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This study provides a Borneo-wide, quantitative assessment of botanical richness and endemicity at a high spatial
resolution, and based on actual collection data. To overcome the bias in collection effort, and to be able to predict the
presence and absence of species, even for areas where no collections have been made, we constructed species distribution
models (SDMs) for all species taxonomically revised in Flora Malesiana. Species richness and endemicity maps were based
on 1439 significant SDMs. Mapping of the residuals of the richness-endemicity relationship identified areas with higher
levels of endemicity than can be expected on the basis of species richness, the endemicity hotspots. We were able to
identify one previously unknown region of high diversity, the high mountain peaks of East Kalimantan; and two
additional endemicity hotspots, the Müller Mountains and the Sangkulirang peninsula. The areas of high diversity and
endemicity were characterized by a relatively small range in annual temperature, but with seasonality in temperatures
within that range. Furthermore, these areas were least affected by El Niño Southern Oscillation drought events. The
endemicity hotspots were found in areas, which were ecologically distinct in altitude, edaphic conditions, annual
precipitation, or a combination of these factors. These results can be used to guide conservation efforts of the highly
threatened forests of Borneo.

Borneo, the third largest island of the world, is the
botanically most diverse part of the Sundaland hotspot,
one of the world’s 25 biodiversity hotspots (Myers et al.
2000). Southeast Asia as a whole faces an estimated loss of
three quarters of its original forest area by 2100, and up to
42% of its biodiversity (Sodhi et al. 2004). For Borneo,
currently only 57% of its land surface remains forested, and
annual deforestation averages 1.7% (FAO 2006, Langner
et al. 2007). Even more worrying is the fact that 56% of
Kalimantan’s (Indonesian Borneo) protected lowland for-
ests has been lost between 1985 and 2001 (Curran et al.
2004, Stibig et al. 2007). Ca 37% of Borneo’s 15 000
vascular plant species (Roos et al. 2004) are thought to be
endemic (van Welzen et al. 2005), with an estimated
number of 10 000 species occurring in the WWF Borneo
lowland rain forests ecoregion alone (Wikramanayake et al.
2002, Kier et al. 2005).

Considering the exceptional richness and concentration
of endemic, or narrow ranged, species on Borneo, surpris-
ingly little is known about the spatial distribution of both
components. Only in 1995 the WWF and IUCN (1995)
introduced the ‘‘Centres of plant diversity’’ (CPD) for
Australasia. In this contribution they argued that on Borneo

most endemic plant species can be found in smaller areas in
the north, the central mountain chain, and in the south-
eastern Meratus Mountains (Fig. 1). A view largely
supported by MacKinnon et al. (1996). Wong (1998)
added to this list the ‘‘Riau Pocket’’, which consists of two
areas. One of these is similar to the north-western Sarawak
biogeographical unit of MacKinnon et al. (1996), the other
is the most western tip of Borneo (Fig. 1). Wong (1998)
further suggests that Mount Kinabalu is a hotspot of plant
diversity (Fig. 1), which is confirmed by its ca 5000
documented vascular plant species (Beaman 2005, Grytnes
and Beaman 2006). Furthermore, Wong (1998) reports a
comparatively lower diversity in the remaining area of
Borneo, mainly consisting of the Kalimantan provinces.

These findings are partly confirmed by the only quanti-
tative Borneo-wide study of lowland dipterocarp forest (Slik
et al. 2003). Based on data of 28 plots, at genus level, and for
trees with a diameter of ]10 cm, Slik et al.’s (2003) results
only confirmed the biodiversity hotspots of the south-eastern
Meratus Mountains and the north-western Sarawak biogeo-
graphical units. Their analysis did not support the compara-
tively lower diversity in the Kalimantan provinces of Wong
(1998), however. Except for the flora of Mount Kinabalu,
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and the plot studies by Slik et al. (2003), all the identified
areas of high species richness and endemicity have boundaries
that are largely based on informal expert opinions. Con-
sidering the rapid loss, and the lack of knowledge on the
Borneo-wide spatial distribution of species richness and
endemicity, warrants further studies.

With the ongoing digitization of natural history museum
collections and herbarium specimens (Graham et al. 2004),
much data has become available that allows for a quanti-
tative analysis of species richness and endemicity patterns.
Despite all collecting efforts of the last centuries, however,
there is no complete inventory of all organisms inhabiting
any single locality (Hortal et al. 2004). Moreover, collection
localities are often biased towards easily accessible areas
(Reddy and Davalos 2003, Kadmon et al. 2004, Hortal
et al. 2007). Hence, the collecting effort on Borneo (and
elsewhere) has been biased, as is evident from the spatial
distribution of Bornean collection records (Raes and ter
Steege 2007; Fig. 3 therein). To overcome incomplete and
biased sampling, and to be able to predict the geographic
distributions of species even for areas where no collections
have been made, has contributed to the development of
species distribution modelling techniques (Araújo and

Guisan 2006, Elith et al. 2006, Peterson 2006). A species
distribution model (SDM) predicts the potential distribu-
tion of a species by interpolating identified relationships
between presence/absence, or presence-only data of a species
on one hand, and environmental predictors on the other
hand, across an area of interest (Elith et al. 2006). Only few
studies have attempted to develop species richness and
endemicity patterns derived from SDMs (Zaniewski et al.
2002, Schmidt et al. 2005, Küper et al. 2006, Costa et al.
2007). Although these studies clearly contribute to the
identification of possible centres of high richness, endemi-
city, and data deficiency; none of the underlying SDMs
were statistically tested.

