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Abstract. Numerous studies have revealed the existence of nonrandom trait distribution
patterns as a sign of environmental filtering and/or biotic interactions in a community
assembly process. A number of metrics with various algorithms have been used to detect these
patterns without any clear guidelines. Although some studies have compared their statistical
powers, the differences in performance among the metrics under the conditions close to actual
studies are not clear.

Therefore, the performances of five metrics of convergence and 16 metrics of divergence
under alternative conditions were comparatively analyzed using a suite of simulated
communities. We focused particularly on the robustness of the performances to conditions
that are often uncertain and uncontrollable in actual studies; e.g., atypical trait distribution
patterns stemming from the operation of multiple assembly mechanisms, a scaling of trait–
function relationships, and a sufficiency of analyzed traits.

Most tested metrics, for either convergence or divergence, had sufficient statistical power to
distinguish nonrandom trait distribution patterns without uncertainty. However, the
performances of the metrics were considerably influenced by both atypical trait distribution
patterns and other uncertainties. Influences from these uncertainties varied among the metrics
of different algorithms and their performances were often complementary.

Therefore, under the uncertainties of an assembly process, the selection of appropriate
metrics and the combined use of complementary metrics are critically important to reliably
distinguish nonrandom patterns in a trait distribution. We provide a tentative list of
recommended metrics for future studies.

Key words: assembly rules; biotic interactions; community assembly; competition; environmental
filtering; functional diversity; functional traits; habitat filtering; limiting similarity.

INTRODUCTION

Trait-based analyses of ecological communities have

enhanced our understanding of community assembly

processes (HilleRisLambers et al. 2011, Weiher et al.

2011). Trait distribution patterns within a local com-

munity can be either convergent or divergent, as a result

of the two major mechanisms of community assembly,

environmental filtering and biotic interactions (Weiher

and Keddy 1995, Webb et al. 2002). Environmental

filtering refers to an ecological process where the

persistence of species in a given abiotic environment is

determined by functional traits (Keddy 1992, Mayfield

and Levine 2010). This process should produce a

convergent trait distribution as long as responses to

the environment are a monotonic or unimodal function

of the traits. Alternatively, biotic interactions often lead

to a divergent trait distribution via competitive interac-

tion, niche differentiation, facilitation, or enemy-medi-

ated interaction (MacArthur and Levins 1967, Kursar et

al. 2009, Spasojevic and Suding 2012; but see Cavender-

Bares et al. 2009, Mayfield and Levine 2010). The

assumption that convergence or divergence in a trait

distribution pattern can be a sign of the contrasting

assembly rules has led to an increasing number of

studies seeking nonrandom trait distribution patterns

for various kinds of communities (e.g., Arita 1997,

Weiher et al. 1998, Mason et al. 2007, Kraft et al. 2008).

Either convergent or divergent trait distributions have
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been detected in many studies, suggesting that both

environmental filtering and biotic interactions play an

important role in community assembly (Götzenberger et

al. 2011, HilleRisLambers et al. 2011, Weiher et al.

2011).

However, the metrics used for detection of these

patterns vary among studies. Despite the challenges of

some pioneer studies (Kraft and Ackerly 2010, Mouchet

et al. 2010, Mason et al. 2012), there is no consensus

regarding the choice of metrics to maximize the

possibility of detecting a nonrandom trait distribution

pattern. A primary problem when establishing trust-

worthy guidelines for the choice of metrics are the

uncertainties in the assembly processes. Simulation

studies have demonstrated that many metrics have

sufficiently high statistical power (i.e., low risks of type

II error) as long as the trait distribution pattern is typical

(i.e., generated by a single assembly mechanism) and

every detail of the assembly process is apparent (Kraft

and Ackerly 2010, Mouchet et al. 2010, Mason et al.

2012). However, in actual studies, the essential condi-

tions of the assembly process that potentially influence

the performance of the metrics are often unknown.

Among these uncertainties, the influence of assembly

scenarios has been a focus of earlier studies (Kraft and

Ackerly 2010, Mason et al. 2012). These simulation

studies have shown that the simultaneous operation of

multiple processes blurs both convergent and divergent

trait distribution patterns and thus makes it more

difficult to detect significant patterns. Combinations of

the three processes of community assembly (i.e.,

stochasticity, environmental filtering, and biotic inter-

actions) generate various atypical patterns of trait

distribution. Based on the three processes, previous

studies often subtractively assembled simulated commu-

nities (Kraft and Ackerly 2010, Mouchet et al. 2010).

Species were sequentially removed from a species pool to

arrive at a specified richness based on one of the three

processes. However, it is also natural to build simulated

communities by adding species in a vacant community

to a specified richness (Mason et al. 2012). Trait

distribution patterns generated from additive assembly

simulation may be more challenging, especially for the

metrics of convergence, because species addition based

on different criteria would often introduce outliers in the

pattern. The robustness of the performance in these

cases is practically important because assembly process-

es such as mass effects (Shmida and Wilson 1985) seem

to introduce such outliers (cf. Mason et al. 2012). In

most cases, the true assembly scenario operating in a

target community is unknown. Therefore, ideally

metrics that are effective in practical studies should be

robust to all of these alternative assembly scenarios.

