中国油料作物学报 Chinese Journal of Oil Crop Sciences 2014,36(2):181 - 188 doi:10.7505/j.issn.1007 - 9084.2014.02.007

蓖麻 DNA 糖基化酶的序列与基因表达分析

代梦媛^{1,3}, 赦 涛^{1,3}, 徐 伟^{2,3}, 刘爱忠^{2*}

(1. 中国科学院西双版纳热带植物园热带植物资源开放实验室,云南 勐腊,666303;

2. 中国科学院昆明植物研究所,云南昆明,650201;3. 中国科学院大学,北京,100049)

摘要:为揭示 DNA 糖基化酶在调节蓖麻生长发育和影响基因印记过程中的分子机理,本研究基于蓖麻全基因 组、利用生物信息学的方法结合转录组数据和 RT – PCR 半定量表达分析,鉴别蓖麻 DNA 糖基化酶氨基酸序列的 结构特征、系统发生和表达形式。结果显示:三种 DNA 糖基化酶(DME、ROS 和 DML)氨基酸均为不稳定氨基酸,具 有典型的与 DNA 结合和碱基切除修复有关的保守结构域;系统进化分析发现三种 DNA 糖基化酶在植物中同源性 强,而且是独立演化的结果;在不同组织的表达上,蓖麻的 DME 和 ROS 基因具有相似的表达形式,即在根、茎和叶 中不表达,在胚乳中表达最高,而 DML 在各个组织中都未检测到基因的表达。

关键词:蓖麻;DNA 糖基化酶;脱甲基化;表观调控

中图分类号:S565.603 文献标识码:A 文章编号:1007-9084(2014)02-0181-08

Sequence and expression analysis of DNA glycosylase in castor bean (Ricinus communis L.)

DAI Meng – yuan^{1,3}, AO Tao^{1,3}, XU Wei^{2,3}, LIU Ai – zhong^{2*}

(1. Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna

Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China;

2. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;

3. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China)

Abstract: To reveal the potential function of DNA glycosylases mediating DNA demethylation leading to gene imprinting in the growth and development of castor bean (*Ricinus communis*), the putative genes encoding DNA glycosylases were identified and characterized based on castor bean genome reference data. 3 genes (*RcDME*, *RcROS and RcDML*) encoding DNA glycosylases were identified. Their structures, conserved domains, and subcellular localization were characterized. Gene expression was inspected based on the high – throughput transcriptional sequencing data and RT – PCR. Results showed that the amino acids coded by the 3 genes were unstable ones, and the sequences contained typical DNA – binding conserved domains and domains related to base excision repair. Phylogenetically, DME, ROS and DML were homologous and evolved independently in plants. Both RcDME and RcROS exhibited a similar expression pattern among different tissues with the highest expression in endosperm, while the expression level of *RcDML* was not detected in all tested tissues.

Key words Ricinus communis; DNA glycosylase; Demethylation; Epigenetic regulation

DNA 分子上的 5 - 甲基胞嘧啶(5 - meC)经常 因发生甲基化而引起表观遗传上的 DNA 修饰,广泛 存在于真核生物的基因组中。在开花植物中,大约 50%基因组胞嘧啶被甲基化^[1],且发生在 CG、CHG (H 为 A、C 或 T)和 CHH 序列上,大部分甲基化存 在于转座子和其它重复序列中^[2,3]。DNA 从头甲基 化主要是通过 DNA 甲基转移酶来建立和维持^[4],在 基因组印迹、基因和转座子的沉默和基因组的防御 等方面具有重要的功能^[5,6]。然而基因组最终的甲 基化水平和模式是由 DNA 甲基化和 DNA 脱甲基化

收稿日期:2013-11-15

基金项目:中国科学院重点方向性项目(KSCX2-EW-Z-15)

作者简介:代梦媛(1988-),女,云南玉溪人,硕士研究生,主要从事植物分子遗传育种研究

^{*}通讯作者:刘爱忠(1969-),男,安徽全椒人,教授,博士,研究方向植物分子遗传育种,E-mail:liuaizhong@mail.kib.ac.cn

过程共同决定的。与 DNA 甲基化相比,关于 DNA 脱甲基化作用机制及其关键酶的研究相对较少。在 高等植物中,目前认为 DNA 的脱甲基化的机制主要 有两种,一种是在 DNA 复制过程中的被动脱甲基 化,另一种是 DNA 的主动脱甲基化作用,主要靠 DNA 糖基化酶(DNA glycosylase)来实现^[7,8]。

DNA 糖基化酶是一类植物特有的大分子蛋白 家族,能特异性识别和切除5-meC,然后通过碱基 切除修复涂径(base excision repair, BER),用没有 甲基化的胞嘧啶取代原有的甲基胞嘧啶,最终完成 DNA 的脱甲基化途径^[8]。目前,在拟南芥中发现了 三种 DNA 糖基化酶,包括 DEMETER(DME)^[9]、RE-PRESSOR OF SILENCING 1(ROS1)^[10]和 DML 类。 其中,DME 特异地在雌配子体的中央细胞中表达, 导致了胚和胚乳甲基化水平的差异和印记基因的表 达,从而控制胚乳和种子的发育^[9,12];DML 包括 DML2 和 DML3^[11],主要在营养组织中发挥作用,其 主要功能是阻止某些特异位点的过度甲基化和维持 全基因组甲基化水平的稳定^[11];ROS1 的主要功能 是抑制 siRNA 引起的 DNA 超甲基化过程和转基因 的转录沉默作用^[10]。近年来,越来越多的研究发现 DNA 糖基化酶在植物的生长发育、生物和非生物胁 迫、印迹基因的表达、胚乳和种子的发育方面具有重 要的功能^[5~10]。

