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Abstract

We have investigated the processes of community assembly using size classes of trees. Specifically our work examined (1)
whether point process models incorporating an effect of size-class produce more realistic summary outcomes than do
models without this effect; (2) which of three selected models incorporating, respectively environmental effects, dispersal
and the joint-effect of both of these, is most useful in explaining species-area relationships (SARs) and point dispersion
patterns. For this evaluation we used tree species data from the 50-ha forest dynamics plot in Barro Colorado Island,
Panama and the comparable 20 ha plot at Bubeng, Southwest China. Our results demonstrated that incorporating an size-
class effect dramatically improved the SAR estimation at both the plots when the dispersal only model was used. The joint
effect model produced similar improvement but only for the 50-ha plot in Panama. The point patterns results were not
improved by incorporation of size-class effects using any of the three models. Our results indicate that dispersal is likely to
be a key process determining both SARs and point patterns. The environment-only model and joint-effects model were
effective at the species level and the community level, respectively. We conclude that it is critical to use multiple summary
characteristics when modelling spatial patterns at the species and community levels if a comprehensive understanding of
the ecological processes that shape species’ distributions is sought; without this results may have inherent biases. By
influencing dispersal, the effect of size-class contributes to species assembly and enhances our understanding of species
coexistence.
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Introduction

The way in which size-class influences the assembly of tree

species within communities is important to species coexistence. For

tree species with long lifespans, many attributes may vary across

size-classes including spatial patterns [1,2,3], habitat associations

[4,5,6], physiological requirements and selective pressures [7,8].

As a result, mechanisms of species assembly may change as trees

age [9,10]. Several theories have been proposed to explain species

coexistence [11,12,13,14], but no unified theory has emerged at

this time [15]. Many recent empirical studies have identified

deterministic ‘niche’ and stochastic ‘neutral’ assembly as the two

principal mechanisms shaping tree species coexistence either

separately or in conjunction [1,16,17,18]. An exploration of the

size-class effect on niche and neutral processes should provide an

robust evaluation of the impact of size-class on species assembly.

Although a few studies have examined the relative importance of

niche and neutral processes at specific size-classes [5,6,10,19,20],

there has been no study to date that models, directly, the impact of

size-class on species assembly.

The long-term monitoring of the dynamics of tree species is a

direct way of examining the role of size-class in species assembly

yet the extended life span of trees makes this challenging.

Examining the standing size structure and the size-specific spatial

patterns of tree species is a more practical alternative of achieving,

at least in part, the same understanding. Models of point processes

are effective for modeling the spatial distributions of tree species

and may be useful, accordingly, for evaluating the roles of niche

and neutral processes in species assembly [21]. Previous studies

using point process models have successfully simulated all mapped

trees [21], or trees within specific size-classes [19,20] in the forest

plots of interest. Hence, through modeling tree species’ distribu-

tions within specific size-classes separately, and then combining

these simulations to recreate the entire community, we can

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e108450

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0108450&domain=pdf


effectively model size-class specific effects. Combining tree

communities using different size-classes may enable us to detect

complex spatial patterns at multiple clustering scales [22].

Comparative modeling of niche and neutral processes with and

without size-class effect should quantify the importance of such

effects in community assembly. Finally, modeling size-class effects

on species assembly explicitly may lead to a novel understanding of

species coexistence.

To evaluate size-class effect on species’ distributions, it is crucial

to use appropriate summary characteristics to identify the

differences between actual community and simulated communities

using point process models. Many summary characteristics have

been used in the past, including species-area relationships (SARs)

