses derived from paleoclimate, the fossil record, or
geology in arid areas, because there are abundant records of
fossils and palynology. However, in arid Northwest China, a
comparison of phylogeography is rare. The most significant
result of comparative phylogeography is that these studies will
search for concordant geographical distribution among
lineages within different species of close relationship and
indicate the influence of the common historical factors.
Interestingly, there are many parasites in this research area,
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Table 1 Typical phylogeographical patterns of different plant species in arid Northwest China

Taxon/taxa Family DNA Major inference(s) References

Nitraria sphaerocarpa
Maxim.

Nitrariaceae trnH-psbA
rpl32-trnL

Climate aridification impacted evolutionary
processes of species, as the driver for
genetic isolation and divergence.

Su & Zhang
(2013)

Clematis sibirica Miller
and C. songorica
Bunge

Ranunculaceae nrITS
psbA-trnH

Forest species is more sensitive to climate
changes than the steppe species.

Zhang et al.
(2013)

Lagochilus Bunge ex
Benth.

Lamiaceae psbA-trnH
trnS-trnG

Aridification spurred desert plant
diversification, past fragmentation, and
species range expansion, which is
adaptation and response to the climatic
oscillations.

Meng & Zhang
(2013)

Ribes meyeri Maxim. Saxifragaceae psbA-trnH Quaternary climatic oscillations affected the
spatial genetic structure, and there were
glacial refugia in LGM.

Xie & Zhang
(2013)psbK-psbI

Aconitum nemorum
Popov

Ranunculaceae psbA-trnH Cold-dry and warm-humid climatic cycles
during the late Quaternary promoted
genetic divergence within the species.

Jiang et al.
(2014)trnS-trnG

Pugionium Gaertn. Brassicaceae nrITS Pleistocene climate change increased aridity,
which prompted speciation; speciation was
in association with expansion of deserts in
China.

Wang et al.
(2013b),
Yu et al.
(2013)

trnV-trnM
trnS-trnfM

Delphinium naviculare
W. T. Wang

Ranunculaceae trnS-trnG Pressures of cold and dry climates during
glacial periods were primary driving forces
that shaped the current spatial genetic
structure of species.

Zhang & Zhang
(2012a)trnL-trnF

Clematis sibirica Miller Ranunculaceae psbA-trnH Largest glaciation during the middle
Quaternary may have triggered divergent
lineages and promoted allopatric
speciation.

Zhang & Zhang
(2012b)

Lagochilus ilicifolius
Bunge ex Benth.

Lamiaceae psbA-trnH Helan Mountains may be the diversification
center for the species, whereas the Loess
Plateau was a dispersal corridor for
postglacial recolonization northward.

Meng & Zhang
(2011)trnS-trnG

Hexinia polydichotoma
(Ostenf) H. L. Yang

Asteraceae trnH-psbA Mid-Pleistocene climatic fluctuations resulted
in expansion and contraction cycles of river
systems and oases, which caused
population habitat fragmentation.

Su et al. (2012)
ycf6-psbM

Gymnocarpos
przewalskii Maxim.

Caryophyllaceae psbA-trnH Independent glacial refugia were inferred;
bottlenecks and postglacial recolonization
were identified; human disturbance
currently is the greatest threat to the
species.

Ma & Zhang
(2012),
Ma et al.
(2012b)

ycf6-psbM
rpl32-trnL

Helianthemum
songaricum
Schrenk

Cistaceae trnD-trnT Dry and cold climate during early Quaternary
contributed to the lineage split, which
most likely led to Yili range expansion.

Su et al. (2011)
rps16-trnK

Reaumuria soongarica
(Pall.) Maxim.

Tamaricaceae trnS-trnG Divergence and regional range expansions of
species have corresponded to the
development of desert ecosystems during
the last glacial age in western China.

Li et al. (2012)

Tetraena mongolica
Maxim.

Zygophyllaceae atpB-rbcL Genetic polymorphisms are losing, each
population of T. mongolica should be
recognized as a conservation unit.

Ge et al. (2011,
2003)

Ammopiptanthus S. H.
Cheng

Leguminosae ISSR Significant genetic difference between two
species might be due to vicariant
evolutionary event from the fragmentation
of their common ancestor’s range.