蓖麻(Ricinuss communis L.)属于大戟科(Euphorbiaceae)双子叶一年生或多年生草本植物,是世 界上最重要的非食用油料作物之一[13,14]。蓖麻胚 乳中积累了大量的三酰甘油,其90%是由蓖麻油酸 (顺式-12-羟基十八碳-9-烯酸)组成^[15]。蓖麻 油酸在高温下不易挥发、低温下不易凝固,而被广泛 应用于工业、国防和航空等;另外,蓖麻油酸极性强, 结构稳定,能与酒精完全互溶即可制作成生物柴油。 目前,利用蓖麻油作为生物柴油的原料在生物柴油 产业化中已经受到了世界各个国家的高度关注和利 用^[16]。促进蓖麻的遗传改良、培育高产优良品种、 提高产量是当今蓖麻产业发展的主要任务。理解蓖 麻生长发育以及对环境的适应生理机制是蓖麻贵传 改良的前提。本研究通过对蓖麻 DNA 糖基化酶序 列进行同源比对和基因表达分析,为调查 DNA 脱甲 基化作用对蓖麻的生长发育调控方面的影响,以及 理解蓖麻生长发育以及对环境适应的表观机制提供 一些依据。此外,蓖麻种子是典型的双子叶胚乳型 油料种子,深入研究其种子发育与储存物质累积的 生理机制对理解植物种子发育与储存物质累积的分 子基础具有借鉴意义。

1 材料与方法

1.1 蓖麻 DNA 糖基化酶基因的获取与确定

以拟南芥 DNA 糖基化酶蛋白序列 AtDME (AT5G04560)、AtROS1 (AT2G36490)、AtDML3 (AT4G34060)和 AtDML2(AT3G10010)(下载自拟 南芥基因组数据库: http://www.arabidopsis.org)为 基序,在蓖麻基因组数据库(http://castorbean.jcvi. org)中进行 Blastp 同源序列比对,以获得显著同源 的候选蛋白(P<0.001,相似度>40%),然后将得 到的候选蛋白序列在拟南芥基因组数据库中进行同 源比对以及 SMART 分析,进一步检测糖基化酶蛋 白的功能结构域的存在。

1.2 DNA 糖基化酶的分子进化树构建

利用候选蓖麻糖基化酶蛋白序列在 GenBank 数据库中 Blastp 查找其它物种同源序列;利用 Clustal W^[17]软件进行氨基酸多序列比对分析,利用 MEGA 5.0 软件中的 Neighbor – Joining 法构建系统 进化树,设置 Bootstrap 的值为 1000 进行校正,生成 最终的系统发育树。

1.3 蓖麻 DNA 糖基化酶蛋白的理化特性及结构 分析

利用 ExPASy Proteomics Server 工具(http:// www.expasy.org/tools)分析蛋白质理化性质如分子 量、等电点、亲水性、稳定性等;利用 SignalP 4.0 程 序(http://www.cbs.dtu.dk/services/SignalP – 4.0/)进行信号肽分析;利用在线软件 Predotar1.03 (http://urgi.versailles.inra.fr/predotar/predotar.html)和 ProtComp v.9.0(http://linux1.softberry.com/ berry.phtml)对蛋白质进行亚细胞定位分析;利用 SMART(http://smart.embl-heidelberg.de/)在线工 具对蛋白结构域进行预测;利用 SOPMA 软件预测 蛋白的二级结构如: α - 螺旋(α - helix,H)、 β - 转 角(β - turn,T)、无规则卷曲(random coil,C)以及延 伸链(extended strand,E)等。

1.4 蓖麻 DNA 糖基化酶基因的表达分析

实验所用蓖麻品种为淄博 306(ZB306)。蓖麻 种子萌发后移植于西双版纳热带植物园温室中。自 然条件下生长 60d 后开始取材,分别采集根尖、茎、 叶、发育中的雌花和花粉,自花授粉后 35d 的胚和胚 乳,将组织样品立即放在液氮中保存。利用 TaKaRa 公司的植物总 RNA 提取试剂盒对各个组织的总 RNA 进行抽提;利用 Nanodrop 仪器测定 RNA 的浓 度和质量并用琼脂糖凝胶电泳检测 RNA 的完整性; 利用 Transgene 公司的 cDNA Synthesis SuperMi 试剂 盒对分离的 ploy A + RNA 进行反转录。利用 primer3.0 在线软件对 RcDME、RcROS1 和 RcDML 的 CDS 序列进行引物设计(表1),所有引物由上海捷 瑞生物工程有限公司合成。以各个组织反转录的 cDNA 为模板进行 RT – PCR(Semi – quantitative Realtime – PCR), PCR 反应条件为 94℃ 预变性 4min; 94℃变性 30s,55℃ 退火 30s,72℃延伸 30s,35 个循 环;72℃ 延伸 7min。对 胚乳 中得到的 RcDME、 RcROS1、RcDML 的 PCR 产物进行纯化并测序验证。

表 1 PCR 引物序列 Table 1 PCR primer sequences

 引物名称	引物序列	扩增长度	退火温度
 Primer name	Primer sequence $(5' - 3')$	PCR product length/bp	Annealing temperature∕℃
RcDME – F	AGGATTTCCTAAACCGACTGGT	432	58.9
RcDME – R	CAAAATGTCTGCATTCTGCTCT		57.4
RcROS1 - F	GCAACCAGAAAAGCAAAGAGCA	467	62.3
RcROS1 - R	AACTGAAGTGATTCGGGGCAGTG		61.6
RcDML - F	AGACAAGAAAGACAACCAAAGG	475	55.7
 RcDML – R	ATGACTGGGTACTCTTCCAAAA		55.9

2 结果与分析

2.1 蓖麻 DNA 糖基化酶基因的获取确定与氨基 酸序列比对

利用拟南芥糖基化酶 AtDME(AT5C04560)、At-ROS1(AT2C36490)、AtDML3(AT4C34060)和 At-DML2(AT3G10010)的蛋白序列在蓖麻基因组数据 库进行同源序列比对,最终获得了三个相应的蓖麻 同 源 蛋 白: RcDME(29428.m000327)、RcROS1(29092.m000452)和 RcDML(29991.m000674)。氨 基酸序列同源性分别为 50%、42% 和 48%。同时, cDNA 测序显示出一致的核苷酸组成和序列长度。SMART 和 Pfm 结构功能域分析发现三个酶蛋白都 有糖基化酶活性的保守功能域:ENDO3c 和 FES(图