[21], distance decay curves [20] and distributions of species

abundances [23] for community level analysis. For analyses at the

level of the individual species, statistics used have included the

nearest neighbor distance function [24], Ripley’s L-function [25]

and the pair correlation function [26]. Among these summary

characteristics, the SAR describes the manner in which the

number of species increases with increasing sampling area [27],

and is related to the spherical contact distribution at the

community level at relatively large scales [28]. SARs have long

been examined by ecologists [29] and are a cornerstone of

community ecology [30]. Wiegand et al. [24], however, argue that

it is important to use multiple summary characteristics in order to

detect the critical characteristics of complex patterns underlying

species’ distributions. Because of differing dispersal abilities and

different responses to environmental variables among species,

Shen et al. [19] suggest that analysis at the species level is also

necessary for the study of species’ distributions. The pair

correlation function (i.e. the g-function), which represents the

details of tree clustering at the level of the individual species at

relatively small scales [22,24]. is more sensitive to significant

point-point interactions at specific spatial scales than many other

point pattern functions [31]. It is an appropriate summary

characteristic at the level of the species. Accordingly we suggest

that SARs and the g-function are two ideal, mutually comple-

mentary summary characteristics for the community and species

levels, respectively.

In this study, we have modeled, separately, tree distributions

based on dispersal limitation, environmental limitation and a

combination of both effects (based on a homogeneous Thomas

process, an inhomogeneous Poisson process and an inhomoge-

neous Thomas process, respectively) for different DBH (diam-

eter at breast height) size-classes. Then, by combining the

simulated assemblages of different DBH classes we generate the

structure of the entire community explicitly incorporating the

size-class effect. Finally, we compare the SAR and g-function

patterns generated for each of the two forest stands being

examined using each of the three models with and without these

size-class effects.

As a species may change its habitat preference and spatial point

pattern at times which may corresponding to different size-class,

we hypothesize that point process models with size-class effect

should present much more reliable patterns of SAR and g-

functions than models without size-class effects. Many previous

studies have shown that the joint-effect of environment and

dispersal is the principal regulator of species’ distributions.

Accordingly we suggest that together these factors should play a

more important role in shaping SAR and g-function patterns than

the any one of the two will do, separately.

Materials and Methods

Ethics statement
The Management Bureau of Xishuangbanna National Nature

Reserve gave us the authority to conduct tree census works in the

20-ha plot. With the authority of the principal investigator of the

Barro Colorado Island (BCI) plot, we downloaded topographic

data, soil data and tree data for that plot from the website of the

Center for Tropical Forest Science (http://www.ctfs.si.edu/).

Site description
Data from two seasonal tropical forests were used to investigate

the mechanisms underlying the SARs and the g-functions. The

first of these datasets was from the 20-ha forest dynamics plot in

Bubeng village, Xishuangbanna National Nature Reserve, South-

west China (Data S1). This area is dominated by a typical

monsoon climate which results in a typical dry season (November

to April) and wet season (May to October). In 2007, we finished

the first census of the Bubeng plot. We recorded 95,498 stems of

which 468 species or morphospecies were identified, belonging to

213 genera and 70 families. The altitude of the Bubeng plot ranges

from 709 to 869 m. Detailed descriptions of the climate, geology,

and flora of the Bubeng plot can be found in Lan et al. [32] and

Hu et al. [33]. The second dataset originated from the 50-ha forest

dynamics plot on Barra Colorado Island (BCI), Panama. This plot

is also located in an area with an alternation of wet and dry

seasons. The plot supports lowland semideciduous moist forest

with 301 species and 229,049 stems with DBH $1 cm. The

topography of the BCI plot is flat with an altitudinal range of only

38 m. Detailed descriptions of the climate, geology, flora and

fauna of the BCI plot can be found in Croat [34], Leigh et al. [35]

and Gentry [36]. In keeping with the data from the Bubeng plot

for which we used the first census data, we used the tree data from

the first census of the BCI plot [37]. The tree census of both plots

followed the agreed protocol for the global network of forest

research plots overseen by the Center for Tropical Forest Science

[38].

