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Summary

1. Ecological studies often rely on coefficients of intercommunity (dis)similarity to decipher effects of ecological,

evolutionary and human-driven mechanisms on the composition of communities. Yet, two main criticisms have

been levelled at (dis)similarity coefficients. First, few developments include information on species’ abundances,

and either phylogeny or functional traits. Secondly, some (dis)similarity coefficients fail to always provide maxi-

mum dissimilarity between two completely distinct communities, that is, communities without common species

andwith zero similarities among their species.

2. Here, we introduce a new family of similarity coefficients responding to these criticisms.Within this family, we

concentrate on four coefficients and compare them to Rao’s dissimilarity on macroinvertebrate communities,

and simulated data.

3. Our new coefficients correctly treat maximally dissimilar communities: similarities are always zero between

two completely distinct communities. The originality of these new coefficients is even more profound as the exis-

tence of maximally dissimilar communities was not a requirement for the new coefficients to behave differently

thanRao’s dissimilarity coefficient.

4. Our new family of similarity coefficients relies on the abundances or occurrences of species within communi-

ties and on phylogenetic, taxonomic or functional similarities among species.We demonstrate that this new fam-

ily embeds many of the recent developments in both functional and phylogenetic diversity. It provides a unique

framework for comparing traditional compositional turnover with functional or phylogenetic similarities among

communities.

Key-words: beta diversity, biodiversity, choice of coefficient, community ecology, community phy-

logenetics, compositional turnover, principle of maximumdissimilarity, quadratic entropy

Introduction

There are many different coefficients for expressing the

(dis)similarity between two communities (or plots, sta-

tions, samples, assemblages, etc.). The large majority of

these measures attempts to summarize different aspects of

community-to-community dissimilarity based either on

species presences and absences within communities or on

species abundances. However, the utility of dissimilarity

measures that incorporate information about the degree of

ecological differences between the species in both commu-

nities is becoming increasingly recognized (Pavoine, Du-

four & Chessel 2004; Lozupone & Knight 2005; Ferrier

et al. 2007; Bryant et al. 2008; Graham & Fine 2008;

Webb, Ackerly &Kembel 2008; Ricotta & Szeidl 2009; Ives

& Helmus 2010; Nipperess, Faith & Barton 2010; Chiu, Jost

& Chao 2014). Such interspecies differences can be based

either on phylogenetic or on functional relationships among

species, as ecological differences between species are believed

to be reflected in both of them (Webb et al. 2002).

To summarize mean interspecies differences within single

communities, Rao (1982) proposed a diversity index, termed

quadratic diversity (Q), that is defined as the expected dissimi-

larity between two individuals of a given community randomly

drawnwith replacement:

Q ¼
X

ij
pipjdij eqn 1

where pi is the relative abundance of species i (i = 1, 2, . . ., N)

with pi ≥ 0 and
P

i pi ¼ 1, and D = (dij), where i, j = 1, 2, . . .,

N, is a symmetric matrix of pairwise (functional or phyloge-

netic) dissimilarities among all species i and j. Given two*Correspondence author. E-mail: pavoine@mnhn.fr
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communities with relative abundance vectors

p = (p1. . .pi. . .pN)
t and q = (q1. . .qi. . .qN)

t, where t is the trans-

pose, Rao (1982) defined a dissimilarity coefficient:

DQ ¼
X

ij
piqjdij � 1

2

X
ij
pipjdij � 1

2

X
ij
qiqjdij eqn 2

where
P

ij piqjdij is the expected dissimilarity between two ran-

domly drawn individuals, one from each community. DQ is

thus obtained by subtracting the mean of within-community

diversities from among-community diversity. If D = (dij) is

squared Euclidean (a mathematical property described in the

Glossary in Table 1) and if 0 ≤ dij ≤ 1, for all i and j, DQ is

bounded between 0 and 1 due to the concavity of function

QðpÞ ¼ P
ij pipjdij (i.e. Qðpþq

2 Þ� 1
2Q pð Þ þ 1

2Q qð Þ, with Qðpþq

2 Þ
being Rao’s quadratic entropy index computed from vector

(p + q)/2, Champely & Chessel 2002). Concavity here means

that diversity increases bymixing so that the diversity in a pool

of communities is always higher than (or equal to) the average

diversity within the communities.