1)。ENDO3c 是具有核酸内切酶 III (endonuclease III)活性的功能域,它能修复 DNA 上受损的嘧啶碱 基,同时通过 β 切除机制切除非嘌呤/非嘧啶位点 的磷酸二酯键^[18],FES 是 endonuclease III 上的铁硫 结合域(Fe-S cluster),其中有四个保守的半胱氨 酸残基,预测功能与 DNA 结合有关^[19]。蓖麻 DNA 糖基化酶的蛋白序列比对结果显示,这三个蓖麻糖 基化酶蛋白均含有一个 Helix - Hairpin - Helix 的结 构元件和其后的一个甘/脯氨酸富集链和一个保守 的天冬氨酸(图2),这些结构元件被认为是 DNA 糖 基化酶碱基切除超家族的典型特点^[20-22],保守的天 冬氨酸在碱基切除反应中作为电子供体参与反应, 提供酶催化活性。

Fig. 2 Two conserved domains of DNA glycosylate of R. communis

RcDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	NYVVSLGNVPNOHNPDKLFONIVESASAVISTPFEEPKES DLVVSIGFPNEKNSNELHNIGSFSAVISTPFEEPKDCSK MGSINGSSAVISTPFEEPKDCSK OLVTTIGHEITEPKSDKSMOSINGA.SAVNATEATEONDGSR NEVTVELDEATGKRHDELLKDITTISAAISEPTKEVEK DLVVFNELKANQONSEESCNIAGSSAVISTPFEEKKDSER NLITYNANEVSCHN.CELLONIVESSAVISTPFEEKKDSER	Lyane-ftch SBOQVIDINETFCORTPEK REHRPKVIVEGKHKKTEK 342 SBOQVIDINETFCORTPEK REHRPKVVVEGKTERTEK 345 DVIEFDINETFCORTPEK REHRPKVVVEGKHRKER 61 DVIEFDINETFEORTPEK REHRPKVVEGKHRKER 326 SBOQAIDINETFEORTPEK REHRPKVIVEGKHRKER 290 DEQGIDINETFCORTPEK REHRPKVIVEGKHRKER 342 SBEQGIDINETFCORTPEK REHRPKVIVEGKHRKER 342
RcDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	SV	KGOK. ES 370 KTQH. ES 363 NLKESATKKPANVGDMSNKSPE. VTLKSCRKA 130 TRLKESATKKPAHVGDMSNKSPE. VTLKSCRKA 381 ALKEPAIQOTDSAIETTPPSSAK. RKYGLNES 288 KGLTESATEQADSTKKSDPTAATPAKRRYVRKKSLKES 402
RCDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	DOKSTAKRKAGOPAKOKPITIEETIYRMEHINNEVKG. GLOSPARRGRPAKOKPATIEETIYRMERISNEKMKG GRKSIQASGKARGPSGELLCQDSIAATIYRMONIY GOKEREG GRKSIQASGKARGPSGKLLCLDSIAATIYRMONING GDKNREG VHKQGYSFGFQKFPAKTKTSLLENDILHKMKRISNDHEVS EHQQPSAKRRGRPAKQKFSTTETIHMECTSNARSKK YQQSSKAGPSAKQIYPIPIETINKFMGITHDERNNE/	ECTAINPYKCDGALIPYDGFEIIKRKPREKVDL 861 KECNINIYKCDGTLVPYGGFEFIKRKPREKVDL 890 OECNINIYKCDGALVPYESKKCKPREKVDI 963 IRS.ECNINIYKCGGAVVPYESKKCKPREKVDL 963 IRS.ECNINIYKCGGTVVPVGSEYLRRKARFKVDI 815 IRKECNINYKCGTLVPYDGFEFIKHKPREKVDL 744 AKSEVCNAINIYKCACTVVPYEGFEFIKRKPREKVDL 965
RCDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	PETERVNKLIMWRE.GGEGLEGTDOEKKOWWEDERRVFG GE PETERVNKLIMWRE.GSGLEGTDOEKKOWWEDERRVFR GE DETTRINNLIMGRGDERGOEKEKEKEKWEEKWEEERRVFR GE DETTRINNLINGRG.EKBCDEENDKKREKWEEERRVFR GE IPESDEVNKLINGRE.GSGLEREDERDKEKWEEERRVFR GE IPESDEVNKLINGRE.GSGLERERDKEKWEEERRVFH GI DETTRIVNLINGRE.GBDIEGTDKEKEKWEEERRVFH GI DETTRIVNLINGRE.GBDIEGTDKEKEKWEEERRVFH GI	ADSFIARMHLVQGDRRFSKWKGSVVDSVIGVFLTONVS 940 ADSFIARMHLVQGDRRFSKWKGSVVDSVIGVFLTONVS 969 ADSFIARMHLVQGDRRFSFWKGSVVDSVIGVFLTONVS 780 ADSFIARMHLVQGDRRFSFWKGSVVDSVIGVFLTONVT 1042 ADSFIARMHLVQGDRRFSRWKGSVVDSVIGVFLTONVS 894 VDSFIARMHLVQGDRRFSKWKGSVVDSVIGVFLTONVS 1043 VDSFIARMHLVQGDRRFSKWKGSVVDSVIGVFLTONVS 1043
RcDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	DHLSSSAFMNLAAKEFLKSMRNRTCERDEPRRLIC.EEDIYM DHLSSSAFMSLAAKEPLKSTRNRNHKRDGTRILVE.EPDVST DHLSSSAFMSLAAREPPKDSSSREDERNVRSVVVE.DPEGCI DHLSSSAFMSLAAREPPKSSSREDERNVRSVVVE.DPEGCI DHLSSSAFMSLAAREPPKSSSREDERNVRSVVE.EPDCGM DHLSSSAFMSLAAREPPKSSCKRECDGDGVKILIE.EPEFCE	LNPNPTIKUHEK.LLTEFYNGSSMTPHEEIEHRRDOET 1018 SNPNGTIKUHENSSCNHLYNGISIALYESKEHCRECMT 1048 LMINEIPSNCEK.VOHFSDMEVSGVDSCKEOLRDCSN 858 LNINEIPSNCEK.VOHFSDMEVSGVDSCKEOLRDCSN 1120 LYPAESIRHVOELSVFRFEMFCTSINHONOIAN 970 ONPNDIKNSK.FRYELYNGSPITHHCSAEPOCESET 901 PNPNETIKUHEKLFSHFLDROSPMTSIMETDYRRNGEN 1122
RcDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	SCTERTSIVEAHSYSPEE VISSODSFDSSIVCSNGVIRS YS SWTERTSIVEAHSHSPEEALSSODSFDSSVVCNNG.VRS YS SGIERFNFLEKSIONLEEVUSSODSFDAIFSCGRVGS CS SGIERFNFLEKSONLEEVISSODSFDAIFSCGRVGS CL SGIERFNFLEKSSONLEEVISSODSFDSTTOGTAGARS CS WCIERASMVGACSHSLEEPVISSODSFDSTVCANGGVRS YS PGIERTSFTETHSQSLEEPVLSSOGSFDSSVICANGVRY YS	GENLEAS DEAKGCKHNENHNTSNACKLE, FEEF 1092 GENEEAS DEANGCKHSKNLRTSSTNSFQUENTLFEEF 1127 CSKSDASFTTRCETKTVSGSSOSVOTGSPNLSDEI 936 CSKSDASFSTTRCETKTVSGSSQSVOTGSPNLSDEI 1198 GENEEASEFIVSYNSSSTHYSNFTDIKOMETTATIOKS 1049 GENEETSDFTGCKFNNFHGSSVDOMENSASFEEF 1199
RCDME JCTDME AthDME AlyDME CsaDME PtrDME TcaDME	THFTNKANLNRNASKARKAKAESGOKDAVDWESLRROV LV VHFTSKVNSSINSLKTKKEKAQSOKKDAVDWENLRROA LA KEQTAVEYKETNATILREMKGTLADGKKPTSCWESLRKDV EG AHSLSCAHNEGNISPSKAKGRIADGKKPTSCWESLRKDV EV HEDNENLKSNANGSKARKKVESEKADVDWESLRKVV EA HSSEKENGAYSFLKSKRRKAEGEKNNATDWEALFRLV CA	NGREERSESAMDSLDYEAMESAUVELEDTIKERGMN 1390 NGERERSODTNDSLDYEALEGAVNCHADAIKERGMN 1442 NEGROPRINKINNDSIDYEALERGAVNCHADAIKERGMN 1239 NGCRESKDSMDSIDYEALERASISELEDAIKERGMN 1505 NGCRESKDSMDSIDYEALERASISELEDAIKERGMN 1358 NGCRESKERMDSLDYEALERACVNELEAIKERGMN 1357 NGKREERSKDINDSLDYEAMENNVNELENAIKERGMN 1507
RcDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	NMLAERIKDFLNRIVREHSSIDLEWLROVPFOKAREYLLSI NMLAERIQETINRIVREHSSIDLEWLROVPFOKAREYLLSI MLAVRIKDTERIVREHSSIDLEWLROVPFOKAREYLLSI NMLAVRIKDTERTIVREHSSIDLEWLROVPFOKAREYLLSI NMLAVRIKDTERTIVREHSSIDLEWLROVPFOKAREYLLSI KILAERIQEDLNRLVREHSSIDLEWLROVPFOKAREYLLSI NMLAERIKEDLNRLVREHSSIDLEWLROVPFOKAREYLLSI NMLAERIKEDLNRLVREHSSIDLEWLROVPFOKAREYLLSI	GLGLKSVECVRLLTLHHLAFFVDTNVGRIAVRIGWVPL 1470 GLGLKSVECVRLLTLHHLAFFVDTNVGRIAVRIGWVPL 1522 GLGLKSVECVRLLTLHNLAFFVDTNVGRIAVRGWVPL 1518 GLGLKSVECVRLLTLHNLAFFVDTNVGRIAVRIGWVPL 1588 GLGLKSVECVRLLTLHHLAFFVDTNVGRIAVRIGWVPL 1433 GLGLKSVECVRLLTLHHLAFFVDTNVGRIAVRIGWVPL 1587 GLGLKSVECVRLLTLHHLAFFVDTNVGRIAVRIGWVPL 1587 GLGLKSVECVRLLTLH
RCDME JCrDME AthDME AlyDME CsaDME PtrDME TcaDME	OPLPESLOLHLLELYPILESIOKYLWPRICKLOOPTLYPILHY OPLPESLOLHLLEMYPILESIOKYLWPRICKLOOPTLYPILHY OPLPESLOLHLLEMYPILESIOKYLWPRICKLOOPTLYPILHY OPLPESLOLHLLEUYPULESIOKFLWPRICKLOOPTLYPI OPLPESLOLHLLEUYPULESIOKYLWPRICKLOOPTLYPI OPLPESLOLHLLEUYPILESIOKYLWPRICKLOOPTLYPILHY OPLPESLOLHLLEUYPULESIOKYLWPRICKLOOPTLYPILHY	FES CMITFGKVFCTKSRPNCNACFMRABCHFASAFASARL 155 CMITFGKVFCTKSRPNCNACFMRABCHFASAFASARL 1602 CLITFGKVFCTKSPPNCNACFMRGBCHFASAFASARL 1655 CLITFGKVFCTKSKPNCNACFMRGBCHFASAFASARL 1516 CMITFGKVFCTKSKPNCNACFMRGBCHFASAFASARL 1667 CMITFGKVFCTKSKPNCNACFMRGBCHFASAFASARL 1667
RCDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	ALFGFE DKSIVTATVELTTERS GIVIDEL PLPPAEDN LL ALFGFE EKSIVTSTVEIATERS GIVIDEN PLPPEEN SL ALFAFA ERSITSTTEVPESY PVAIPMIEL PLFLEKSL ALFAFAPD.EKGIVASTNEWSTEKOPIVTNPLPILPEGST ALFGFE TKDITTSTVEFMPEKSSIVINEMPLLPPEDN CH ALFGFE EKSITSSTVEMMSERN VKVLNEMPLPPEEN.L	TRRGS.DIVSCVDIIDE GATREOGHTEVIES DIEDIFD 1627 KRGEP.DIVSCVDIIDE GATREOGHTEVIES DIEDIFY 1679 ASGAPSNRENCE PIIDE GATREOGUCT PITES DIEDAYY 1477 ARGAPSNRENCE PIIDE GATREOGUCT PITES DIEDAYY 1745 AENTS.GPSKCEPIVDUGATEGATEDIEDAYY 1595 KSVGF.DIGGCEPIIDE FVHOCEOTELART DIED FG. 1533 LHVGP.NNGSREPIIDE FTTEPPHTESOSDIEDACY 1743
RcDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	EDEDEIPTIKINMBELTVNIONYMOANMELOECIMSKALVA EDEDEIPTININIEELAVNVONYMOANMELOECIMSKALVA NDEPEIPTIKINIEOFGMTIREHMERNMELOEGIMSKALVA NDEPEIPTIKINIEOFGMTIREHMERNMELOEGIMSKALVA EDEPEIPTIKINMEFTENICAVIFEGMSKALVA EDEPEIPTIKINMEFTENICAVIFEGMSKALVA EDEPEIPTIKINIEFTANLOHYMQEKMELOESIISKALVA	LN EAASIPTEKLKNYSELRTEH VYELPDSHELLNR. 1705 LN EAASIPTEKLKNISCLRTEH VYELPDSHELLKG. 1757 LHETTTSIPTEKLKNISCLRTEH VYELPDSHELLGG. 1556 LNFTATSIPTEKLKNISELRTEH VYELPDSHELLGG. 1624 LNEAAFIPTEKLKNYSELRTEH VYELPDSHELLGGN 1611 LOFNASIPTEKLKNYSELRTEH VYELPDSHELLGGN 1611 LNFEAASIPTEKLKNYSELRTEH VYELPDSHELLGGN 1611
RcDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	MDEROPDDPSPYLLAIWTPGETANSICPPERHCOFOGEDK WDERERDDPSPYLLAIWTPGETANSICPPDTHCOSOESNK MDEREPDDPSPYLLAIWTPGETANSACPPEOROGGRASGK MDEREPDDPSPYLLAIWTPGETANSICPPEOROGGRASGK DDREPDDPSPYLLAIWTPGETANSICPPEOSOGSOPPNR LOMDKREPDDPSPYLLAIWTPGETANTICPPEOSOSREPNK MEREADDPSPYLLAIWTPGETANTICPPEOS	ICNEOTCESCNSIREINSOTVRGTLLIPCRTAMRGSFF 1783 ICNDETCFSCNSVREANSOTVRGTLLIPCRTAMRGSFF 1835 MCFDETCSECNSIREANSOTVRGTLLIPCRTAMRGSFP 1634 MCFDETCSECNNVREANSOTVRGTLLIPCRTAMRGSFP 1902 ICNEITCFTCNSRREANSOTVRGTLLIPCRTAMRGSFP 1745 ICNEITCFSCNSIREANSOTVRGTLLIPCRTAMRGSFP 1691 ICNEKTCFACNSVREANAOTVRGTLLIPCRTAMRGSFP 1899
RcDME JcrDME AthDME AlyDME CsaDME PtrDME TcaDME	LNGTY FOVNE VEADHESSIN FIEVERANIANLEREMVYFOTS LNGTY FOVNE VEADHESSIN FINVPRANIANLERELVYFOTS LNGTY FOVNE LEADHESSIN FIEVERDWINDLERETVYFOTS LNGTY FOVNE LEADHESSIN FIEVERDWINDLERETVYFOTS LNGTY FOVNE MEADHESSING IEVPROWINDLERETVYFOTS LNGTY FOVNE MEADHESSING IEVPRENIANLERETVYFOTS LNGTY FOVNE VEADHESSING MEVPRENIANLERETVYFOTS	VSTERGISTEGICYCDWKGAYAVEMRTSILEFLSTYR 1863 VSTERKISTEGICYCDWK
RCDME JCrDME AthDME AlyDME CsaDME PtrDME TcaDME	LSFYSITQNLHYY ARLHFPASKLKNNKT ARLHFPASKLKKNKT ARLHFPASKLAKKNGQTE ARLHFPVSRLVKTKNEKK.	1876 1896 1729 1997 1844 1789 1966