To quantify the effects of environmental variables on the SARs

and g-functions, we used topographic and soil variables as

environmental variables. Based on topographic survey data, mean

elevation, convexity, aspect, and slope in each 20620 m cell were

calculated and used as topographic variables at both sites

[21,39,40]. For the Bubeng plot, we sampled soils using a regular

grid of points every 30 m, generating 252 nodes. Every second

node was paired with an additional sample point at 2 m and 5 m,

2 m and 15 m or 5 m and 15 m along a random compass bearing

away from its associated node. In total, 756 soil samples were

taken. For each sample, 500 g of topsoil (0–10-cm depth) were

collected. Nine soil attributes - available nitrogen, exchangeable

potassium, extractable phosphorus, organic matter, soil pH, total

potassium, total nitrogen, total phosphorus and soil bulk density -

were analyzed as described by Liu et al. [41]. We used Kriging

interpolation, to generate maps of the nine soil attributes using

20620 m cells. To avoid over-fitting, we computed the principal

components from the nine soil attributes and used the first three

components as soil variables for the Bubeng plot. These condensed

variables explained 83.5% of the total variance in the nine soil

attributes. For the BCI plot, the Kriged estimates of Zn, Al, B, Ca,

Fe, K, Cu, Mg, Mn, N, P, N (mineralisation) and pH values were

calculated for 20620 m cells. Again, we computed the first three

principal components of the soil attributes, which explained 78.5%

of the total variation, and used these to represent soil variables at

the BCI plot.

Size Class Effect on Species Assembly
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Testing size-class effect on the SARs: size-class
categorization

To model size-class effect on species’ distributions, we classified

trees into different DBH size-classes as an effective option for

handling the tree size issue. We modelled species’ distributions

using 3 DBH size-classes:, viz.

Class 1 ~ 1 to v5 cmDBH

Class 2 ~ 5 to v10 cmDBH

Class 3 ~DBH 310 cm

The three DBH class categorization was partly to be

consistent with the studies by Hu et al. [33,42], making our

results comparable and ensuring that enough individuals can be

found in the large DBH class. For each of the 3 DBH classes,

species with an abundance of at least 50 were included in the

point process model. When input that did not incorporate

size effects was required these three size-classes were

simply combined and conventionally designated, together,

as Class ‘0’.

Point process models
Following Shen et al. [21], we used the inhomogeneous Poisson

process (to model environmental impacts), the homogeneous

Thomas process (modelling dispersal) and the inhomogeneous

Thomas process (modelling the joint-effects of environment and

dispersal) to simulate tree species’ distributions. The simulations

using the three point-process models were realized in the R

Figure 1. The observed and predicted species–area curves for the three process models with and without the size-class effect for
Class 0 (that is: size-classes 1, 2 and 3 combined) of the Bubeng plot and the BCI plot. The bars represent 95% confidence intervals.
doi:10.1371/journal.pone.0108450.g001

Table 1. The p-values from Kruskal-Wallis rank sum tests on SAR and g(r) AIC values across the point process models with and
without size-class effect at DBH class 0 (that is: size-classes 1, 2 and 3 combined).

Summary statistics IP HT IT

SAR AIC 0.828 ,,0.001 ,,0.001

0.290 ,,0.001 ,,0.001

g(r) AIC 0.769 0.807 0.843

0.474 0.680 0.092

Note: IP = the inhomogeneous Poisson process, HT = the homogeneous Thomas processt, IT = the inhomogeneous Thomas process.
doi:10.1371/journal.pone.0108450.t001

Size Class Effect on Species Assembly
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statistical language (version 3.0.2) [43] using the R code of Shen

et al. [21].
Inhomogeneous poisson process

Models incorporating the inhomogeneous Poisson process use

quadrat-based environmental variables to determine the density of

target tree species in the corresponding quadrats. This model,

Figure 2. Boxplots of AIC value distributions of the SARs generated by the three process models with and without the size-class
effect at Class 0 (that is: size-classes 1, 2 and 3 combined) forthe Bubeng plot and the BCI plot. HT.l = the homogeneous Thomas process
with size-class effect; HT.w = the homogeneous Thomas process without size-class effect; IP.l = the inhomogeneous Poisson process with size-class
effect; IP.w = the inhomogeneous Poisson process without size-class effect; IT.l = the inhomogeneous Thomas process with size-class effect; and
IT.w = the inhomogeneous Thomas process without size-class effect.
doi:10.1371/journal.pone.0108450.g002