Ge et al. (2005)

ISSR, inter-simple sequence repeat; LGM, Last Glacial Maximum; nrITS, nuclear ribosomal internal transcribed spacer.
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for instance, the endangered desert plant Cistanche deserticola
Ma always parasitizes on the roots of Tamarix L. and Haloxylon
Bunge; Cynomorium songaricumRupr. is a parasite on the roots
of Nitraria L. The evolutionary history of the most complex
parasitism is not well understood, so comparative phylogeog-
raphy may reveal the cryptic speciation. Also, phylogeo-
graphical analyses not of single species but of entire
communities are now possible. So we can jointly analyze
plants and associated animals to induce the evolutionary
history of plant species in arid Northwest China, especially co-
evolution mechanisms. For instance, the pollination mutualism
between pollinators and plants highlights the potential
importance of host plant specificity in insect diversification
(Althoff et al., 2001). Comparative phylogeography in a specific
and obligate pollination indicated dissimilar distributions
among the phylogeographical history of plants and pollinators
(Espíndola & Alvarez, 2011).

Conclusions
This review of plant phylogeography in arid Northwest China
revealed the biotic responses to Pleistocene climatic cycling in
shaping the genetic structure and phylogeographical patterns.
Desert expansion, environmental aridification, and river course
dynamics have significant roles in providing adequate habitats
for persistence of desert plant species that could tolerate
extreme drought and cold through glacial cycles, especially as
temperate plants retreated to warmer and wetter conditions.
In the arid regions, there is a distinctive pattern involving range
expansion of desert plants during glaciation onto the vast
temperate desert and steppe due to adaption to the extreme
environment, a pattern that contrasts with many examples of
plants retreating to in situ glacial refugia for survival, although
the predominant biotic response of desert plant species to
Quaternary environmental change appears to be one of range
fragmentation, vicariance, and population isolation with
aridification or desert expansion.

Arid Northwest China is a very extensive area; however, as
we have seen, few studies have investigated this region. Thus,
research in desert and desert plant species may have
considerable potential in the future. This review, the first
attempt to synthesize our current knowledge on the basis of
the limited number of published reports, will help to define the
appropriate scope for future phylogeographical studies. Here,
we suggest that future progress and research on these areas
are in process and advances in the field of phylogeography will
clearly come from a better integration of modeling, genetics,
ecology, paleontology (fossil data information and palyno-
logy), and climatology, ideally against the backdrop of robust
species-level phylogenies. Such an integrated approach
applied to desert plants should serve to better disentangle
the evolutionary history of population demographic, biogeo-
graphic, and speciation processes that have given rise to the
world’s very diverse desert floras. This is encouraging as it
means comparative studies of other specific regions, which
would be fruitful avenues for identification of mechanisms to
diversification, refugia, and detection of ancestral patterns of
diversity. Understanding the drivers and mechanisms of
species diversification and persistence is of central interest
to biogeography, evolutionary biology, and conservation

genetics (Lexer et al., 2013), and understanding ancestral
patterns of diversity is a key to predicting responses of species
to future climate change (Hewitt & Nichols, 2005). This will be a
key feature of plant responses to historical climate change,
especially the desert plants to aridification and desert
expansion. Refugial areas where genomes survived and
diverged over major climate oscillations can continue to
sustain populations through climatic fluctuations. These are
priority areas for conservation, as noted in previous studies
(Hewitt & Nichols, 2005), especially the refugia in the Altay–
Tianshan Mountains and Ili Valley. Persistence of steppe and
desert species and retreat of alpine species will be enhanced
by facilitating the continued action of dynamic evolutionary
processes during climate oscillations. The adaptive capacity of
species to respond to climate oscillations will be a key
component of maintaining ongoing evolutionary processes.
Localized refugia indicate that a mosaic of habitats in
heterogeneous landscapes is essential for species persistence
while some desert plants continue to expand.

This review provides examples of the evolutionary process-
es that occurred during the Pleistocene, in which climate
change and aridification were likely to have been the under-
lying cause of speciation. It will be of interest in the future to
analyze in detail the ways in which desert plants adapt to
habitats, and the genetic basis of those adaptive differences,
especially as deserts are still spreading under the conditions of
global change and the disturbance of human activities.
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