The importance of assessing whether an SDM differs
from what would be expected on the basis of chance alone
was first recognized by Olden et al. (2002). Recently, Raes
and ter Steege (2007) developed a methodology to test the
significance of SDMs developed with presence-only data,
the principal data of herbaria and natural history museums
(Graham et al. 2004). Their methodology tests whether the
correlations found between species’ presence localities and
the environmental predictors deviate from random chance
expectation with a null-model (Raes and ter Steege 2007).

Figure 1. The country boundaries, the Indonesian and Malaysian provinces, the location of the centres of plant diversity (CPD) (WWF
and IUCN 1995), and the areas of high plant richness of Borneo by MacKinnon et al. (1996), and by Wong (1998). Inset shows all areas
with an altitude of �500 m a.s.l.
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To contribute to the conservation of botanical diversity
of Borneo, we set out to model the patterns of botanical
richness and endemicity, based on all significant SDMs at 5
arc-minute (�10�10 km at the equator) spatial resolution
for all species treated in Flora Malesiana (Anon. 1959�
2007) occurring on Borneo. Then, based on these patterns,
we identify areas with higher levels of endemicity than can
be expected on the basis of species richness. Finally, we
analyse which environmental factors best explain the
botanical richness and endemicity patterns.

Methods

Species data

We extracted all georeferenced species records from Borneo
belonging to families treated in Flora Malesiana (Anon.
1959�2007) from the BRAHMS database of the National
Herbarium of the Netherlands. To this dataset we added
the georeferenced records of revised genera of the Annona-
ceae, Euphorbiaceae, and Orchidaceae. In total this dataset
comprised 66 262 georeferenced records belonging to 108
plant families representing 4674 species. From this set of
georeferenced records, we recorded species presences for
each 5 arc-minute grid cell, avoiding duplicate species
records in one grid cell. We used a 5 arc-minute spatial
resolution because this is the available resolution of the
FAO soil property predictors (see below), and because
georeferencing at a higher spatial resolution is not realistic.
Furthermore, a species had to be represented in at least five
grid cells to be modelled. These requirements were met for
2273 species represented by 44 106 unique records, ranging
from 5 to 202 unique records per species.

Environmental predictors

To model the species distributions, we initially selected 37
environmental predictors. We downloaded the altitude (in
m) and the 19 bioclimatic predictors (1950�2000) of the
WORLDCLIM dataset (/<www.worldclim.org/>) for Bor-
neo at 5 arc-minute resolution (Hijmans et al. 2005).

Additionally, we selected 15 soil predictors from the FAO
database for poverty and insecurity mapping (FAO 2002),
shown in Table 1. To this dataset we added a layer with the
elevation range, defined as the difference between the lowest
and highest altitude within a 5 arc-minute grid cell based on
the 90m SRTM altitude data (/<srtm.csi.cgiar.org/>).
Finally, a data-layer, reflecting the El Niño Southern
Oscillation (ENSO) event drought impact, was added.
ENSO drought impact was defined as the relative average
annual difference in ‘‘normalized difference vegetation
index’’ (NDVI) values (/<ftp://ftp.glcf.umiacs.umd.edu/
glcf/GIMMS/Geographic//>) between months of a severe
ENSO (07/1982�06/1983), and a non-ENSO year (07/
1981�06/1982). These NDVI data were the oldest data
available, and are therefore least affected by deforestation
and land use change. We retained only grid cells with data
for all data-layers, resulting in 8577 grid cells for Borneo.
Records on the coast-line, falling just outside the grid cells
due to the 5 arc-minute resolution, were shifted to their
closest grid cell. Data-layer manipulations were performed
with Manifold GIS (Manifold Net).

To avoid problems such as multi-collinearity (Graham
2003), which can result in model over-fitting (Peterson
et al. 2007), we reduced the number of environmental
predictors. From the bioclimatic predictors, together with
altitude, elevation range, and ENSO, we selected only those
predictors which were least correlated (highest Pearson’s
r�0.737; Supplementary material Table S1): altitude
(correlated with and proxy for elevation range, and strongly
negatively correlated with the mean annual tempera-
ture, maximum temperature warmest month and � quarter,
minimum temperature coldest month and � quarter, mean
temperature wettest � and driest quarter); Bio04 �
temperature seasonality; Bio07 � temperature annual range
(correlated with diurnal temperature range); Bio12 � annual
precipitation (correlated with and proxy for precipitation in
the wettest month and � quarter, driest month and �
quarter, warmest � and coldest quarter); Bio15 � precipita-
tion seasonality; and ENSO (Supplementary material Table
S1). To reduce the number of soil predictors we used a
principal component analysis (PCA). We performed the
PCA on the 41 unique combinations of the 15 soil

Table 1. Pearson’s correlation coefficients (r) for the 15 FAO soil predictors and the five PCA soil axes. Values in italic r�0.4 or rB�0.4
(modest correlation) and in bold italic r�0.7 or rB�0.7 (strong correlation). Correlations are significant at 0.05 level (*), 0.01 level (**), at
0.001 level (***), or not significant at 0.05 level (ns) (2-tailed). CEC�cation exchange capacity; C:N�carbon:nitrogen.