图 3 RcDME 与其他植物 DME 氨基酸序列比对 Fig. 3 Alignment of amino acid of RcDME and DME homologue of other species 鉴于 DME 糖基化酶在植物繁殖、印迹基因的表 达和胚乳发育中的关键作用,我们进一步解析了 RcDME 蛋白的结构与功能的关系。应用 Phytozome 上的 BlastP 工具进行同源序列查找,结果显示 Rc-DME 与小桐子(Jcr4S02159.10 / partial)、拟南芥 At-DME(NP_196076.2)、琴叶拟南芥(487239)、黄瓜 CsaDME(Cucsa.308950.1)、毛果杨 PtrDME(Potri. 008C025900.1)、烟草(Thecc1EC043681t1)的 DME 蛋 白的同源性分别是:64%、50.1%、52.9%、52.6%、 60.9%和61%。氨基酸序列比对结果显示(图3), DME 有三个保守的序列区域,Domain A,Glycosylase Domain 和 Domain B^[23]。其中 Glycosylase Domain 包 含了 DNA 糖基化酶的两个保守功能域,即 ENDO3c 和 FES 功能域;除此之外,在 RcDME 和 RcROS1 蛋 白的 N 端还包含一个保守的赖氨酸富集区域,该区 域被认为与核染色质的相互作用有关^[24]。