Figure 3. The observed and predicted species–area curves for the three process models for size-classes 1, 2 and 3 of the Bubeng
plot and the BCI plot. The bars represent 95% confidence intervals.
doi:10.1371/journal.pone.0108450.g003
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accordingly, is useful for simulating species/habitat associations

and we have used this model to determine the contribution of

niche differentiation to species assembly. It employs the following

function:

l(s)~a exp (bT X (s)) ð1Þ

where a.0, bT is a vector of regression parameters, X (s) is a

vector from the matrix of environmental variables - topographic

and soil variables in this study.

Thomas process models
Both homogeneous and inhomogeneous Thomas processes are

varieties of Cox processes that drive patterns of clumping [21].

They can be used, therefore, to simulate processes generating

patterns of aggregation [28,44]. We used these models to simulate

how parent trees dispersed offspring around themselves. We used

the homogeneous version to explain dispersal-only limitation and

the inhomogenous version to simulate the joint-effect of dispersal

and environment. These models simulate the contribution to

species assembly of neutral process and the joint-effect of niche

and neutral process, respectively [21]. The Thomas point process

X was a superposition of ‘mother’ points c in a stationary Poisson

point process of intensity l, with associated ‘offspring’ clumps Xc
viz.:

l(s)~a exp (bT X (s))k(u{c,d) ð2Þ

where a .0, k(u{c,d) is a probability density function depending

on a parameter d .0 determining the spread of offspring points

around c. a exp (bT X (s)) represents the covariance between event

density and environment at point s. When a exp (bT X (s)) = 1, the

function represents an homogeneous Thomas process; when the

value is greater than unity, then the function is an inhomogeneous
Thomas process. A more detailed description of the algorithms,

parameter estimation and R-code for these three models can be

found in Shen et al. [21].

Simulating entire communities
To produce simulated communities incorporating the effects of

size-classes, we firstly generated 100 simulated communities using

a point process model for each of the three DBH classes: then by

randomly superimposing the simulated assemblages of classes 1 to

3 together, 100 simulated communities with the size-class effect

were created for each point process model. This does not model

species interactions and intraspecific relationships among different

size-classes. To represent simulated communities without the size-

class effect, 100 simulated communities were generated directly

using point process models of Class 0 (that is: with the three size-

classes combined).

An SAR was constructed by generating an increasing series of

200 different sizes of randomly selected rectangular sampling cells

from each specific simulated or real community [21]. The

performance contrasts for these SARs between the point process

models with and without the size-class effect were compared using

an approximation of Akaike’s information criterion (AIC) [45]. As

there were 100 simulated communities for each point process

Figure 4. Boxplots of AIC value distributions of the SARs generated by the three process models for size-classes 1, 2 and 3 of the
Bubeng plot and the BCI plot. HT = the homogeneous Thomas process; IP = the inhomogeneous Poisson process; IT = the inhomogeneous
Thomas process.
doi:10.1371/journal.pone.0108450.g004
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model, a Kruskal-Wallis rank sum test was used to identify the

statistical difference between the AIC values of point process

models with and without size-class effect. We also used AIC values

to compare the performance of the three models. The AIC values

of the three models can be approximated from the following

formula [23,45]:

AIC~nln Rð Þz2k ð3Þ

where n is the number of sampled areas and equals 200, R is the

sum of residual squares, and k is the number of parameters. The

number of parameters of the inhomogeneous Poisson process, the

homogeneous Thomas process and the inhomogeneous Thomas

process are 2, 3 and 5, respectively [21]. As we had 100 simulated

communities for each of the three point process models for each

DBH class, we computed SAR AIC values for each simulated

community. Again, we a Kruskal-Wallis rank sum test to compare

the SAR AIC value differences between the point process models

with and without the effect of size-class. We used pairwise

Wilcoxon rank sum tests to assess the differences in SAR AIC
values among the three point-process models for each DBH class.