PCA01 PCA02 PCA03 PCA04 PCA05

Base saturation % topsoil �0.1013 ns �0.8429*** 0.0974 ns 0.2864 ns 0.2268 ns
CEC clay topsoil 0.5712*** �0.3342* �0.5284*** 0.4161* �0.1366 ns
CEC soil topsoil 0.7449*** �0.1708 ns 0.2366 ns 0.0295 ns 0.0806 ns
C:N-ratio class topsoil 0.5083*** 0.3100 ns �0.4183** �0.2982 ns 0.5314***
Easy available water �0.7886*** 0.4747** 0.0332 ns �0.1926 ns 0.1242 ns
Effective soil depth 0.2428 ns �0.3322* �0.1498 ns �0.8224*** �0.2733 ns
Nitrogen % topsoil 0.7360*** 0.2317 ns 0.3555* 0.1245 ns �0.1529 ns
Organic carbon % topsoil 0.5523*** 0.5221*** 0.3205* 0.0227 ns �0.2646 ns
Organic carbon pool 0.7626*** 0.3883* 0.2412 ns �0.1427 ns 0.1172 ns
pH topsoil �0.4389** �0.6870*** 0.1403 ns 0.2410 ns �0.0953 ns
Soil drainage class 0.8323*** �0.2111 ns 0.1628 ns 0.1071 ns 0.2241 ns
Soil moisture storage capacity �0.7108*** 0.5545*** �0.0116 ns �0.0222 ns 0.1731 ns
Soil production index �0.0489 ns �0.8584*** 0.0836 ns �0.1758 ns �0.2444 ns
Textural class subsoil �0.2891 ns �0.0161 ns 0.8747*** �0.1090 ns 0.1550 ns
Textural class topsoil �0.0382 ns �0.1762 ns 0.9153*** �0.1784 ns 0.1307 ns
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predictors values observed for the 8577 grid cells of Borneo.
We selected the first five PCA-axes as our soil property
predictors (PCA01-05), which together explained 83% of
the variance in the soil data. Pearson’s correlation was used
to determine which of the original 15 FAO soil predictors
were significantly correlated to each of the five PCA axes
(Table 1). This resulted in a reduction from 37 to 11
uncorrelated predictors, which were used to model the
species distributions (Supplementary material Table S1,
Fig. S1).

Species distribution model (SDM) building and
testing with a bias corrected null-model

To model the species distributions we selected the model-
ling application Maxent (ver. 3.0.4; /<www.cs.princeton.
edu/�shapire/maxent//>) (Phillips et al. 2006). Maxent
was specifically developed to model species distributions
with presence-only data, has shown to outperform most
other modelling applications (Elith et al. 2006, Pearson et
al. 2007), is least affected by location errors in occurrences
(Graham et al. 2008), and best performs when few presence
records are available (Wisz et al. 2008). Maxent was set to
use all species presence records for model building
(explained below), by setting the ‘‘random test percentage’’
to zero. The modelling rules were set to use linear features,
whenB10 records were available, adding quadratic features
for SDMs developed with 10�14 records, and including
hinge features for species with 15, or more, records (Raes
and ter Steege 2007). For each of the 2273 species an SDM
was developed based on its unique presence records and the
11 environmental predictors.

As measure of SDM accuracy we used the threshold
independent and prevalence insensitive area under the curve
(AUC) of the receiver operating characteristic (ROC) plot
(Fielding and Bell 1997, McPherson et al. 2004, Raes and
ter Steege 2007), produced by Maxent. All measures of
SDM accuracy require absences (Fielding and Bell 1997).
When these are lacking, as is the case here, they are replaced
by pseudo-absences or sites randomly selected at localities
where no species presence was recorded (Ferrier et al. 2002,
Phillips et al. 2006). However, when SDM accuracy
measures are based on presence-only data and pseudo-
absences, the standard measures of accuracy (e.g. the often
used measure AUC�0.7) do not apply (Raes and ter Steege
2007). Therefore, we used the method presented in Raes
and ter Steege (2007) to test the AUC value of an SDM
developed with all presence records against a bias corrected
null-model of AUC values expected by chance. The AUC
value of an SDM developed with n records is tested against
the upper 95% one-sided confidence interval (CI) AUC
value derived from the AUC values of 1000�n randomly
drawn and modelled points. The random points were
drawn from cells where in the past collections were made,
and hence were corrected for any geographical sampling
bias. For Borneo this was the case for 1837 (21.4%) of the
total of 8577 grid cells (Raes and ter Steege 2007).

We developed null-distributions for 5�35 records (31
distributions), for 40�50 records with intervals of 5 records
(3 distributions), for 60�100 records with intervals of 10
records (5 distributions), and from 150 to 250 with

intervals of 50 records (3 distributions). For each of these
distributions we assessed the upper 95% one-sided CI AUC
value, by ranking the 1000 AUC values and selecting the
950th value. We developed three series of CI values
dependent on the modelling rules used by Maxent; 5�9
(only linear), 10�14 (linear and quadratic), and ]15
(linear, quadratic and hinge) records. We applied a curve-fit
to each of the three series against which the AUC values for
all 2273 SDMs were tested. For further analyses only the
significant SDMs were retained. To assess whether species
represented by few records were not proportionally more
often rejected than species with many records, we plotted
the relative species abundance values against the relative
species ranks. Similar shaped curves indicate that the sample
is representative.