2.2 蓖麻 DNA 糖基化酶蛋白的系统发育

为了进一步分析蓖麻 DNA 糖基化酶的进化关 系,我们选择了与蓖麻糖基化酶相似性较高的其它 物种的同源蛋白(表2),用 MEGA 5.0 软件中 Neighbor – Joining 法构建其系统发育树。如图4结 果所示,三类糖基化酶明显地聚类在三个独立的支 上,且在 ROS1 和 DML 分支上,单子叶和双子叶植 物具有明显的分化,而 DME 仅存在双子叶植物中, 而在单子叶植物如水稻、玉米和高粱中没有发现其 同源物。蓖麻的三种 DNA 糖基化酶在各支上均与 其同科植物如小桐子、木薯有近的亲缘关系,而与模 式植物拟南芥的亲缘关系较远,暗示着蓖麻 DNA 糖 基化酶在功能上可能与拟南芥存在着一定的差异。

	表 2 进化树分析所用物种的基本信息
Table 2	Basic information of related species in the phylogenetic tree

物种名称	简写名称	分类	物种名称	简写名称	分类
Name	Short	Classification	Name	Short	Classification
蓖麻 Castor	Rc	D	番木瓜 Papaya	Сра	D
小桐 Jatropha	Jer	D	大豆 Soybean	Gma	D
木薯 Manioc	Mes	D	葡萄 Grape	Vvi	D
拟南芥 Arabidopsis	Ath	D	棉花 Cotton	Gra	D
琴叶拟南芥 A. lyrata	Aly	D	毛果杨 P. trichocarpa	Ptr	D
芜菁 Turnip	Bra	D	玉米 Maize	Zma	Μ
黄瓜 Cucumber	Csa	D	水稻 Rice	Osa	Μ
碧桃 Peach	Ppe	D	高粱 Sorghum	Sbi	Μ
烟草 Tobacco	Тса	D	二穗短柄草 Brachypodium	Bdi	Μ

注:D 双子叶植物;M 单子叶植物

Note: D, dicotyledon; M, monocotyledon

图 4 蓖麻 DNA 糖基化酶蛋白系统发育树 Fig. 4 Phylogenetic tree of DNA glycosylase from *R. communis* and other species

3 蛋白质理化性质、亚细胞定位预测和二级结构 分析

蓖麻 RcDME、RcROS1、RcDML 基因分别编码 1 876、1 634、1 712 个氨基酸残基,相对分子质量分 别为 212 279.8、183 163.6 和 191 361.9 kD,均为分 子量较大的三种酶蛋白。RcDME、RcDML 和 RcROS1 的酸性氨基酸数目稍微多于碱性氨基酸, 其理论等电点分别为 6.90、6.88、6.88,由此可知, 蓖麻的三个糖基化酶均属于中性偏酸性蛋白(表 3)。对蛋白质亲/疏水性进行预测,正值越大表明 越疏水,负值越大表明越亲水,由此推断这三个蛋白 都为亲水性蛋白,其中 RcDME 的亲水性最高。三 个蛋白的不稳定参数为 49.92、47.11 和 56.83,均 为不稳定蛋白。这些理化性质的分析将对蛋白酶的 分离与提纯有重要的意义。利用 SignalP 4.0 对蓖 麻糖基化酶的氨基酸进行信号肽预测,结果显示这 三种蛋白均不存在信号肽。利用 ProtComp v.9.0 在 线软件对蓖麻三种糖基化酶进行亚细胞定位预测分 析,如表4 所示,RcDME 蛋白定位于细胞核的得分 为9.76,定位于细胞质的得分为0.02,定位于线粒 体的得分0.23,而在细胞中其他部分的定位得分均 为0.00,从而推测该蛋白可能最终定位于细胞核, 说明 RcDME 可能为核靶向蛋白。类似地,RcROS1 蛋白也可能定位于细胞核中,但 RcDML 蛋白却在细 胞质的定位得分最高,预示着 RcDML 蛋白可能在细 胞质中发挥功能。利用 SOPMA 对蓖麻糖基化酶的 二级结构预测表明(表5),三种蛋白主要是由α-螺旋和无规则卷曲构成,而延伸链和β-转角散布 于整个蛋白质中。

表 3 蓖麻 DNA 糖基化酶基因编码蛋白序列的理化性质 Table 3 Physical and chemical properties of protein coded by DNA glycosylase genes of *R. communis*

				A					
基因座位 gene loci	蛋白 protein	编码的氨基酸 Coded amino acids	分子量 MW /kD	碱性氨基酸 Alkaline amino acids	酸性氨基酸 Acidic amino acids	pI	亲水性 Hydrophilicity	稳定性 Stability	信号肽 Signal peptide
29428. m000327	RcDME	1 876	212 279.8	230	236	6.9	-0.784	49.92 不稳定 Unstable	No
29092. m000452	RcROS1	1 634	183 163.6	195	199	6.88	-0.673	47.11 不稳定 Unstable	No
29991.m000674	RcDML	1 712	191 361.9	222	226	6.88	-0.6	56.83 不稳定 Unstable	No
					77 7				

表 4 蓖麻 DNA 糖基化酶基因编码蛋白的亚细胞定位分析 Table 4 Subcellular localization prediction of protein coded by DNA glycosylase genes of *R. communis*

亚细胞定位 Subcellular localization	RcDME	RcROS1	RcDML
细胞核 Nuclear	9.76	9.52	2.43
细胞膜 Plasma membrane			0.10
胞外 Extracellular		0.22	
细胞质 Cytoplasmic	0.02		5.10
线粒体 Mitochondrial	0.23	0.20	
高尔基体 Golgi			2.36
液泡 Vacuolar		0.06	