Factors other than assembly scenarios can also

influence the statistical powers of the metrics but have

rarely been considered in earlier studies. Such factors

include the potential mismatch of the scaling of trait–

function relationships between a true assembly process

and a calculated assumption. It is often practically

difficult to know whether a relationship between a trait
value and the strength of environmental filtering or

biotic interactions is linear or log-linear. This uncertain-
ty leads to a potential mismatch in the scaling of traits

because researchers often decide to (or not to) log-
transform trait values before analysis without firm
evidence. For multi-trait metrics, the choice of traits

for an analysis leads to another mismatch. Usually, it is
virtually impossible to know the exact set of traits that

influence community assembly (cf. Petchey and Gaston
2006). Therefore, in most cases, the analyzed suite of

traits will inevitably omit some important traits and/or
include some unimportant traits. In addition to these

two problems, previous studies have shown that local
species richness often affects the statistical power of

metrics, and that the direction and extent of the
influence differs among metrics (Kraft and Ackerly

2010, Mouchet et al. 2010). Thus, robustness to these
problems should be the second requisite of ideal metrics.

In this study, we aimed to construct practical
guidelines for choosing robust metrics under multiple

uncertainties of the assembly processes based on
simulated communities. For this purpose, we compara-

tively examined the performance of five metrics of
convergence and 16 metrics of divergence under two
types of uncertainty that have concerned researchers in

actual studies: (1) alternative assembly scenarios in
which multiple mechanisms were mixed in various ways

and (2) mismatches between a true assembly process and
an assumption for analysis in the scaling of trait–

function relationships and determining a set of respon-
sible traits.

MATERIALS AND METHODS

Tested metrics of trait distributions

Metrics of a trait distribution pattern can be
categorized into four groups based on the trait

distribution pattern that they detect: single-trait metrics
for convergence, multi-trait metrics for convergence,
single-trait metrics for divergence, and multi-trait

metrics for divergence. In this study, two single-trait
metrics of convergence (range and variance), three

multi-trait metrics of convergence (functional richness
[FRic], functional dispersion [FDis], and functional

diversity based on a dendrogram [FD]), eight single-
trait metrics of divergence (mean nearest-neighbor

distance [MNND], minimum nearest-neighbor distance
[MinNND], standard deviation of neighbor distance

[SDND], standard deviation of nearest-neighbor dis-
tance [SDNN], SDND divided by the range [SDNDr],

SDNN divided by the range [SDNNr], variance, and
kurtosis) and eight multi-trait metrics of divergence

(MNND, MinNND, ratio of the shortest distance to the
longest distance in a minimum spanning tree [Min/Max
MST], FRic, FDis, FD, functional evenness [FEve], and

functional divergence [FDiv]) were considered as all
have been used frequently in past studies (Appendix A).
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Both of the two single-trait metrics of convergence are

well-known basic statistics. Some studies have examined

multi-trait convergence by using some multidimensional

metrics of functional diversity; e.g., FRic, FDis, and FD

(Mouchet et al. 2010, Mason et al. 2012). FRic is a

convex hull volume in the multidimensional space of

traits that are occupied by species in a community

(Villeger et al. 2008). FDis is defined as the mean

distance of a species from the centroid of trait values in a

multidimensional space (Laliberte and Legendre 2010).

FD is the sum of the branch length of a dendrogram that

is constructed by hierarchical classification of species

based on traits (Petchey and Gaston 2002). Of the eight

single-trait metrics of divergence, six (MNND,

MinNND, SDND, SDNN, SDNDr, SDNNr) are based

on neighbor distance or nearest-neighbor distance

between species that are sorted along the trait values.

While MNND and MinNND are defined as the mean

and minimum nearest-neighbor distances, respectively

(Findley 1976, Ricklefs and Travis 1980), SDND and

SDNN are defined as the standard deviation of neighbor

distances and nearest-neighbor distances, respectively

(Ricklefs and Travis 1980, Cornwell and Ackerly 2009).

SDNDr and SDNNr are SDND and SDNN standard-

ized by the range, respectively, to decrease the risk of a

type I error occurring when environmental filtering

operates at the same time as biotic interactions (Kraft

and Ackerly 2010). While these metrics focus on the

distances between species, variance and kurtosis focus

on a whole distribution form, with the assumption that

biotic interactions lead to more variable and/or platy-

kurtic trait distributions, respectively. MNND and

MinNND, which we have introduced as single-trait

metrics, have also been used as multi-trait metrics. Min/

Max MST is also a metric that focuses on the nearest

distance between species (Stubbs and Wilson 2004).

Additionally, measures of functional diversity; e.g.,

FRic, FEve, FDiv, FDis and FD, have also been used

as multidimensional metrics of trait divergence (Mou-

chet et al. 2010, Mason et al. 2012). FEve is the evenness

of branches of a minimum spanning tree in multidimen-

sional trait space and FDiv is the species deviance from

the mean distance to the centroid of the space (Villeger

et al. 2008).

Community and trait data

Although we assessed the performance of the metrics

based on simulated communities, the size of species

pools, trait values in the species pools, and local species

richness for a simulation were obtained from data for

three actual communities that possessed different

characteristics. One was the understory herb community

of a cool temperate forest in northern Japan (HERB).