Referring to Jost’s (2006) observations on more traditional

dissimilarity indices, Ricotta and Szeidl (2009) observed that

Rao’s dissimilarity coefficient fails to always provide maxi-

mum dissimilarity between two completely distinct communi-

ties. If two communities are completely distinct, that is, if

they have no species in common and dij = 1 for species i

belonging to the first community and species j to the second

one, we expect the average dissimilarity between the species of

the first and the species of the second community, that is,P
ij piqjdij, to be equal to unity. Yet, in that case, DQ can be

low if
P

ij pipjdij or
P

ij qiqjdij, which measure the diversity

within each community, is high. The main objective of this

study was thus to introduce new (dis)similarity coefficients

that provide maximum dissimilarity (and thus zero similarity)

between two completely distinct communities.

Methods

A NEW FAMILY OF SIMILARITY INDICES

A way of providing maximum dissimilarity between two completely

distinct communities as recommended by Jost (2006) and Ricotta and

Szeidl (2009) is to standardize the dissimilarity coefficient DQ by

dividing it by the value expected for two completely distinct theoretical

communities with the same quadratic diversity as the real communities

(see Meirmans 2006 for the use of a related standardization process

in genetics). The standardized coefficient would thus be:

Dst ¼
P

ij piqjdij � 1
2

P
ij pipjdij � 1

2

P
ij qiqjdij

1� 1
2

P
ij pipjdij � 1

2

P
ij qiqjdij

eqn 3

BecauseDst is bounded between 0 and 1, an associated similarity coeffi-

cient can be defined as Sst = 1 � Dst. Using interspecies similarities

instead of dissimilarities, the expression of Sst simplifies to:

Sst ¼
P

ij piqjrij

1
2

P
ij pipjrij þ 1

2

P
ij qiqjrij

eqn 4

where rij = 1 � dij for all i, j is a measure of pairwise (functional or

phylogenetic) similarity among species (Appendix S1, section 1.1). This

paper will show that Sst is a special case of a more general formula,

which contains well-known indices such as the Sørensen (1948) and

Horn (1966) coefficients, together withmore special cases.

The standardization of DQ opens the way for constructing a new

family of similarity coefficients. First, dealing with interspecies similari-

ties rij, the relative abundance vectors p and q can be replaced by more

general vectors x = (x1. . .xi. . .xN)
t and z = (z1. . .zi. . .zN)

t where any

nonnegative value is allowed (i.e. the quantities xi and zi are not

necessarily required to sum to one). Vectors x and z can contain either

presence/absence (1/0) scores, absolute abundance values, such as

individual counts or biomass data, or relative abundance data that sum

to one over all species in a given community. Next, several similarity

indices (Table 2) can be developed by considering different combina-

tions of the between-community component
P

ij xizjrij and the within-

community components
P

ij xixjrij and
P

ij zizjrij (see Table 2).

Among the many possible measures that have been developed for

calculating community (dis)similarity (Podani 2000; Legendre &

Legendre 2012), the index

SSokal�Sneath ¼
P

ij xizjrij

2
P

ij xixjrij þ 2
P

ij zizjrij � 3
P

ij xizjrij
(5)

is a generalization of an index proposed by Sokal and Sneath (1963) for

the presence/absence scores. Indeed, using species presence/absence

data and settingrij = 0 for i 6¼ j andrii = 1, then
P

ij xizirij ¼ a is the

number of species shared by the two communities,
P

ij xixjrij ¼ aþ b

is the total number of species in the first community (with b the number

of species in the first community that are absent from the second

community), and
P

ij zizjrij ¼ aþ c is the total number of species in

the second community (with c the number of species in the second com-

Table 1. Glossary

Definition

Dissimilarity Here dissimilarity between two entities i and j (e.g. two species or two communities) denotes any nonnegative value dij that

measures any functional or phylogenetic difference between the two entities, with dii = 0. In this paper, the discussion is

limited to symmetric dissimilarities bounded between 0 and 1

Similarity In this paper, the discussion is limited to symmetric similarities bounded between 0 and 1 so that sij = 1 � dij for all i and j

Distancematrix Amatrix of dissimilaritiesD = (dij), for all i, j = 1, . . .,N is a distancematrix if dij ≤ dik + dkj for all i, j, k = 1, . . .,N

Euclideanmatrix Amatrix of dissimilaritiesD = (dij), for all i, j = 1, . . .,N, is Euclidean if one can findN pointsM1, . . .,MN in a Euclidean

space, so that the Euclidean distance between any two pointsMi,Mj is dij. Euclideanmatrices are distancematrices