Additionally, we tested whether the 1837 collection
localities were biased in environmental predictor space. For
each of the 11 predictors we divided predictor space into 10
equal-interval bins based on the ranges observed for Borneo
(8577 grid cells) (Loiselle et al. 2008). Then we tested
whether the frequency distributions represented by the
1837 collection localities differed from all 8577 grid cells
using a Chi-square test.

Botanical richness and endemicity patterns

In order to develop patterns of botanical richness and
endemicity, a threshold was set to convert the continuous
Maxent SDM predictions, which range from 0 to 100, to
discrete presence/absence values. Although species identifi-
cations, and georeferencing of the collection localities, were
carried out with the greatest possible accuracy, we found it
reasonable to assume that 10% of the records were either
wrongly identified, or georeferenced. Therefore, for all
SDMs represented by ] 10 records we used the fixed ‘‘10
percentile presence’’ threshold. This threshold uses the
Maxent value of the 10 percentile species presence record to
define all areas with a lower predicted Maxent value as
absent, and with a higher value as present. For those species
represented by 5�9 records we used either the ‘‘sensitivity-
specificity equality’’ or the ‘‘sum maximization’’ threshold
(Liu et al. 2005), dependent on which of the two
corresponding omission rate values was closest to 10%.

Once the thresholds were set, the botanical richness
pattern was developed by superimposing all significant
SDMs. To develop the endemicity pattern we used the
weighted endemism index (Crisp et al. 2001, Kier and
Barthlott 2001, Küper et al. 2006, Slatyer et al. 2007). This
index weighs species richness according to the range sizes of
the species present, and is calculated by summing the
inverse of the range sizes of the species present in each grid
cell. A species with a range of 10 grid cells has a weight of
1/10 in every grid cell where it is present. We developed the
endemicity pattern by summing the weights of all sig-
nificant SDMs for all grid cells.

Data analyses

We first assessed whether the modelled species richness did
not under-predict the actual number of species collected in
corresponding cells. This was done by plotting the
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predicted number of species against the collected number of
species for all 8577 grid cells. To plot the data at log-log
scale, ‘‘the collected number of species’’ was transformed to
the logarithm of ‘‘the collected number of species�1’’.

The hotspots of endemic species were identified by
mapping the relative residuals of the species richness �
weighted endemism relationship. The relationship was
assessed with a curve-fit procedure, evaluating several
polynomial functions. The residuals of this relation were
divided by their predicted weighted endemism values,
resulting in a measure of relative residual weighted
endemism.

To study which environmental predictors best explained
species richness, weighted endemism, and their relative
residuals we used a technique known as variation partition-
ing (Legendre 2008). Variation partitioning is a technique
that partitions the variation of a response variable between
two sets of explanatory variables, here a set of environ-
mental predictors and a set of spatial predictors. As spatial
predictors we used the nine terms of the third order
polynomial trend-surface regression equation of latitude
and longitude (Borcard et al. 1992, Lobo and Martin-Piera
2002, Legendre 2008). To account for possible non-linear
effects between the diversity patterns and the original set of
11 environmental predictors, we added the quadratic terms
of those predictors uncorrelated with the original predictors
(rB0.7). This was the case for PCA02, PCA04 and PCA05
(Supplementary material Table S1). The variation was
partitioned by performing a forward-backward stepwise
multiple regression analysis for the three diversity measures
and 1) the environmental predictors, 2) the spatial
predictors, and 3) a combined matrix of both predictor
sets. This allowed us to assess which proportion of the
variation was attributed to only environmental predictors
(a), to spatially structured environmental predictors (b), to
spatial predictors (c), and to unexplained (residual) varia-
tion (d) (see Legendre 2008 for methodological details).

Multiple regression analyses applied to macroecological
data which are driven by structured biological processes,
may result in residual spatial autocorrelation (RSA). The
presence of RSA is a violation of the assumption that
residuals should be independent and identically distributed,
and results in inflated type I errors (Dormann et al. 2007).
It was recently shown, however, that short-distance RSA,
while causing inflated type I errors, does not seriously affect
the interpretation of the regression coefficients estimated by
ordinary least squares regressions (Diniz-Filho et al. 2007,
Hawkins et al. 2007). To establish whether RSA
was present in our regression residuals we assessed the
Moran’s I values with SAM � spatial analysis in macro-
ecology /<www.ecoevol.ufg.br/sam/> (Rangel et al. 2006).
Since only a small proportion of the variation was explained
by the spatial predictors alone (Results), we estimated the
regression coefficients for the three biodiversity measures
based on the significant environmental predictors only.
Model performances were tested with a 10-fold cross-
validation procedure; using 90% to train the model with
the significant environmental predictors selected by the full-
model, and test the model with the remaining 10%,
repeated 10 times. All regression analyses were performed
using SPSS ver. 15.