All understory plants, which were found in 60 1-m2

quadrats located in the 2715-ha Tomakomai Experi-

mental Forest, were recorded. The species pool size was

75, median local species richness was 11, and minimum

and maximum richness values were 5 and 21, respec-

tively. Four continuous traits were measured; i.e., plant

height, total aboveground dry mass, specific leaf area

(SLA), and leaf nitrogen content. For further details of

these data, see Aiba et al. (2012). The second was a

hyperdiverse tropical rain forest tree community on a

52-ha plot located in the Lambir Hills National Park,

Sarawak, Malaysia (TREE). The data contains more

than 350 000 mapped trees (.1 cm diameter at breast

height [dbh]) belonging to 1195 species. We focused on

only 549 species whose traits were available. The entire

plot was divided into 1300 quadrats (203 20 m), each of

which was considered to represent a local community.

The median local species richness was 100 and minimum

and maximum richness were 61 and 131, respectively.

Four continuous traits; i.e., SLA, leaf size, leaf

toughness, and leaf tannin content, were measured for

one to eight saplings per species. The final community

comprised strictly freshwater fish in Japan (FISH). The

four main islands of Japan were divided into 27

geographic regions (mean area was 13 900 km2) and

each region was considered to represent a local

community (Watanabe 2012). The species pool size

was 90, median, minimum, and maximum local species

richness were 36, 5, and 59, respectively. The functional

traits were one continuous 12 binary, 9 categorical, and

3 ordered. The total of 25 functional traits consisted of 3

morphological, 13 dietary, and 5 reproductive traits and

4 habitat preferences. These traits were obtained from

the literature and an electronic database, FishBase.

Further details of this data set are available in

Matsuzaki et al. (2013). Note that species composition

in the local communities from these three data sets was

never used in the following analyses.

Simulation of community assembly

Ten alternative assembly scenarios were considered

for each of convergence and divergence. These scenarios

were built by combining six simple steps, i.e., the

random removal of a species, environment-based

removal, trait similarity-based removal, random addi-

tion of a species, environment-based addition, and

similarity-based addition. The three removal steps have

also been used in former studies (Kraft and Ackerly

2010, Mouchet et al. 2010). For the random removal

step, a species to be removed was randomly selected

irrespective of its trait values. For the environment-

based removal, an optimum trait value was randomly

determined within the observed trait range and then a

species whose trait value was most distant from the

optimum was removed. For the similarity-based remov-

al, trait dissimilarities of all species pairs were calculated

and then one of the most similar pairs was randomly

removed. The manner of species selection was generally

mirrored in multi-trait simulations but Euclidean (for

HERB and TREE data) or Gower (for FISH data,

which included binary, categorical, and ordered trait

variables) distances were used as measures of distance.

December 2013 2875ROBUSTNESS OF TRAIT DISTRIBUTION METRICS



The subtractive assembly scenarios, which were

constructed from the three removal steps, assume that

community assembly is a process in which species are

removed from the species pool by local extinction due to

stochasticity, environmental filtering, and/or biotic

interactions. However, it is also reasonable to consider

community assembly as a process where species are

sequentially selected from the species pool to fill a vacant

local community (Mason et al. 2012). Thus, we designed

the three addition steps in a similar manner to the

removal steps. Random addition is a step in which one

species is randomly chosen to be added into the local

community, irrespective of the trait values. For the

environment-based addition, species whose trait value(s)

were closest to the randomly determined optimum were

chosen. For the similarity-based addition, trait dissim-

ilarity to the most similar species in the preexisting

community was calculated for all species in the

remaining species pool, and then the most distant

species were chosen. If the local community was vacant

(i.e., the first step in a simulation), the first species was

randomly chosen from the species pool. In additive

assembly scenarios, which were constructed from the

three addition steps, stochasticity, environmental filter-

ing, and/or biotic interactions function as a determinant

of the recruitment and establishment of species. Al-

though these processes do not necessarily prevent the

recruitment of a species, they can affect a trait

distribution pattern by excluding some species shortly

after recruitment. In the simulation process, we handled

recruit limitation and exclusion shortly after recruitment

as an identical process because the difference is not

critical to the simulation results. In typical cases; i.e.,

where only one of the three assembly rules was used,

species addition produces communities that are quite

similar to those to which species removal has been

applied. However, in atypical scenarios in which

multiple rules were combined, species removal and

species addition often produce quite different patterns.

The 10 assembly scenarios that were designed for the

metrics of convergence were as follows: E�, Eþ, ER�,
ERþ, EB�, EBþ, EBR�, EBRþ, RREEþ, and EERRþ.
In these scenarios, E, B, and R represent environmental

filtering, biotic interactions, and randomness, respec-

tively. Plus and minus signs indicate subtractive and

additive simulation, respectively. E� and Eþ are the

typical scenarios of trait convergence, which were

constructed only from environment-based removal and

addition, respectively. ER� and ERþ is a combined

model in which the environment-based step and the

random step were randomly selected with an equal

probability for each step of a simulation. Similarly, in

EB� and EBþ, the environment-and similarity-based

steps were randomly selected with an equal probability.