SquaredEuclidean

matrix

Amatrix of dissimilaritiesD = (dij), for all i, j = 1, . . .,N, is squared Euclidean if thematrix
ffiffiffiffiffi
dij

p� �
, for all i, j = 1, . . .,N,

is Euclidean

Positive semi-definite

matrix

LetA be a squarematrix (aij), for all i, j = 1, . . .,N.A is positive semi-definite (=non-negative definite) if, for any real

vector x = (x1. . .xN)
t,
PN

i¼1

PN
j¼1 xixjaij � 0
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munity that are absent from the first community). In this special case,

the coefficientSSokal-Sneath reduces to

a

aþ 2bþ 2c
eqn 6

an index introduced by Sokal and Sneath (1963) as ameasure of species

turnover.

Likewise, the index

SJaccard ¼
P

ij xizjrijP
ij xixjrij þ

P
ij zizjrij �

P
ij xizjrij

eqn 7

turns out to be a generalization of the index developed by Jaccard

(1901) for the presence/absence data and that of Wishart (1969) for

species abundances (Table 2), while the index

SS�rensen ¼
P

ij xizjrij

1
2

P
ij xixjrij þ 1

2

P
ij zizjrij

eqn 8

is a generalization of the index Sst introduced above. SSørensen is also a

generalization of the Dice–Sørensen index for the presence/absence

data and Morisita–Horn index for species abundances (Dice 1945;

Sørensen 1948; Morisita 1959; Horn 1966; Table 2). When applied

to ultrametric phylogenetic similarities among species, this index

is related to the phylo-Morisita–Horn index of Chiu, Jost and

Chao (2014; see Appendix S1, section 1.2). The index SSørensen pro-

vides, however, more flexibility in the types of similarities among spe-

cies that can be used. Finally, if, in the denominator of SSørensen, the

arithmetic mean 1
2SA þ 1

2SB is replaced by the geometric meanffiffiffiffiffiffi
SA

p ffiffiffiffiffiffi
SB

p
, we obtain

SOchiai ¼
P

ij xizjrijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij xixjrij

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij zizjrij

q eqn 9

which is an extension of the well-known index developed by Ochiai

(1957) to incorporate interspecies measures of functional or phyloge-

netic similarity (see Table 2). SOchiai is also related to the chord distance

introduced in ecological studies by Orl�oci (1967; see also Burt 1948 and

Tucker 1951).

All these indices are bounded between 0 and 1 (section 1.3 in

Appendix S1) and lead to positive semi-definite (p.s.d.) matrices

S = (sij) of intercommunity similarities if the interspecies similarity

matrix Σ = (rij) is also p.s.d. (see Glossary and Appendix S1 section

1.4). This property implies that the dissimilarity matrices

D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sij

p� �
and D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rij

p� �
are Euclidean so that they can

be associated with clouds of points in Euclidean space (Gower &

Legendre 1986; seeGlossary).

The following inequalities exist among the new indices: 0 ≤ SSo-

kal-Sneath ≤ SJaccard ≤ SSørensen ≤ SOchiai ≤ 1 (section 1.5 in Appendix

S1). Some properties of the new indices depend on their extrema.

When two communities are completely distinct with no species in

common and rij = 0 for species i occurring in the first commu-

nity and species j in the second one, all indices in Table 2 equal

zero. A difference among the new similarity coefficients is that

coefficients SSokal-Sneath, SJaccard and SSørensen all equal 1 (perfect

similarity) when
P

ij xizjrij equals
1
2

P
ij xixjrij þ 1

2

P
ij zizjrij (arith-

metic mean), whereas SOchiai equals 1 when
P

ij xizjrij equalsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij xixjrij

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij zizjrij

q
(geometric mean). In both cases, perfect

similarity includes the situation where x = z but not exclusively.

Perfect similarity is thus obtained wherever there is, on average,

no more similarity among species within communities than

between communities.T
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CONSTRAINTS FOR DEVELOPING THE NEW FAMILY OF