It can be argued that this approach has a certain degree
of circularity in reasoning, since the same predictors were
used to develop the underlying SDMs. We argue,
however, that Maxent identifies correlations with the
environmental predictors independently for each species.
Even if for two species the same predictors are selected as
being the most important to predict their distributions,
these two species can have another optimum in their
response. So we posit that the significant SDMs under-
lying the superimposed species richness, weighted ende-
mism, and relative residual weighted endemism patterns
are essentially independent.

Results

From the 2273 species which were modelled, 1439 (63.3%)
had a distribution pattern that differed significantly from a
random one. The frequency distributions of the environ-
mental conditions represented by the collection localities
did not significantly differ from the distributions for all
8577 grid cells of Borneo (Supplementary material Fig. S2).
The relative species rank abundance curves (Supplementary
material Fig. S3) for the records of all 2273 species, and for
the records of the 1439 significant species, were largely
similar in shape. This indicated that in terms of the
frequency distributions of records, the 1439 species
represented by a significant SDM are a representative
sample of the total of 2273 modelled species.

Superimposing the significant SDMs, and derived
weighted endemism values, resulted in the botanical
richness and weighted endemism maps as presented in
Fig. 2A and B, respectively. The highest richness was found
in Sabah, where 1027 species of the total of 1439 species
were predicted to occur in one grid cell. The lowest
predicted richness was found in West Kalimantan where
only 6 of the modelled species were predicted to be present.
Besides Sabah and north-western Sarawak, also the high
mountains in East Kalimantan had very high predicted
richness values (Fig. 2A). The weighted endemism values
(Fig. 2B) showed largely the same pattern as the richness
pattern, albeit more concentrated around the mountains,
notably the northern Crocker Range, and not extending
into the lowland.

The log-log plot of the predicted number of species
plotted against the species counts per grid cell, showed that
for cells where few species were actually collected, almost
the whole range of predicted numbers of species was found
(Fig. 3). For cells with highest numbers of actually collected
species, however, the predicted number of species was never
lower. Only for 2 grid cells (0.13%) a lower number of
species was predicted than were actually collected (Fig. 3;
below diagonal and inset).

The relationship between species richness and weighted
endemism was best described by a quadratic function (R2�
0.914; pB0.001; Fig. 4 bottom). Mapping the relative
residuals of this relationship, exposed those areas with
higher weighted endemism values than can be expected on
the basis of species richness (Fig. 4 top; black and white
areas). These areas were located on Mount Kinabalu and the
Crocker Range Mountains in the north, the Müller
Mountains in the south of the central mountain chain, on

184

http://www.ecoevol.ufg.br/sam


the east-side of the southern Meratus Mountains, and in the
north of East Kalimantan’s Sangkulirang peninsula.

The results of the variation partitioning showed that
the majority of the variation in species richness and
weighted endemism can be explained by spatially struc-
tured environmental variables (Fig. 5 � fraction b). Only
very small fractions (3.4�4.5%) were attributed to spatial
variables alone (Fig. 5 � fraction c). Hence, the regressions
were performed on the environmental predictors only. The
forward-backward stepwise regression results for both
species richness and weighted endemism suggest that the

most important environmental variables were Bio07 �
temperature annual range, Bio04 � temperature season-
ality, and ENSO (Table 2). Together all significant
environmental variables explained 82.8, and 75.3 percent
of the total variance in species richness and weighted
endemism, respectively (Table 2; Fig. 5, fraction a�b).
For the residuals, altitude, the quadratic term of PCA soil
axis 5, and PCA soil axis 3 were the most important
environmental variables. In total the model explained
56.6% of the variance in relative residual endemism
(Table 2).

Figure 3. The predicted number of species plotted against the number of species actually collected per grid cell based on species which
had a significant species distribution model. The two grid cells for which a lower number of species was predicted than actually was found
(below the diagonal line) are geographically plotted on the inset. Note the log scale of both axes.

Figure 2. Botanical richness (A) and weighted endemism (B) pattern derived from 1439 superimposed significant species distribution
models. Hatched areas indicate lakes.
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The 10-fold cross-validation results of the models
obtained through stepwise regression showed that the
average R2

adj. values of the test-data partitions were not
significantly different from the average training-data
partition values (Fig. 6), implying that the models were
not over-parameterized. The Moran’s I values of the
regression residuals of species richness and weighted
endemism indicated that some RSA was still present for
the first three lags (Fig. 7).

Discussion

Botanical richness pattern

The richness pattern is based on 1439 significant SDMs, ca
10% of the estimated number of 15 000 species expected to
occur on Borneo. This is the largest dataset available today
and represents all life-form represented by 102 plant
families. The relative species rank abundance curve of the

Figure 4. The relationship between bo-
tanical richness and weighted endemism.
Light grey dots represent grid cells with
negative relative residual weighted ende-
mism values; dark grey dots positive
relative residual endemism values be-
tween 0 and 50%, white dots between
50 and 100%, and black dots �100%.
Residual classes are mapped in the top
image.
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Table 2. Results of the forward-backward stepwise multiple regression for species richness, weighted endemism, and the relative residual weighted endemism values as a function of the environmental
predictors (n�8577). The order indicates the sequence in which the significant environmental predictors (Pred.; pB0.05) were included in the regression equation. R2

adj. indicates the cumulative adjusted
coefficients of determination after the inclusion of each variable. Beta is the standardized regression coefficient, and t is the corresponding t-value for the full regression model. All models are significant at
pB0.001. Legend: Bio04 � temperature seasonality; Bio07 � temperature annual range; Bio12 � annual precipitation; Bio15 � precipitation seasonality; PCA01-05 � PCA soil axes 1�5; ENSO � drought
impact by El Ninõ events on NDVI values.