表 5 蓖麻 DNA 糖基化酶基因编码蛋白的二级结构分析 Table 5 Secondary structure analysis of protein coded by DNA glycosylase genes of *R. communis*

二级结构 Secondary structur	e	RcDME	RcROS1	RcDML
α-螺旋 Alpha helix (Hh)	527	(28.09%)	441 (26.99%)	514 (30.02%)
β-转角 Beta turn (Tt)	61	(3.25%)	52 (3.18%)	98 (5.72%)
延伸链 Extended strand (Ee)	169	(9.01%)	218 (13.34%)	253 (14.78%)
无规则卷曲 Random coil (Cc)	1119	(59.65%)	923 (56.49%)	847 (49.47%)

2.4 蓖麻 DNA 糖基化酶基因的表达分析

以蓖麻品种 ZB306 为实验材料,检测 RcDME、 RcROS1 和 RcDML 在根、茎、叶、雌花和雄花、胚和 胚乳组织器官的表达特性。RT - PCR 检测结果表 明,RcDME和RcROS1在雄花、雌花、胚和胚乳中均 有表达,并且在雄花中的相对表达量最低,在胚乳中 的相对表达量最高;而 RcDML 在各个组织均未检测 到(如图5A)。为了进一步检测这三种蛋白在组织 间的表达情况,我们从 GenBank 数据库中下载了蓖 麻五个组织转录组数据(http://www.ncbi.nlm.nih. gov/sra accession SRX007402 to SRX007408)^[25]。表 达谱分析发现,蓖麻 RcDME 和 RcROS1 在各个组织 器官,包括叶片、雄花、萌发的种子和胚乳的两个发 育阶段中均有表达,在胚乳组织中表达量最高且在 发育过程中表达量有所增高,其次是在雄花中有所 表达,后在叶片和萌发的种子有最低的表达。而蓖 麻 RcDML 基因在检测的所有组织中都未发现相应 的转录产物(图5B),与RT-PCR的结果一致。

3 结论与讨论

DNA 的主动脱甲基化过程在植物生长发育,响应环境变化和基因组防御过程中发挥着重要的作

注:A:RT - PCR 半定量检测蓖麻 DNA 糖基化酶基因表达. 1 根,2 茎,3 叶,4 雌花,5 雄花,6 胚,7 胚乳; B:转录组数据分析蓖麻 DNA 糖基化酶基因表达^[25] Note:A:RT - PCR analysis of DNA glycosylase genes expression level in various tissues. 1:root; 2:stem; 3:leaf; 4:female flower; 5:male flower; 6:embryo; 7:endosperm. B:expression analysis of DNA glycosylase genes from Brown's study^[25] 图 5 蓖麻 DNA 糖基化酶基因组织特异表达

Fig. 5 Expression analysis of DNA glycosylase genes from different tissues in R. communis

用^[8]。另外,在植物中 DNA 主动脱甲基化能够有效 地阻止 siRNA 介导的 DNA 甲基化过程^[8,26]。最近 在植物中发现了一组 DNA 糖基化酶如 DME^[9]、 ROS1^[10]和 DML^[11]能够通过碱基切除修复机制去 除 DNA 上的甲基化标记。本研究利用拟南芥鉴定 的 DNA 糖基化酶^[11]通过同源序列比对在蓖麻基因 组中鉴定了三种同源的 DNA 糖基化酶,分别命名为 RcDME、RcROS1 和 RcDML。这三种氨基酸均为不 稳定氨基酸,编码较长的氨基酸序列,其中包含了典 型的与 DNA 结合和碱基切除修复有关的保守结构 域 Domain A, Glycosylase Domain 和 Domain B^[23], 但 在氨基酸序列的 N 端存在着高的变异区。然而,在 RcDME 和 RcROS1 氨基酸序列的 N 端存在一个保守 的赖氨酸富集区,此区域被认为与核染色质结合有 关^[24],与亚细胞定位结果一致,而 RcDML 在 N 端缺 乏该区域,亚细胞定位结果显示其定位在细胞质中。

近年来很多研究发现 DNA 糖基化酶 DME 介导 的 DNA 主动脱甲基化作用对印迹基因的表 达^[27,28]、胚乳和种子发育有至关重要的作用^[9]。母 源等位基因 dme 突变体种子表现出发育异常甚至 败育^[9]。因此,我们进一步对 RcDME 糖基化酶的 氨基酸序列,系统进化和组织特异性表达进行了详 细分析。根据 Choi 等人的研究,DNA 糖基化酶可以 分为两种:双功能糖基化酶具有碱基切除和 3'磷酸 二酯健连接的功能;单功能糖基化酶仅具有 DNA 糖 基化酶活性,DNA 缺口的产生还需要 AP 核酸内切 酶的参与。因此,推断 RcDME 是一种单功能 DNA 糖基化酶,因为在氨基酸序列的1455 位是一个天 冬氨酸(双功能糖基化酶为组氨酸)。保守的天冬 氨酸能够裂解水分子,然后通过亲核反应替换受损 的或者错配的碱基^[9]。从系统发育树来看,DME 仅 出现在双子叶植物中,类似的结果也被 Zemach 等 人在水稻基因组甲基化研究中发现,说明 DME 在双 子叶植物中较为保守^[29]。DME 在单子叶植物中的 缺失可能是 DNA 糖基化酶家族的分离进化而引 起^[29]。另外,在其他古老的低等植物中也发现了 DME 的同源物,显示出 DME 起源于单个古老的基 因^[23]。而 ROS1 和 DML 糖基化酶在单子叶和双子 叶植物出现之前就已经产生了分化。蓖麻 DNA 糖 基化酶在进化树上均与拟南芥表现出较远的亲缘关 系。RT-PCR 和转录组数据分析显示 RcDM 基因 在雄花、雌花、种子的胚和胚乳中都表达,不同于拟 南芥 DME 在中央细胞中特异表达,说明 RcDME 和 拟南芥的 DME 在功能上存在一定的差异, RcDME 可能参与不同组织的基因组脱甲基化作用和组织的 正常发育。RcROS1 和 RcDME 基因表现出相似的表 达模式,它们是否在功能上存在冗余还需要深入的研 究。而蓖麻 RcDML 基因在各个组织中都未检测到。 虽然在拟南芥组织中检测到了 DML2 和 DML3 的表 达,而且其功能的缺失会导致基因组部分区域的低甲 基化,但是 DML 的缺失突变并不影响植物的正常生 长发育,因此认为 DML 可能不是植物生长发育所必 需的,而与保护基因免受过度甲基化过程有关^[11]。