Testing size-class effect on the g-function
To evaluate the effect of incorporating size-classes on the point

patterns of species’ distributions, the pair correlation function (i.e.,

the g-function) was computed for all the simulated and real species’

distributions. The g-function may effectively identify the occur-

rence of point-point interactions at a certain scale and evaluate the

degree of aggregation. The g-function statistic is defined as

g(r)~
1

2pr
|

dK(r)

dr
ð4Þ

where g(r) is the g-function, K(r) is Ripley’s K-function, and r is

distance [46].

Specifically, we first computed the g-function value for each

species of all the simulated and real communities at circumferences

with a series of radii at 5, 10, 15, 20, 25, 30, 35, 40 and 45 m. To

compare the degree of conspecific aggregation of the simulated

distributions with and without the effect of size-class at the

community level, we fitted them to the observed g-function using

major axis regression [47]. Using this technique, if the fitted line is

below the identity line (that is: where the fitted value is equal to the

observed value of the g-function), then the point process model

underestimates the degree of spatial aggregation: alternatively, the

model overestimates the degree of spatial aggregation. By

displaying the fitted lines of all the point process models against

the identity line, we can identify the degree of deviation of the

simulated patterns from the real data. In a manner similar to that

used to calculate the SAR AIC values (see above), we computed

the g-function AIC values to determine the performance of the

three models. As before, we used Kruskal-Wallis rank sum tests to

compare the differences in the AIC values of g(r) with and without

size-class effects. We used pairwise Wilcoxon rank sum tests to

evaluate differences in the AIC values of g(r) among the three

point process models for each DBH class. The calculation of the

g(r) and major axis regressions were also implemented in the R

statistical language using the spastat [48] and lmodel2 [49]

packages, respectively.
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Figure 5. Boxplots of g(r) AIC value distributions generated by the three processe models with and without the size-class effect at
Class 0 (that is: size-classes 1, 2 and 3 combined) of the Bubeng plot and the BCI plot.
doi:10.1371/journal.pone.0108450.g005

Figure 6. Comparison of observed g(r) of species at DBH Class 0 (that is: size-classes 1, 2 and 3 combined) with g(r) simulated by
three point process models with and without size-class effect. Abbreviations as for Figure 4.
doi:10.1371/journal.pone.0108450.g006

Size Class Effect on Species Assembly
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Results

The SAR results
For the Bubeng plot, 158 tree species were used in the analyses

designated as size-class 0. Out of these species, there were 148

species in size-class 1, 43 in class 2 and 52 in class 3. For the BCI

plot, there were 169 tree species at class 0, 161 tree species at class

1, 83 tree species at class 2, and 77 tree species in class 3. Figure 1

shows the SAR patterns of the simulated communities produced

using the three point-process models with and without an size-class

effect for Class 0 of the Bubeng plot and the BCI plot. Using the

inhomogeneous Poisson process, there was almost no shape

difference in shape in the relative SAR patterns between the

simulated communities with and without an size-class effect for

both plots. For the inhomogeneous Thomas and the homogeneous

Thomas processes, there were significant shape differences in

the relative SAR patterns between the simulated communities

with and without size-class effect across the two plots. The SAR

AIC value distributions at class 0 and the Kruskal-Wallis rank

sum test results on them verified the differences statistically

(Fig. 2 and Table 1). The p-values of Table 1 suggest that the

SAR AIC values are remarkably reduced when size-class effects

are introduced into the homogeneous Thomas process for class

0 of the Bubeng plot and the BCI plot. However, the SAR AIC
values were only similarly reduced by the size-class effect for

the inhomogeneous Thomas process for class 0 for the BCI

plot.

The inhomogeneous Poisson process always overestimated the

SAR patterns from class 0 to 3 for both plots (Figs. 1 and 3).

Among the three point-process models, the inhomogeneous

Thomas process always led to the most accurate SAR estimation

from Class 0 to 3 (Figs. 1–4, Tables 2 and S1). As the DBH class

increased, so the SAR AIC value differences between the

homogeneous Thomas and the inhomogeneous Thomas process-

es were gradually reduced, again for both plots (Fig. 4 and

Table 2). Because the inhomogeneous Thomas process modelled

the joint-effects of environment and dispersal, the reason for this

trend may be that dispersal is always more influential than

environment.