In EBR� and EBRþ, the random, environment-and

similarity-based steps were randomly selected with an

equal probability and therefore the contribution of

environmental filtering decreased to one-third of the

total removal/addition of species. In RREEþ, the first

half of the total addition was random and the second

half was environment-based and in EERRþ, the first

half of the total addition was environment-based and the

second half was random. Similarly, we considered the

following 10 scenarios for trait divergence: B�, Bþ,
BR�, BRþ, EB�, EBþ, EBR�, EBRþ, RRBBþ, and

BBRRþ, where the environment-based steps of the 10

scenarios for trait convergence were replaced by

similarity-based steps. These scenarios were based at

least partly on existing theories of community ecology.

For example, ERþ may mirror community assembly

under a mass effect (Shmida and Wilson 1985) where a

pattern created by environmental filtering is blurred by

random recruitments. RREEþ, EERRþ, RRBBþ, and
BBRRþ were designed with temporal shifts of an

assembly mechanism through a successional process in

a community (Weiher and Keddy 1999).

In the analysis of alternative scenarios, other miscel-

laneous conditions; i.e., the scaling of trait–function

relationships, the sufficiency of analyzed traits, and local

species richness were fixed as follows (control [LL]

condition in Appendix B). Trait values were log-

transformed before both the assembly simulation and

the calculation of metrics. In multi-trait cases, all traits

were used for both the simulation and calculation of

metrics. For local species richness, the median diversity

of each data set was used. In the second step of our

simulation test, the assembly model was fixed to E� for

metrics of convergence or B� for metrics of divergence

and the conditions were then changed as follows

(Appendix B). Trait values were optionally untrans-

formed before either the assembly simulation or the

calculation of metrics. This procedure led to three

alternative situations: traits were untransformed before

the simulation but were log-transformed before the

calculation of metrics (NL), traits were log-transformed

before the simulation but were untransformed for the

calculation of metrics (LN), and traits were untrans-

formed before both the simulation and the calculation of

metrics (NN). For multidimensional analysis, the

sufficiency of the analyzed trait number was modified.

An ‘‘excess’’ model was created by randomly selecting

half of all traits for community assembly while the

metrics were calculated by using all traits. In contrast, a

‘‘deficit’’ model was created by randomly selecting half

of all the traits for the calculation of metrics while all of

the traits were used for community assembly. Local

species richness was changed to the minimum (min) or

maximum (max) value of each data set. Unfocused

conditions were set as in the control scenario. See the R

code in our supplementary materials for details of both

the calculation of metrics and the simulation algorithm

(Supplement).

Statistical tests

One hundred local communities were generated for

each combination of data set (HERB, FISH, and
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TREE) 3 functional traits (e.g., SLA for HERB, body

length for FISH and multiple traits) 3 simulation

scenarios (alternative scenarios and other conditions).

In total, 32 400 communities for 324 different situations

were generated. Values of the metrics were calculated for

each of these simulated communities. These values were

then standardized by the mean and standard deviation

of the values for the null model; i.e., 100 simulated

communities that were only produced from random

removal (R�), to obtain the standardized effect sizes

(SESs; Gotelli and McCabe 2002). This standardization

enabled comparison of the performance among different

metrics and simulation scenarios. The statistical power

of the metrics was evaluated in two ways based on Kraft

et al. (2007) and Kraft and Ackerly (2010). First, if the

one-sided 95% confidence interval (CI) of SESs did not

overlap with the one-sided 95% CI of the SESs of the

null model, a nonrandom pattern could be detected for

95% of the local communities following a permutation

test (quadrat-level power, sensu Kraft and Ackerly

[2010]). Second, the possibility of detecting a nonran-

dom pattern at the metacommunity level (i.e., 100 local

communities) was determined using a one-sided Wilcox-

on signed rank test, which examines the shift of SES

values from 0 (plot level power sensu Kraft and Ackerly

[2010]). The distributions of SESs for the 10 alternative

scenarios are shown as examples for some traits (Figs. 1–

4) but for the other results only the statistical powers

have been summarized in table form. All statistical

analyses were performed in the statistical environment R

2.15.0 (R Development Core Team 2012). We summa-

rized the process of analysis in a schematic flow chart

(Appendix C).

RESULTS

Responses to the alternative assembly scenarios

Single-trait metrics for convergence.—For the typical

assembly scenarios (E� and Eþ), both the range and

variance could be used to detect trait convergence, even

in a single local community, for all traits of all data sets

FIG. 1. The performance of the two single-trait metrics, (a) range and (b) variance, for convergence against 10 alternative
assembly scenarios for plant height in the HERB data set. Symbols and error bars indicate means and one-sided 95% confidence
interval (CI) of standardized effect size (SES) values, respectively. Dashed lines indicate one-sided 95% CI of SES values of the null
model. If a metric had sufficient statistical power at the single local-community level, i.e., 95% CI of the SES values of metrics did
not overlap with 95% CI of the null model, the results are represented by heavy error bars. Statistical powers at the metacommunity
level (100 local communities), i.e., a significant shift from 0 in one-sided Wilcoxon tests, are indicated by solid symbols. In names of
the tests, E, B, and R represent environmental filtering, biotic interactions, and randomness, respectively. Plus and minus signs
indicate subtractive and additive simulation, respectively. See Appendix D for the full results.