Species richness Weighted endemism Residual weighted endemism

Pred. R2
adj. Beta t Pred. R2

adj. Beta t Pred. R2
adj. Beta t

Bio07 0.123 �0.931 �132.034 Bio07 0.107 �0.840 �96.536 Altitude 0.236 0.647 65.472
Bio04 0.546 1.026 134.268 Bio04 0.456 0.975 104.508 PCA052 0.352 0.311 38.693
ENSO 0.640 0.258 49.341 ENSO 0.547 0.236 36.006 PCA03 0.409 �0.182 �23.512
PCA052 0.695 �0.211 �41.642 Altitude 0.599 0.345 45.455 Bio12 0.460 �0.241 �28.976
PCA03 0.745 0.223 42.251 PCA052 0.635 �0.171 �27.745 PCA04 0.486 �0.219 �27.414
PCA05 0.774 0.225 47.701 Bio12 0.674 �0.240 �23.337 Bio15 0.518 0.195 20.319
PCA022 0.787 �0.151 �28.427 PCA05 0.700 0.194 33.973 PCA01 0.535 0.155 19.263
Bio12 0.807 �0.157 �30.488 PCA03 0.721 0.158 24.581 ENSO 0.544 0.104 12.026
Altitude 0.822 0.171 27.076 PCA022 0.747 �0.156 �23.337 PCA05 0.551 �0.105 �13.893
PCA02 0.826 �0.044 �7.674 PCA02 0.750 �0.037 �5.420 PCA022 0.557 0.087 9.890
PCA042 0.827 �0.053 �8.578 PCA04 0.751 �0.022 �3.350 Bio07 0.561 0.149 13.011
PCA01 0.828 �0.036 �6.854 PCA01 0.751 �0.036 �5.696 Bio04 0.565 �0.105 �8.528

PCA042 0.752 �0.042 �5.163 PCA02 0.566 �0.040 �4.917
Bio15 0.753 0.028 3.8001
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identified the eastern mountain peaks of the central
mountain chain located in central East Kalimantan (Fig.
2A) as an area of potentially high richness, previously not
recognized. Our results cannot support the south-eastern
Meratus Mountains as an area of exceptional plant species
richness as was indicated by MacKinnon et al. (1996).

The lowest plant species richness values were found in
the southern, and south-western parts of Borneo (Fig. 2A).
These areas largely coincide with the WWF Sundaland
heath- and peat swamp forest ecoregions (Wikramanayake
et al. 2002). According to Wikramanayake et al. (2002)
these forest types are generally less species-rich than
comparable lowland dipterocarp forest. Similarly, the peat
swamp forests along the coast of Sarawak, and part of
Brunei, also have lower predicted species richness values
than the surrounding lowland forest. Nevertheless, we
expect that the predicted richness for the lowland regions
of the Kalimantan provinces still underestimates the
diversity due to relatively low collection densities in this
region (Raes and ter Steege 2007; Fig. 3 therein). For a
species to be modelled it should be represented by at least
5 unique records in our data set. The probability that
Kalimantan endemics are represented by 5 records is much
lower than for north-western Borneo endemics. On the
other hand, the 10 equal-interval bins frequency distribu-
tions of the environmental predictors for the collection
localities did not differ from those of all 8577 grid cells
(Supplementary material Fig. S2). A lower predicted
number of species caused by underrepresentation of
environmental conditions represented by the collection
localities is therefore not expected. At the same time
South-, East-, and Central Kalimantan represent regions
most affected by the ENSO (Slik 2004) (Supplementary
material Fig. S1), consistent with the lower richness values
predicted (explained below).

One of the two localities that had a lower predicted
number of species (95) than were actually found (117) is
located in the Gunung Palung National Park (1815?S,
110810?E; Fig. 3 (inset)). The 15 km2 study site in this park
harbours seven distinctive forest types (Cannon et al. 2007).
The resolution of our analysis is 100 km2, and therefore
cannot correctly represent the different environmental
conditions present in the park.

Weighted endemism pattern and centres of
endemicity

The distribution of narrowly ranged-, or endemic species is
often regarded as a metric of higher importance for

Figure 6. The adjusted R2 values of the 10-fold cross-validation
results for species richness, weighted endemism, and the relative
residual weighted endemism values. Error-bars indicate92SD.
Average train and test R2

adj. values were not significantly different
(two-sample t-tests assuming unequal variances).

Figure 7. Moran’s I values (equal number of pairs lags) for: species
richness (A), weighted endemism (B), and the relative residuals
weighted endemism values (C) (closed circles); and for the
residuals of the forward-backward stepwise multiple regression
results with only environmental predictors (open triangles), only
spatial predictors (closed diamonds), and environmental and
spatial predictors combined (open circles).