The g(r) results
There was no significant difference in g(r) AIC values between

the simulated species’ distributions with and without size-class

effects for any of the three point-process models for Class 0 of the

two plots (Fig. 5 and Table 1). In contrast to the SAR results, the

g(r) AIC values of from the model based on the inhomogeneous

Thomas process were always the highest of any of the three models

evaluated and the difference is significant for Class 0 (Fig. 5 and

Table S1). This was also true for Classes 1 to 3 (Fig. S2 and

Table 2). The major axis regression results on degree of

conspecific aggregation showed that the point-process models

with size-class effects overestimated the degree of conspecific

aggregation compared with those without the size-class effect

(Fig. 6).

Of the three point-process models, the lines fitted using major

axis regression from the inhomogeneous Poisson process were

below the identity line for Classes 0 to 3 (Figs. 6 and S1). This

suggests that the simulated patterns of species’ distributions using

this model were always less clumped than the real species’

distributions. Conversely, the other two point-process models

always overestimated the degree of conspecific aggregation across

all size-classes (Figs. 6 and S1).

Discussion

Performances of the models
The SAR and, especially, the g-function results (Figs. 2, 4, 5, S1

and S2), suggest that the model based on the homogeneous

Thomas process performed well across all DBH classes for the two

forests. Although the SAR AIC values using the homogeneous

Thomas process were not the lowest of the three models, the

differences in AIC values between the homogeneous Thomas and

the inhomogeneous Thomas process gradually decrease (Figs. 3 &

4). On the other hand, the ecological factors inherent in the

models based on inhomogeneous Thomas processes and the

inhomogeneous Poisson process play important roles in determin-

ing spatial patterns at the community and species levels,

respectively. In previous studies models based on the inhomoge-

neous Thomas process are close to the best performing of the three

basic kinds of point process models that have investigated SARs

and distance decay curves at the community level [20,21], with L-

function patterns at species level [25], with species abundance

distributions, and with nearest-neighbor distance functions at both

the species and community levels [23]. This is not the case,

however, in our study.

Unlike other studies only that of Wang et al. [20], for the

Changbaishan 25 ha plot in China, have found that the

inhomogeneous Poisson process generated the best distance-decay

curve for larger trees (DBH $10 cm). With respect to the g(r)
results (Figs. 6 & S1), for instance, for the Bubeng plot, the point

patterns of simulated distributions of Mezzettiopsis creaghii,
Alchornea tiliifolia, Castanopsis echidnocarpa and Knema furfur-
acea produced by the inhomogeneous Thomas process are much

more aggregated than their real distributions (Figs. S3–S6). In fact,

of the three models, the inhomogeneous Poisson process can even

produce the best g(r) patterns at the species level (Figs 5 & S2).

A comparison of the three point-process models within our

study indicates that the summary characteristics used can strongly

affect the study results and the conclusions. This is because critical

characteristics of the complex patterns underlying species’

distributions may be emphasized differently by different summary

characteristics [24]. Our conclusion, based on SARs and g(r)
functions which detect spatial patterns at community and species

levels, may be more robust than those based on summary

characteristics that incorporate species’ distribution patterns at

either, but not both, of community or species levels.

Contributions of the ecological processes
After synthesizing the results of the SARs and g(r), reflecting

community and species levels patterns, respectively, we have

demonstrated that dispersal largely controls species’ distributions

within the two forests evaluated. Moreover, as it shown in

Figures 3 & 4, the role of dispersal in driving species’ distributions

increases with size-class increasing, whereas that of environment

decreases. This pattern is consistent with a recent finding that the

contributions of neutral processes to tree species survival shift with

the change from juvenile to reproductive stages at the BCI plot

[10]. At the Bubeng plot, it has once been verified, using

regression and ordination methods on the tree lattice data, that

dispersal is the dominant process in shaping species’ distributions

[33,42]. At the BCI plot, Levine and Murrell [50] have suggested

that dispersal is important for species’ distributions at the species

level. Our results demonstrate that dispersal is also crucial in

determining species’ distributions at both community and species

levels. Moreover, the finding that dispersal dominates the

structuring of species’ distributions of trees from small to large

size is consistent with the reports by Seidler and Plotkin [1] and
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Leithead et al. [51]. Specifically, Seidler and Plotkin [1] demon-