SIMILARITY INDICES

When combining components
P

ij xizjrij,
P

ij xixjrij and
P

ij zizjrij,

the first criterion is of course that the combination leads to a similarity

index. Our second criterion was to restrict our family to relative

similarity indices bounded between 0 and 1. Without this restriction,

the component
P

ij xizjrij itself could be used as an index of similarity

among communities. Indeed, in the same line, Webb, Ackerly and

Kembel (2008) suggested the following formula, designated as COM-

DIST in the software Phylocom, for measuring the dissimilarity

between two communities:
P

ij piqjdij, with pi the relative abundance of

species i in community A, qj the relative abundance of species j in com-

munity B and dij the phylogenetic dissimilarity between i and j. LikeP
ij xizjrij, COMDIST is an absolute index that does not consider how

diverse communities are. In the next sections, we illustrate with a simple

theoretical data set, the consequences the use of COMDIST can have

when measuring the dissimilarity between two communities. On the

other hand, index standardization between 0 and 1, like for all indices

of the new family, is not without consequences. For instance, one has

first to fix a value (generally unity) for maximum similarity among

species, such that interspecies similarities are bounded between 0 and

this maximum. If the dissimilarities among species are multiplied by 2,

the resulting values of COMDIST and DQ are also multiplied by 2.

Such multiplicity does not hold for similarity indices bounded between

0 and 1, like SSokal-Sneath, SJaccard, SSørensen and SOchiai. Also, if the

similarity values among distinct species are divided by a constant

(leaving the similarity between individuals of the same species equal to

unity, i.e. rii = 1), then the values of SSokal-Sneath, SJaccard, SSørensen and

SOchiaiwill depend on how this division modifies the index componentsP
ij xizjrij,

P
ij xixjrij, and

P
ij zizjrij, and how these components are

combined in the formulation of the different indices. Altogether, the

results obtained with any index applied to different data sets will be

comparable only if the (dis)similarities among species have been

defined in the same way (see Appendix S2 for a short discussion on the

definition of taxonomic, phylogenetic and functional similarities

among species).

Given the high number of possibilities to combine the three index

components
P

ij xizjrij,
P

ij xixjrij, and
P

ij zizjrij into an index of

similarity, we further restricted our discussion to indices that lead to

p.s.d. similarity matrices. Although this property might not be critical

for many ecological studies, it is an interesting property when (dis)simi-

larities among communities have to be visualized graphically. Indeed,

as mentioned above, when the matrix S = (sij) of pairwise similarities

among communities is p.s.d., then the associated dissimilarity matrix

D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sij

p� �
is Euclidean. Being Euclidean, the dissimilarities

among communities can be associated with clouds of points using prin-

cipal coordinate analysis (Gower & Legendre 1986).With this method-

ology, the cloud of points can be projected in a finite number of

dimensions that best express how (functionally or phylogenetically) dif-

ferent communities are. The observed patterns can then be interpreted

in terms of environmental gradients, geographical distributions, etc.

Note that the combination of the components
P

ij xizjrij,P
ij xixjrij and

P
ij zizjrij into a similarity index does not necessarily

lead to p.s.d. matrices. For example, Ricotta and Szeidl (2009) defined

the dissimilarity among a collection of communities as b̂ ¼ ĉ=â. When

applied to a pair of communities with their respective vectors of species’

proportions p and q, then

ĉ ¼ 1= 1�Q
pþ q

2

� �h i
eqn 10

â ¼ 1= 1� 1

2
Q pð Þ � 1

2
Q qð Þ

� �
eqn 11

If D = (dij) is squared Euclidean, the coefficient ĉ=â is not bounded

between 0 and 1 but between 1 and 2. This is because the objective

of Ricotta and Szeidl (2009) was to obtain an effective number of

communities: if community A is identical to community B, we actually

have only one community, such that ĉ=â ¼ 1. On the other hand, if

both communities are completely distinct ĉ=â ¼ 2. Therefore, a simple

solution to obtain a dissimilarity coefficient bounded between 0 and 1,

within the Ricotta and Szeidl framework, is to define Db ¼ ĉ=â� 1,

which can be written as:

Db ¼
1
2

P
ij piqjdij � 1

4

P
ij pipjdij � 1

4

P
ij qiqjdij

1� 1
2

P
ij piqjdij � 1

4

P
ij pipjdij � 1

4

P
ij qiqjdij

eqn 12

BecauseDb is bounded between 0 and 1, an associated similarity coeffi-

cient can be defined as Sb = 1 � Db. Using interspecies similarities

instead of dissimilarities, the expression of Sb simplifies to:

Sb ¼ 4
P

ij piqjrij

2
P

ij piqjrij þ
P

ij pipjrij þ
P

ij qiqjrij
eqn 13

where rij = 1 � dij for all i, j are pairwise (functional or phylogenetic)
similarities among species. Formula Sb thus combines

P
ij piqjrij,P

ij pipjrij and
P

ij qiqjrij into an index of similarity bounded between

0 and 1.However, this index does not lead to intercommunity similarity

matrices that are p.s.d. (a counter-example is given in the demonstra-

tion of the use of the R scripts in Appendix S3). Here, note that, while

the similarity counterpart of the index Db, Sb = 1 � Db is generally

not p.s.d., nonetheless we have Sb = hi/(hi � 1 + 1/Si), with h1 = 8

andS1 = SSokal-Sneath, h2 = 4 andS2 = SJaccard, h3 = 2 andS3 = SSørensen.