188



conservation planning than species richness (Reid 1998,
Myers et al. 2000). The fact that a larger proportion of
species represented by few collections is not represented by
the significant SDMs (Supplementary material Fig. S3),
implicates that endemicity values are expected to be even
higher than presented in this study. The northern Crocker
Mountains range with Mount Kinabalu, and the high
mountains of central East Kalimantan have the highest
weighted endemism values (Fig. 2B). The latter have
received little collecting effort so far, and deserve further
attention since they potentially harbour many new species.

Similar to our data (Fig. 4), a curvilinear relationship
between richness and endemicity was also found for the
birds of Africa (Jetz et al. 2004), indicating that more
endemic species can be expected in species rich assemblages
(Witt and Maliakal-Witt 2007). Spatial mapping of the
relative residuals of this relationship revealed the centres of
endemicity on Borneo (Fig. 4): the Crocker Mountains
range with Mount Kinabalu; the northern parts of the
central mountain range; the high mountain peaks in east
Sabah; the southern extrusions of the central mountain
range (Müller Mountains); the lowland east of the southern
Meratus Mountains; and the eastern Sangkulirang penin-
sula of East Kalimantan. It is notable that our results add
the Müller Mountains and the Sangkulirang peninsula to
the previously known list of biologically important sites on
Borneo (Fig. 1).

Besides the entire central mountain range having positive
residual weighted endemism values, this is also the case for
south-west Sarawak, the southern, and south-western areas
of Borneo, and around the great lakes in southern East
Kalimantan. Although the absolute richness and weighted
endemism values for these areas are low, they apparently
harbour species which are very characteristic for those areas,
and are not found elsewhere (Fig. 4). These areas largely
coincide with the WWF peat swamp-, freshwater swamp-,
and heath forest ecoregions of Borneo (Wikramanayake
et al. 2002).

Botanical richness, weighted endemism, and centres
of endemicity explained

The results of the variation partitioning showed that for all
three diversity measures only a very small proportion of the
variance is explained by spatial predictors only, and that for
species richness and weighted endemism the majority is
explained by spatially structured environmental variables
(Fig. 5). Although the Moran’s I values of the residuals
from the partial regressions with only environmental
variables were slightly higher than for the models including
only spatial-, or spatial and environmental variables
combined (Fig. 7), they do fall well within the ranges
reported by Hawkins et al. (2007). They concluded that for
these ranges of RSA regression coefficients were not
seriously affected. Therefore we analysed the diversity
patterns with the environmental predictor dataset only
(Supplementary material Table S1, Fig. S1). The 10-fold
cross validation results suggest that the predictive models
for the three diversity measure performed well and were not
over-parameterized, since none of the average test R2

adj.

values differed from the average training values (Fig. 6).

The most important variable, when tested alone,
explaining most of the richness pattern was the annual
temperature range (Table 2; Bio07). The negative correla-
tion with this variable suggests that the highest richness
values were found under relative stable annual temperature
conditions. The variable explaining most of the variance in
species richness was temperature seasonality (Table 2;
Bio04). This variable was positively correlated with species
richness, which suggests that seasonality in temperature may
be a driving factor of species richness. It should be noted
however, that temperature seasonality, expressed as the
standard deviation of weekly mean temperatures as a
percentage of the mean annual temperatures, only ranged
from 1.11 to 5.378C. The same two variables also
accounted for almost 50% of the total explained variance
of the weighted endemism pattern (Table 2).

Stable climatic conditions maintaining high richness and
endemicity values have been found for various organisms
on different continents. For the birds of Africa, low
seasonality, best captured through the annual temperature
range, was found to be the second most important
predictor for centres of endemism (Jetz et al. 2004). For
Amazonia, the highest botanical richness was found in areas
with the shortest dry season length (ter Steege et al. 2003).
It can be argued that habitats which face a long dry season
have a larger difference in temperature between dry and wet
months than habitats which remain wet throughout the
year. For reptiles and amphibians in Europe, both
temperature and precipitation stability were found to be
important predictors of high species richness (Araújo et al.
2008). Araújo et al. (2008) even showed that it is not only
contemporary climatic stability which maintains high
species richness, but that stability in climate since the last
glacial maximum (LGM) is an even better predictor.
Similar results were found for the Australian wet tropics,
predicting the highest number of species for a number of
taxonomic vertebrate groups in areas which have remained
climatically stable since the LGM (Graham et al. 2006).
For Borneo there are only indirect suggestions that the areas
of high richness and endemicity have been stable in
temperature and precipitation over longer time-scales.
Geomorphic evidence suggests drier, cooler, and more
seasonal climates during the LGM (Verstappen 1997),
which resulted in a savanna corridor running from the
southern, and south-western areas of Borneo, through the
present-day Java sea and Karimata street, into south-east
Asian mainland during that period (Heaney 1991, Gath-
orne-Hardy et al. 2002, Bird et al. 2005). There are strong
indications, however, that northern Sarawak, Brunei, Sabah
and East Kalimantan up to the Barito river remained
forested, with everwet conditions in northern Borneo and
lowland rainforest surviving around montane rainforest
patches (Gathorne-Hardy et al. 2002). These are the areas
which coincide with the areas where the highest richness
and endemicity values are predicted today.