FIG. 2. The performance of the three multi-trait metrics, (a) functional richness [FRic], (b) functional dispersion [FDis], and (c)
functional diversity based on a dendrogram [FD], for convergence against 10 alternative assembly scenarios for the HERB data set.
Symbols and error bars indicate means and one-sided 95% confidence interval (CI) of standardized effect size (SES) values,
respectively. Figure components are as in Fig. 1. The CIs of SESs were redundant with the CI of the null model in all cases,
indicating that the metrics did not have sufficient statistical power at a single local-community level. See Appendix E for the full
results.
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(Fig. 1, Appendix D). The SESs of the range tended to

be larger than those of the variance in the typical

scenarios. For the atypical scenarios, in many cases,

convergent trait distribution patterns that were generat-

ed through ER�, EB�, and EBR� were significantly

detected even for a single local community by both

metrics. However, their statistical power was lessened

(i.e., a risk of type II error was increased) in the ERþ,
RREEþ, and EERRþ scenarios. For these scenarios, the

range could be used to detect significant patterns more

often than the variance. Neither the range nor variance

could be used to significantly detect trait convergence

for EBþ and EBRþ, even at the metacommunity level.

The performance of both metrics was generally higher

for TREE data when the same assembly scenario was

compared. The performances of both metrics also varied

among traits even in the same data set and were worst

for SLA in HERB data.

Multi-trait metrics for convergence.—The perfor-

mance of the three metrics; i.e., FRic, FDis, and FD,

FIG. 3. The performance of the eight single-trait metrics: (a) mean nearest-neighbor distance [MNND], (b) minimum nearest-
neighbor distance [MinNND], (c) standard deviation of neighbor distance [SDND], (d) standard deviation of nearest-neighbor
distance [SDNN], (e) SDND divided by the range [SDNDr], (f ) SDNN divided by the range [SDNNr], (g) variance, and (h)
kurtosis). The metrics were tested for divergence against 10 alternative assembly scenarios for the HERB data set. Figure
components are as in Fig. 1. See Appendix F for the full results.
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was generally similar but FD slightly underperformed in

the atypical scenarios for FISH data (Fig. 2, Appendix

E). In the typical scenarios, they were able to detect

convergence at least at the metacommunity level in all

three data sets. All metrics could be used to detect

convergence for ER� at least at the metacommunity

level, whereas this was not possible for EBþ and EBRþ.
For the other scenarios, the performance of the metrics

depended on the data set and was lowest for HERB

data.

Single-trait metrics for divergence.—The performance

of the eight single-trait metrics for divergence often

varied among traits even in the same data set (Fig. 3,

Appendix F). SDND and SDNN had virtually no

statistical power for SLA in the HERB data set.

Kurtosis failed to detect trait divergence for leaf tannin

FIG. 4. The performance of the eight multi-trait metrics: (a) mean nearest-neighbor distance [MNND], (b) minimum nearest-
neighbor distance [MinNND], (c) ratio of the shortest distance to the longest distance in a minimum spanning tree [Min/Max
MST], (d) functional richness [FRic], (e) functional evenness [FEve], (f ) functional divergence [FDiv], (g) functional dispersion
[FDis], and (h) functional diversity based on a dendrogram [FD]. The metrics were tested for divergence against 10 alternative
assembly scenarios for the HERB data set. Figure components are as in Fig. 1. See Appendix G for the full results.
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content in the TREE data set. For the atypical scenarios,

MNND, SDNDr, and the variance had sufficient

statistical power at the single-community level slightly

more often than MinNND and SDNNr. MinNND was

unique in its performance in the BE� and EBR�
scenarios, in which statistical powers of the other

metrics were often insufficient especially at the single-

community level. The sizes of the SESs were comparable

to, or even exceeded, those of single-trait metrics of

convergence.

Multi-trait metrics for divergence.—For the typical

scenarios, in most cases, all of the eight metrics were able

to detect trait divergence at the single-community level

(Fig. 4, Appendix G). The SESs of FEve and FDiv were

consistently lower than those of other metrics in all data

sets. For the BEþ, EBRþ, RRBBþ, and BBRRþ
scenarios, the performances of MNND, FDis, and FD

were better than those of other metrics while the

performances of MinNND, Min/Max MST, and FEve

were better for the BE� and EBR� scenarios. The

performance of the metrics was generally better for the

TREE data set than for the other two data sets. The

SESs of the metrics, excluding FEve and FDiv, were

generally larger than those of the multi-trait metrics of

convergence.

Responses to the other conditions of assembly

For a single-trait test of convergence, the scaling

problem affected the statistical power of both the range

and variance but its influence had a less frequent effect

on variance (Table 1, Appendix H). The magnitude of

the influence varied among the traits and was most

serious for the total mass in the HERB data set. The

performance of the multi-trait metrics for convergence

was also influenced by the scaling problem (Table 1,

Appendix I). Especially, in the HERB and TREE data

sets, all of the three metrics failed to detect trait

convergence under the NN condition. The problem of

scaling was less serious for FISH data, for which only

one of the 25 variables was continuous. FD lost

statistical power when the analyzed trait number was

insufficient against the number responsible for commu-

nity assembly for HERB data.

For the single-trait metrics of divergence, all of the

five conditions affected the results in at least one case

(Table 2, Appendix J). The scaling problem weakened

the statistical power of many metrics. However, MNND

TABLE 1. The performance of the two single-trait metrics and the three multi-trait metrics for
convergence against the problems of scaling relationships, the sufficiency of traits, and local
species richness for the HERB data set.