strated that species’ distributions are related to dispersal mode

from saplings to mature trees and Leithead et al. [51] showed that

the dispersal process is important for species spatial patterns for the

BCI plot. Our results also suggest that dispersal can be the

principal process shaping community spatial pattern on plots with

large elevation ranges (160 m for Bubeng). This is also true for the

Gutian 24 ha plot which has an elevational range of 268.6 m [52].

In contrast, at the Sinharaja 25 ha plot with only a 151 m

elevation range, Gunatilleke et al. [53] demostrate that environ-

ment dominantes species distributions. The contrasting results

from these plots indicate that the contribution of environment to

species distribution does not necessarily relate to elevation range.

To sum up, dispersal is a dominant process in shaping species’

distributions in both forests.

Size-class effects
The effects of size-class serve as an essential supplementary

mechanism for understanding the patterns of species area

relationships. Our results show clearly that the incorporation of

size-classes improves the accuracy of SAR estimation using models

based on homogeneous Thomas processes for the two forests, and

the accuracy of those using inhomogeneous Thomas process at the

BCI plot (Fig. 2). As we have already indicated, dispersal is a

dominant process determining species’ distributions; we

hypothesize, therefore, that several crucial mass dispersal

phases at different life stages that shape the real species’

distributions in the two forests may exist. For the BCI plot, the

finding by Seidler and Plotkin [1] that tree distributions from

saplings to adults are strongly related to dispersal provides

direct evidence for this hypothesis. Previous studies also

demonstrated that, at the Bubeng plot, the distributions of

tree species are predominantly determined by neutral spatial

processes across size-classes [42]. In summary, we suggest that

the size-class effect is important for determining tree species’

distributions through influencing dispersal characteristics from

juvenile to adult trees.

On the other hand, the concordant SAR patterns produced

using the inhomogeneous Poisson process with and without size-

class effects suggest that species’ habitat preferences at different

DBH classes are almost uniform. This is consistent with the finding

that most of the species tend to maintain their habitat preferences

across different DBH size-classes in a 24-ha subtropical forest plot

in China [6]. Why do the habitat preferences of species become

homogenous across different size-classes? By studying habitat-

driven assemblages of species in three size-classes from the BCI

plot, Kanagaraj et al. [10] found that species’ habitat preferences

become weaker as they age. Figures 3 and 4 further suggest that

such habitat preferences are basically formed at an early stage of

life. This is because SAR patterns of the inhomogenous and

homogenous Thomas processes only differ greatly from each other

at Class 1, and little for Classes 2 and 3. This is consistent with the

predictions of the theory of regeneration niche differentiation

which predicts that species’ habitat preferences most likely form at

an early stage of life and this preference is maintained through

later size stages [54]. What we have shown is consistent with the

theory when a rigorous quantitative statistical analysis is applied.

The size-class effect might be affected by the location of the plot

(i.e. via its environmental heterogeneity). As it shown in Figure 2,

the influence of size-class shows, on the one hand, that the trend of

impact on dispersal processes is the same but its influence on the

joint process (environment+dispersal) exhibits differential impacts

on the two plots. This suggests that the addition of environmental

factors to the point process model may result in a different

performance of the joint process. As the site location of interest

is the major source of environmental variation, using more

plots and conducting meta-analyses may shed light on to this

issue.

The importance of the size-class effect on species’ distribu-

tions at the community level is significantly different from that

at the species level, having a significant impact on the SAR

patterns but not on the g(r) patterns in either of the two forests

examined. A possible reason for this distinction is that SARs and

g(r) functions reflect species’ distributions at different scales.