The mechanism by which temperature seasonality
(Bio04) drives high species richness and endemicity values
remains speculative. There is a possible relation to pheno-
logical diversity driven by seasonal differences in abiotic
conditions such as temperature and humidity (Sakai 2001).
Temporal segregation of flowering minimizes interspecific
overlap in flowering times, and thus ineffective pollination,

189



or competition for pollinators. This hypothesis in known as
the shared pollinator hypothesis (Sakai 2001). Whether
seasonality in temperature (Bio04) within areas with a small
annual temperature range (Bio07) has a clear seasonal
pattern remains to be investigated, however.

Another factor of importance, explaining 9.4 and 9.1%
of the variance in species richness and weighted endemism,
respectively, was the ENSO drought predictor (Table 2,
Supplementary material Fig. S1). The highest richness
values were found in areas least affected by ENSO, which
could indicate that severe ENSO drought impact leads to
local extinction. This could also explain why the richness
values for the Kalimantan lowland areas are lower than for
those in north-, and north-west Borneo. These findings are
supported by plot studies in East Kalimantan that found
disproportionate mortality of certain species groups and tree
size classes during the severe ENSO event of 1997/1998
(Slik 2004).

The lower species richness values in the southern, and
south-western areas of Borneo identified by the WWF as
Sundaland heath- and peat swamp forest ecoregions
(Wikramanayake et al. 2002), are explained by variables
PCA052 and PCA03 (Table 2). Heath forests, or kerangas,
are commonly found on soils known as white-sand soils,
and are often covered by a layer of peat or humus. Peat
swamp forests form when sediments and organic matter
builds up behind mangroves. The peat deposits can extend
up to 20 m (Wikramanayake et al. 2002). Besides along the
southern coast, peat swamp habitats are also found in west
Sarawak, Brunei, and around the lakes in south East
Kalimantan. The variable PCA05 was positively correlated
with the C:N-ratio of the topsoil (Table 1). The negative
relation of PCA052 to species richness indicates that
intermediate carbon content over nitrogen, characteristic
for peat swamps, may have a negative effect on species
richness. PCA03 was positively correlated with the textural
class of the top- and subsoil (Table 1). The identified areas
have low values for both predictors, which corresponds with
coarse-textured sandy soils (FAO 2002), characteristic for
kerangas and peat swamps (Whitmore 1984). Poor soil
conditions, relative isolation, and the likely presence of a
savanna corridor during the LGM may have resulted in low
present day richness values.

The factor accounting for most of the explained variance
in relative residual endemism values is the DEM (Table 3,
Fig. 4). Amongst others, the altitudinal range is correlated
with this variable (Methods). A large altitudinal range was
also identified as the most important variable explaining the
centres of African (Jetz et al. 2004), and South-American
bird endemism (Rahbek et al. 2007). Jetz et al. (2004)
argued that topographic heterogeneity might be better
viewed as ‘‘a rough surrogate variable reflecting historical
opportunities for allopatric speciation’’, which can result in
centres of endemism. The mechanism suggested to drive
speciation is the occurrence of narrow homothermal
elevation bands serving as past and present dispersal barriers
(Jetz et al. 2004). Other variables explaining a substantial
portion of the variance in residual endemism values were
PCA052, PCA03, and annual precipitation (Bio12). Where
PCA052 and PCA03 explained low species richness values,
the signs of the relation of these variables to relative residual
endemism values were inverse, suggesting that the corre-

sponding conditions promote speciation, resulting in
positive residual weighted endemism values for the heath-
and peat swamp forests (Table 2). Although annual
precipitation (Table 2; Bio12) only explained 5.1% of the
variance, the annual precipitation pattern (Supplementary
material Fig. S1; Bio12) showed large similarities with the
pattern of the centres of endemicity (Fig. 4). High relative
residual endemism values were found in areas with the
lowest annual precipitation. All the areas are separated by
wetter areas, effectively isolating the dryer areas, which
might have promoted speciation.

With this study, we quantitatively analysed the Borneo
wide, high-resolution botanical diversity and endemicity
patterns. We showed that herbarium records can effectively
be used to develop these patterns, covering areas that never
have been botanically sampled. The analysis predicted an
additional centre of high diversity and endemicity for the
mountains in East Kalimantan, and two additional centres
of endemicity; the southern extrusions of the central
mountain chain, the Müller Mountains, and another on
the Sangkulirang peninsula. Furthermore, our results
quantitatively confirmed many of the previously recognized
areas of high botanical richness and endemicity, which were
based on informal expert opinions. The variables explaining
most of the variance of the three biodiversity measures were
comparable to other macroecological diversity studies, an
indication for the reliability of our results. Additionally, our
results suggested that the centres of endemicity were best
explained by ecological isolation. The variables involved
were altitude, soil types, and annual precipitation.

Although we are confident that the estimated patterns
reflect the true richness and endemicity patterns, we also
stress that areas with lower values for the three diversity
measures are not necessary less important for conservation.
These areas may harbour species not found elsewhere, or
have a forest composition, which is different from the ones
found in the ‘‘hotspots’’. We hope that our results will
guide conservation efforts for the severely threatened forests
of Borneo.
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