Note also that Sb is equivalent to the phylo-regional-overlap index of

Chiu, Jost and Chao (2014) applied to two communities only and

extended to any type of (taxonomic, phylogenetic or functional)

similarities among species (section 1.6 in Appendix S1). Preliminary

analysis suggests that the behaviour of Sb is similar to SSokal-Sneath,

SJaccard,SSørensen andSOchiai, although it tends to provide higher similar-

ity values (as illustrated in the examples for the use of the R scripts in

Appendix S3).We have thus not includedSb in our case studies.

CASE STUDIES

We first compared indices SQ = 1 � DQ, SSokal-Sneath, SJaccard,

SSørensen and SOchiai with COMDIST and the associated similarity

index, 1-COMDIST, on a small theoretical data set as described in

Fig. 1. After having illustrated the strong difference between COM-

DIST and the behaviour of the other indices, we then concentrated on

the latter ones. Note that as SQ and COMDIST depend on species’

proportions, vectors x and z in the equations of SSokal-Sneath, SJaccard,

SSørensen and SOchiai were expressed as proportions in all our case

studies.

To compare indices SQ, SSokal-Sneath, SJaccard, SSørensen and SOchiai, we

considered the data set analysed in Ivol et al. (1997) and Pavoine and

Dol�edec (2005) where a total of 40 macroinvertebrate species (here

Coleoptera and Trichoptera) were sampled in 38 stations distributed in

the Loire River (France) from the spring to 200 km upstream of the

mouth. Stations have been sampled in July 1989 and 1991, and in

March and May 1993, in rubble riffle habitats with a hand-net for

about 10 min per station. Individuals were identified at the species level

and counted. The objective here was not to re-analyse an old data set

but rather to show where the indices of similarity proposed in Table 2
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behave similarly and where they do not. We performed two distinct

analyses.

In the first analysis, the index SQ = 1 � DQ was compared to

SSokal-Sneath, SJaccard, SSørensen and SOchiai using the real data set. First,

similarities among stations were evaluated by considering only the

relative number of individuals from each species collected in each

station. Then, similarities among species were considered using

taxonomy and feeding habits. The taxonomic tree was considered with

unit branch length and the root placed at the class level (Insecta) assum-

ing that species of the order Coleoptera have zero taxonomic similarity

with Trichoptera species. The index used to calculate the taxonomic

similarities among species was related to that used to calculate taxo-

nomic similarities among stations. For example, for calculating the

index SSokal-Sneath, we used the following index of interspecific similar-

ity: for any two species i and j, rij = a/(a + 2b + 2c) where a = sum of

branch lengths from the nearest common ancestor of the two species i

and j to the root of the tree, b = sum of branch lengths from species i to

this nearest common ancestor and c = sum of branch lengths from spe-

cies j to this nearest common ancestor. Using the same notation, the

indices of interspecific similarity a/(a + b + c), 2a/(2a + b + c) and

a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðaþ cÞp

were used for calculating SJaccard, SSørensen and

SOchiai, respectively. In general, we suggest the use of consistent indices

for measuring the similarity among species and among communities

since this is allowed by our methodology (Appendix S2). The indices

SSokal-Sneath, SJaccard, SSørensen and SOchiai were then compared with SQ.

For comparing SQ with, say, SSokal-Sneath, we calculated SQ using the

samemeasure of interspecies similarity used for calculating SSokal-Sneath.

The same procedure was used for all pairwise comparisons between SQ

and one of the newly proposedmeasures.