SARs are related to the spherical contact distribution, which

fundamentally describes the vacant area between clumps [28]

and thus is less capable of reflecting the pattern at smaller

species-level scales. On the contrary, the g(r) function describes

the details of clumps of individual species and focuses on

patterns at that scale [31]. It is most likely, therefore, that the

effect of size-class principally influences species’ distributions at

relatively large scales.

Conclusion

The mechanisms underlying the community assembly of tree

species remain controversial: niche-based mechanisms [17],

neutral mechanisms [12], and joint mechanisms incorporating

niche and neutral processes [52] remain under discussion.

Previous studies using point-process models to investigate com-

munity structure report that the joint-effect of environment and

dispersal are dominant in generating community characteristics

across tropical, subtropical and temperate forests [20,21,23,25].

Our results, however, indicate that dispersal is the more dominant

process in the determination of the spatial patterns of species

across size-classes at both species and community levels for

both the rainforests examined. We argue that evaluating the

relative importance of environment and/or dispersal using only

summary characteristics at the species or community level may

lead to bias. Many studies report that the mechanisms

regulating species’ distributions vary across size-classes

[5,6,10], but we find that dispersal is always the predominant

process that regulates the distributions of tree species from

juvenile to adult stages. Habitat preferences of species usually

develop at an early stage of life and weaken thereafter, as DBH

increases. We conclude that it is critical to use summary

characteristics at both community and species level to identify

the ubiquitous mechanisms that determine species’ distribu-

tions. Size-class effect contribute to species’ assembly through

differential dispersal which, we contend, is the most important

process in both forests studied.

Supporting Information

Figure S1 Comparison of observed g(r) of species at DBH class

1 to 3 with simulated g(r) by the three point process models.

(TIF)

Figure S2 Boxplots of g(r) AIC value distributions generated by

the three process models from class 1 to 3 of the Bubeng plot and

the BCI plot. See Figure 4 for the abbreviations.

(EPS)

Figure S3 The real distribution of Mezzettiopsis creaghii in the

Bubeng plot; its distributions predicted from the inhomogeneous

Poisson process, the inhomogeneous Thomas process and the

homogeneous Thomas process with the size-class effect; and, its

distributions predicted from the inhomogeneous Thomas process

and the homogeneous Thomas process scenarios without the
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size-class effect. The units of x and y axes are meter. See Figure 4

for the abbreviations.

(TIF)

Figure S4 The real distribution of Alchornea tiliifolia in the

Bubeng plot; its distributions predicted from the inhomogeneous

Poisson process, the inhomogeneous Thomas process and the

homogeneous Thomas process with the size-class effect; and its

distributions predicted from the inhomogeneous Thomas process

and the homogeneous Thomas process scenarios without the size-

class effect. The units of x and y axes are meter. See Figure 4 for

the abbreviations.

(TIF)

Figure S5 The real distribution of Castanopsis echidnocarpa in

the Bubeng plot; its distributions predicted from the inhomoge-

neous Poisson process, the inhomogeneous Thomas process and

the homogeneous Thomas process with the size-class effect; and its

distributions predicted from the inhomogeneous Thomas process

and the homogeneous Thomas process scenarios without the size-

class effect. The units of x and y axes are meter. See Figure 4 for

the abbreviations.

(TIF)

Figure S6 The real distribution of Knema furfuracea in the

Bubeng plot; its distributions predicted from the inhomogeneous

Poisson process, the inhomogeneous Thomas process and the

homogeneous Thomas process with the size-class effect; and its

distributions predicted from the inhomogeneous Thomas process

and the homogeneous Thomas process scenarios without the size-

class effect. The units of x and y axes are meter. See Figure 4 for

the abbreviations.

(TIF)

Table S1 The p-values of pairwise Wilcoxon rank sum tests on

SAR and g(r) AIC values among the three point process models at

DBH class 0 (that is: size-classes 1, 2 and 3 combined).

(DOC)

Data S1 Dataset for the Bubeng 20 plot.

(XLSX)
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