Traits and metrics

Tests

Control NN LN NL Deficit Excess Min Max

Height

Range � 3 3 � � �
Variance � � � � � �

Total mass

Range � NS 3 3 � �
Variance � � � 3 � �

SLA

Range 3 3 3 3 3 3
Variance 3 3 3 3 3 3

Leaf N content

Range � � � � � �
Variance � � � � � �

Multiple traits

FRic 3 NS 3 3 3 3 3 3
FDis 3 NS 3 3 3 3 3 3
FD 3 NS 3 3 NS 3 3 3

Notes: Daggers (�) indicate significant results in both of the permutation tests at the single local
community level and Wilcoxon signed rank tests at the meta-community level (P , 0.05).
Multiplication symbols (3) represent significant results only in Wilcoxon signed rank tests at the
meta-community level. NS represents nonsignificant results in both tests. In the NN test, traits were
untransformed before both the simulation and the calculation of metrics. In the LN test, traits were
log-transformed only before the simulation. In the NL test, traits were log-transformed before the
calculation of metrics. In the deficit and excess tests, an ‘‘excess’’ model was created by randomly
selecting half of all traits for community assembly while the metrics were calculated by using all
traits and a ‘‘deficit’’ model was created by randomly selecting half of all the traits for the
calculation of metrics while all of the traits were used for community assembly. These two tests
were not applicable for single-trait metrics. In min and max tests, local species richness was changed
to the minimum or maximum value of each data set, respectively. SLA is an abbreviation for
specific leaf area. FRic, FDis, and FD indicate functional richness, functional dispersion, and
functional diversity based on a dendrogram, respectively. See Appendix H and Appendix I for full
results.
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and MinNND were relatively robust to these conditions

and they hold sufficient statistical power at the

metacommunity level in many cases. The performance

of multi-trait metrics for divergence was also affected by

the sufficiency of analyzed traits as well as the scaling

problem and the low levels of local species richness

(Table 2, Appendix K). Here again the metrics,

excluding FRic, were less seriously affected by the

scaling problem for FISH data. Both a deficit and excess

of analyzed traits weakened the statistical power in

many cases. The performance of MNND, FDis, and FD

was relatively robust against these conditions.

DISCUSSION

Assembly scenarios and other conditions considerably

influenced the statistical powers of the metrics to

distinguish nonrandom patterns in the distribution of a

trait. In actual studies, the combination of these

nonexclusive uncertainties would make it more difficult

to detect signs of nonrandom community assembly in a

trait distribution pattern. This fact, as well as the use of

inappropriate metrics, can partly account for the

relatively high proportion of nonsignificant results in

past studies (82% in studies of plants [Götzenberger et

al. 2011]). However, our results demonstrate that these

influences can be reduced by choosing the appropriate

metrics.

Robustness under atypical assembly scenarios

In most cases, all of the metrics tested, for either

convergence or divergence, had sufficient statistical

power to detect patterns in the typical scenarios, at

least at the metacommunity level. Furthermore, in many

cases, if an appropriate metric was selected, the

detection of the patterns at a single local-community

level was also possible. However, the performance of

SDND, SDNN, and kurtosis as a single-trait metric for

divergence were considerably sensitive to trait distribu-

tion patterns in the species pool, and hence their use

should be avoided. Although it has been argued that

trait divergence is more difficult to detect than trait

convergence (Kraft and Ackerly 2010), our results

demonstrate that this is not always true once appropri-

ate metric was chosen.

TABLE 2. The performance of the eight single-trait metrics and the eight multi-trait metrics for
divergence against the problems of scaling relationships, the sufficiency of traits, and local
species richness for plant height, specific leaf area (SLA), and multiple traits in the HERB data
set.

Traits and metrics

Tests

Control NN LN NL Deficit Excess Min Max

Height

MNND 3 3 3 3 3 �
MinNND � � � � � �
SDND � 3 � 3 � 3
SDNN � 3 3 NS � �
SDNDr � 3 � 3 � �
SDNNr � 3 3 3 � �
Variance � 3 � 3 � �
Kurtosis 3 3 3 NS 3 3

SLA

MNND � � � � � �
MinNND � � � � � �
SDND NS NS NS NS NS NS
SDNN NS NS NS NS NS NS
SDNDr 3 3 3 3 3 3
SDNNr 3 3 3 3 3 3
Variance � � � � � �
Kurtosis 3 3 3 3 3 3

Multiple traits

MNND � � 3 3 � � � �
MinNND � � 3 3 3 3 � �
Min/Max MST � � 3 3 3 3 3 �
FRic � � 3 3 � 3 3 �
FEve � � 3 3 3 3 3 �
FDiv 3 3 3 3 3 3 3 3
FDis � � 3 3 � � � �
FD � � 3 3 � � � �

Notes: Table components are as described in Table 1. Abbreviations are: MNND, mean nearest-
neighbor distance; MinNND, minimum nearest-neighbor distance; SDND, standard deviation of
neighbor distance; SDNN, standard deviation of nearest-neighbor distance; SDNDr, SDND
divided by the range; SDNNr, SDNN divided by the range. FRic, FDis, FD, FEve, and FDiv
indicate functional richness, functional dispersion, functional diversity, functional evenness, and
functional divergence based on a dendrogram, respectively. See Appendix J and Appendix K for
full results.
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For the atypical scenarios, statistical powers were

often considerably weakened. The statistical power of

the single-trait metrics for convergence; i.e., range and

variance, were largely discounted for the ERþ, EBþ,
EBRþ, RREEþ, and EERRþ scenarios. These are

scenarios in which convergent trait distributions result-

ing from environmental filtering were blurred by outliers

that were introduced through the similarity-based or

random addition of species. These results clearly

indicate that both the range and variance are sensitive

to outliers, which are expected to be introduced via

processes such as the mass effect in actual studies.