蓖麻作为一种重要的非食用油料作物,从表观 遗传水平上研究蓖麻生长发育和抗逆性,特别是胚 乳发育的调控机制具有非常重要的现实意义。而 且,蓖麻种子具有大的胚乳组织,在整个种子发育阶 段持续存在,为研究表观调控因子和印记基因在胚 乳发育和种子形成过程中的功能提供了很好的系 统。本研究对蓖麻 DNA 糖基化酶的分离鉴定,理化 性质分析,亚细胞定位预测及其组织表达为深入研 究其功能和蓖麻遗传改良提供了理论基础。

参考文献:

- Doerfler W. DNA methylation and gene activity [J]. Ann Rev Diochem, 1983, 52:93 - 124.
- [2] Henderson I R, Jacobsen S E. Epigenetic inheritance in plants[J]. Nature, 2007, 447(7 143): 418 - 424.
- [3] Gehring M, Bubb K L, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting [J]. Science, 2009, 324:1 447 – 1 451.
- [4] Finnegan E J, Kovac K A. Plant DNA methyltransferases
 [J]. Plant Mol Biol, 2000, 43 (2 3):189 201.
- [5] Bird A. DNA methylation patterns and epigenetic memory[J]. Gene Dev, 2002, 16(1):6-21.
- [6] Bender J. DNA methylation and epigenetics [J]. Annu Rev Plant Biol,2004,55:41-68.
- [7] 柯跃斌,夏 菠. DNA 去甲基化与基因激活过程[J]. 癌变・畸变・突变,2010,22(2):149-153.
- [8] Zhu J K. Active DNA demethylation mediated by DNA glycosylases [J]. NIH - PA Author Manuscript, 2009, 43:143-166.
- [9] Choi Y, Gehring M, Johnson L, et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis [J]. Cell,2002,110:33-42.
- [10] Gong Z, Morales Ruiz T, Ariza R R, et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase[J]. Cell, 2002, 111: 803 - 814.
- [11] Penterman J, Zilberman D, Huh J H, et al. DNA demethylation in the Arabidopsis genome [J]. PNAS, 2007, 104:6 752-6757.
- [12] Kinoshita T, Miura A, Choi Y, et al. One way control of FWA imprinting in *Arabidopsis* endosperm by DNA methylation[J]. Science, 2004, 303:521 – 523.
- [13] 高彩婷,宝力高,刘 涛. 蓖麻研究概况[J]. 内蒙古
 民族大学学报(自然科学版),2010,25(2):178-181.
- [14] 严兴初,王力军. 蓖麻作为能源开发的现状与前景 [J]. 安徽农业科学,2007,35(34):11 165-11 167.
- [15] Ogunniyi D. Castor oil: A vital industrial raw material [J]. Bioresource Technology, 2006, 97(9):1 086 -1 091.
- [16] Caupin H J. Products from castor oil: past, present, and future [A]. Lipid Technologies and Applications [M]. New York: Marcel Dekker, 1997. 787 - 795.

- [17] Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position - specific gap penalties and weight matrix choice [J]. Nucleic Acids Res, 1994, 22(22): 4673-4680.
- [18] Tainer J A, Thayer M M, Cunningham R P. DNA repair proteins [J]. Current Opinion in Structural Biology, 1995, 5:20 - 26.
- [19] Thayer M M, Ahern H, Xing D X, et al. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure [J]. The EMBO Journal, 1995, 14 (16):4 108 4 120.
- [20] Krokan H E, Standal R, Slupphaug G. DNA glycosylases in the base excision repair of DNA[J]. Biochem, 1997, 325:1-16.
- Bruner S D, Norman D P G, Verdine G L. Structural basis for recognition and repair of the endogenous mutagen 8 oxoguanine in DNA[J]. Nature, 2000, 403(24):859–866.
- [22] Schärer O D, Jiricny J. Recent progress in the biology, chemistry and structural biology of DNA glycosylases [J]. BioEssays, 2001, 23:270 - 281.
- Mok Y G, Uzawa R, Lee J, et al. Domain structure of the DEMETER 5 - methylcytosine DNA glycosylase [J].
 PNAS, 2010, 107(45): 19 225 - 19 230.
- [24] Kasinsky H E, Lewis J D, Dacks J B, et al. Origin of H1 linker histones [J]. The FASEB Journal, 2001, 15:34 – 42.
- [25] Brown A P, Kroon J T M, Swarbreck D, et al. Tissue specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways[J]. PLoS One, 2012,7(2):e30100.
- [26] Bauer M J, Fischer R L. Genome demethylation and imprinting in the endosperm [J]. Curr Opin Plant Biol, 2011,14(2):162-167.
- [27] Gehring M, Huh J H, Hsieh T F, et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self – imprinting by allele – specific demethylation [J]. Cell, 2006,124(3):495 – 506.
- [28] Xiao W, Gehring M, Choi Y, et al. Imprinting of the MEA polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase [J]. Dev Cell, 2003, 5(6):891-901.
- [29] Zemach A, Kim M Y, Silva P, et al. Local DNA hypomethylation activates genes in rice endosperm[J]. PNAS, 2010,107:18 729 - 18 734.