Interestingly, the use of variance, which has been

considered to be somewhat tolerant to outliers (Corn-

well and Ackerly 2009), often underperformed the use of

the range.

The overall performance of multi-trait metrics for

convergence was not as good as the performance of

single-trait metrics. FRic, FDis, and FD successfully

detected convergence at the local-community level only

for the TREE data set. If local species richness was set to

the same level as for HERB data (11 species), the results

for the TREE data set were worse but still better than

results for the other data set (data not shown). This

indicates that the size of both the local community and

species pool are responsible for the performance of these

metrics (cf. Kraft et al. 2007, Kembel 2009). All of the

metrics failed to detect convergence even at the

metacommunity level for the EBþ and EBRþ scenarios,

indicating their sensitivity to outliers as in the case of

single-trait metrics. The performance of the three

metrics was generally similar but FRic and FDis

performed slightly better for the FISH data set. The

performance of FDis and FD, which seem to tolerate

outliers from the algorithm, were not better than the

performance of FRic (but see Mason et al. [2012] for an

abundance-weighted case). When combined with the

results for single-trait metrics, our results indicate that

the detection of trait convergence for presence/absence

data using these metrics is virtually impossible when a

convergent pattern is modified by extreme outliers.

Of the single-trait metrics for divergence, MinNND

was unique in its tolerance to the EB� and EBR�
scenarios, for which the performance of the other

metrics was insufficient. This is reasonable because the

algorithm of MinNND is independent of the range of a

trait value. For the other metrics, whose algorithms are

sensitive to the range of a trait value, evidence of biotic

interactions would be difficult to detect if environmental

filtering operates at the same time. Although the

performance of both SDND and SDNN seem compa-

rable to that of MinNND, these results should be

discounted because these metrics carry the risk of

generating a type I error in these scenarios. If

environmental filtering operates, SDND and SDNN

values tend to be small even without biotic interactions,

because the possible range of neighbor distances

depends on the range of a trait value (Lake and Ostling

2009). When the RE� scenario was used in place of R�
as a null model, the statistical power of both SDND and

SDNN for the EB� scenario was much decreased and

was no longer comparable with that of MinNND (data

not shown).

The responses of the multi-trait metrics for divergence

to atypical scenarios can be categorized into two groups:

MNND, FRic, FDis, and FD outperformed others for

the EBþ, EBRþ, RRBBþ, and BBRRþ scenarios, while

MinNND, Min/Max MST, and FEve performed better

in the EB� and EBR� scenarios. EBþ, EBRþ, RRBBþ,
and BBRRþ are the scenarios in which some species

with extreme traits are necessarily included via the

similarity-based addition of species. Therefore, metrics

that are sensitive to these extreme values (MNND,

FRic, FDis, and FD) should be advantageous for the

detection of divergence. In contrast for the EB� and

EBR� scenarios, environmental filtering remove species

with extreme traits and thus the trait range can be even

narrower than the null model (R�). In this case, metrics

that are insensitive to the absolute size of the occupied

volume in the multidimensional space of traits but

capture the arrangement of species within the occupied

volume (MinNND, Min/Max MST, and FEve) should

be advantageous. Mouchet et al. (2010) recommended

FRic as a metric of divergence following a comparative

analysis of the measures of functional diversity. How-

ever, our analysis shows that this is no longer true in the

atypical scenarios

Robustness to trait scaling, sufficiency of traits,

and species richness

The influence of the scaling problem was widespread

and often severely weakened the statistical power of the

metrics. In most cases, the best performances of the

metrics were observed when trait values were log-

transformed before both simulation and the calculation

of metrics. In the case of a log-scale assembly, the

situation is rather simple because a log-transformation

of trait values before the calculation of metrics always

improved the statistical power. In the case of a normal-

scale assembly, however, the metrics for convergence

and those for divergence were affected differently

following a log-transformation of trait values. In most

cases, for both single and multiple traits, log-transfor-

mation improved the performance of the metrics of

convergence even when a trait–function relationship was

linear. This indicates that, for these metrics, a trait

distribution form in a species pool, possibly symmetry, is

more important than a match of the scaling between a

real process and an assumption for analysis. However,

the performance of the metrics for divergence sometimes

deteriorated following a log-transformation when a

trait–function relationship was linear, indicating that a

match of scaling is important for the performance of the

metrics.

Sufficiency of analyzed traits and local species

richness also affected the performance of metrics for
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divergence to some extent. Many multi-trait metrics for

divergence were affected by both a deficit and excess of

analyzed traits. Although it is difficult to know the exact

set of traits that operate in a community assembly

process, the inclusion of traits whose role in an assembly

process are not clear should be avoided (cf. Petchey and

Gaston 2006). The statistical powers of the single-trait

metrics for divergence often decreased when local

species richness was low. Kraft et al. (2010) demon-

strated that the statistical powers of SDNDr and

SDNNr were negatively correlated with local species

richness in their simulation. However, the influence of

local species richness in this study was dependent on the

metrics, data set, and trait values, suggesting that the

relationships between the statistical power of the metrics

and local species richness are not simple. Additionally, a

trait distribution form in a species pool can be a

potential risk to the performance of the metrics. For

single-trait metrics, the performance in both typical and

atypical scenarios differed considerably among traits

even within a single data set.

Our results indicate that magnitudes of the influences

from these conditions are different among the metrics

and thus can be alleviated by choosing the appropriate

metrics. Of the single-trait metrics for convergence,

variance was less affected than the range by the problem

of scaling. The three multi-trait metrics of convergence

generally displayed similar responses to these condi-

tions. Of the single-trait metrics for divergence, the

performance of both MNND and MinNND was

relatively robust to these conditions and they never lost

sufficient statistical power at the metacommunity level.

The performance of MNND was most robust also as a

multi-trait metric of divergence.

As noted above, the detection of significant patterns

would be more difficult in actual studies because the

uncertainties that affect the statistical power are not

exclusive. Therefore, the careful selection of metrics that

are robust to these uncertainties is strongly encouraged.

It is also important to assume that signs of nonrandom

assembly are sometimes difficult to detect even when

they actually exist, especially at a single local-commu-

nity level.

Recommended metrics

Based on these results, we tentatively recommend the

following metrics for use in studies on trait distribution

patterns as a sign of community assembly processes

(Table 3). For a single-trait analysis of convergence, we

recommend use of the variance and range simultaneous-

ly. Although the range outperformed variance in some

atypical assembly scenarios, variance was slightly more

robust to the problem of scaling. For a multi-trait

analysis of convergence, FRic and FDis slightly outper-

formed FD in their robustness to alternative assembly

scenarios. Of the single-trait metrics for divergence,

MNND, SDNDr, and variance were relatively tolerant

to atypical scenarios. Additionally, the responses of

MinNND to atypical scenarios were unique and

complementary to the other metrics. Because MNND

and MinNND are relatively robust to the problem of

scaling and low levels of local species richness, we

recommendMNND as the main metric andMinNND as

a complement. Of the multi-trait metrics of divergence,

performance of MNND, FDis, and FD was comple-

mentary to that of MinNND and Min/Max MST.

Responses to the scaling problem also varied between

the two groups, with the former being relatively robust.

Therefore, we recommend use of MNND, FDis, or FD

in combination with either MinNND or Min/Max MST.

Conclusion

We showed that the choice of metrics can potentially

have a substantial impact on the results of community-

assembly studies. The high frequency of nonsignificant

results in past studies could be partly due to the use of

metrics sensitive to uncertainties in assembly processes.

Unstable performances of the metrics may lead to

detection of false differences among traits and studies.

Additionally, past studies have shown that the choice of

a null model can also substantially affect the results of

studies of community assembly (e.g., Gotelli 2000,

Kembel 2009). Therefore, future studies of community-

assembly processes should be conducted based on

standardized methods that have been validated by

recent studies (Götzenberger et al. 2011). Reanalyses

of past studies using such methods and the comparison

of the results with the original study would also assist

both our understanding of assembly processes and

further methodological refinements.
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SUPPLEMENTAL MATERIAL

Appendix A

Summary of the metrics examined in the study (Ecological Archives E094-265-A1).

Appendix B

Summary of the configuration of the simulation regarding community assembly conditions and related data preparation
(Ecological Archives E094-265-A2).

Appendix C

A schematic flow of the process of the analysis (Ecological Archives E094-265-A3).

Appendix D

The performance of the two single-trait metrics for convergence against 10 alternative assembly scenarios (Ecological Archives
E094-265-A4).

Appendix E

The performance of the three multi-trait metrics for convergence against 10 alternative assembly scenarios (Ecological Archives
E094-265-A5).

Appendix F

The performance of the eight single-trait metrics for divergence against 10 alternative assembly scenarios (Ecological Archives
E094-265-A6).

Appendix G

The performance of the eight multi-trait metrics for divergence against 10 alternative assembly scenarios (Ecological Archives
E094-265-A7).

Appendix H

The performance of the two single-trait metrics for convergence against the problems of scaling relationships and local species
richness (Ecological Archives E094-265-A8).

Appendix I

The performance of the three multi-trait metrics for convergence against the problems of scaling relationships, the sufficiency of
traits, and local species richness (Ecological Archives E094-265-A9).

Appendix J

The performance of the eight single-trait metrics for divergence against the problems of scaling relationships and local species
richness (Ecological Archives E094-265-A10).

Appendix K

The performance of the eight multi-trait metrics for divergence against the problems of scaling relationships, the sufficiency of
traits, and local species richness (Ecological Archives E094-265-A11).

Supplement

R code for community assembly simulation and calculation of metrics (Ecological Archives E094-265-S1).
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