Regarding feeding habits, the affinity of each species to each feeding

category (engulfers, shredders, scrapers, deposit-feeders, active filter-

feeders, passive filter-feeders and piercers) was quantified using a fuzzy

coding approach (Chevenet, Dol�edec & Chessel 1994). The species

affinity for each feeding category was estimated by expert opinion on

an ordinal scale ranging from 0 (no affinity) to 3 (high affinity; Ivol

et al. 1997). The similarity between two species was then calculated

using Table 2, second column, by replacing the vectors of species’ pro-

portions in each community with vectors showing the species relative

affinities for each feeding category. For example, the index SSokal-Sneath
was calculated using the following index of interspecific similarity: for

any two species i and j,

rij ¼
X

k
aikajk=ð2

X
k
a2ik þ 2

X
k
a2jk � 3

X
k
aikajkÞ eqn 14

where aik and ajk are the relative affinities of species i and j to the kth

feeding category. Using the same notation, the indices of interspecies

similarity rij ¼
P

k aikajk=ð
P

k a
2
ik þ

P
k a

2
jk �

P
k aikajkÞ, rij ¼

2
P

k aikajk=ð
P

k a
2
ik þ

P
k a

2
jkÞ, and rij ¼

P
k aikajk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k a

2
ik

P
k a

2
jk

q
were used for calculating SJaccard, SSørensen and SOchiai, respectively.

These indices were then compared with SQ. For the calculation of SQ,

we used the samemeasure of interspecies similarity used for calculating

the corresponding similarity measures SSokal-Sneath, SJaccard, SSørensen
andSOchiai.

In the second analysis, the behaviour ofSSokal-Sneath,SJaccard,SSørensen
and SOchiai was analysed in more details using the theoretical data in

Fig. 2. We also calculated four different versions of SQ, each with a

differentmeasure of interspecies similarity (for details see Table 3).

We first used the same taxonomy as in the real data set. Next, we dis-

torted it by attributing different branch lengths to the taxonomic levels.

The theoretical communities associated with the taxonomy in Fig. 2

included only the presence/absence of species. Two of them contained

only Coleoptera (communities 1 and 2), while the other two communi-

ties contained Trichoptera only (communities 3 and 4). Each commu-

nity contained a species per family and, when possible (i.e. when more

than one species was represented per family), different species were

attributed to different communities. Taxonomic similarities among

species and among communities were calculated with the same proce-

dure as for the real data set. Only communities 3 and 4 have some

species in common. We thus expected their taxonomic similarity to be

the highest. Because communities 1 and 2 contain Coleoptera only and

communities 3 and 4 Trichoptera only, we expected the similarity of

community 1 (or 2) with community 3 (or 4) to be the lowest. The data

set was designed so that the similarities between communities with

Coleoptera only and communities with Trichoptera only (i.e. commu-

nities 1 9 3, 1 9 4, 2 9 3, and 2 9 4) were all equal.

Fig. 1. Behavior of COMDIST for a small data set composed of four

communities (Com1–Com4). Top left: theoretical phylogenetic tree

with equal branch lengths and species as tips. The height of the tree

(sum of branch lengths on the smallest path between tips and root) was

considered to be unity. An open circle indicates the root node of the

phylogeny. Top right: compositions of the four communities. Close

squares represent species presences. Bottom: Index values of COM-

DIST and six similarity measures among communities (all measures

are calculated with species proportions equal to 1/Ni, where Ni is the

number of species in the ith community). As COMDIST is bounded

between 0 and 1 (because interspecific dissimilarities among species,

themselves varied between 0 and 1), we also included 1-COMDIST

among the similaritymeasures.
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Results

Using COMDIST, the same value of dissimilarity was found

between communities 1 and 2, between communities 1 and 3

and between communities 1 and 4 in Fig. 1. In contrast, the

indices SSokal-Sneath, SJaccard, SSørensen, SOchiai and SQ correctly

identify that communities 1 and 2 are identical and that

community 1 shows decreasing similarity with communities 2,

3 and 4 in that order (Fig. 1).

The real data set showed discrepancies between SQ and the

other indices when species were considered to be completely

distinct from each other (i.e. rij = 0 for all i 6¼ j; Fig. 3a).

These differences decreased when taxonomic and functional

similarities among species were added (Fig. 3b,c). Taken

together, despite some fundamental differences between SQ
and the new indices, like the shape of the relationships and the

spread of points in Fig. 3, in general, SQ had high Spearman

correlation with the other indices. SQ and the new indices

would thus tend to rank, at least with this data set, the similari-

ties among communities in consistent ways. Situations where

SQ was positive whereas the other indices equal zero were

observed only between a few sites when taxonomic similarities

among species were used (Fig. 3b).

As expected, with the theoretical data set in Fig. 2, commu-

nities 3 and 4 had the highest taxonomic similarity (Table 3).

Also, for all scenarios of taxonomic branch lengths, all indices

SSokal-Sneath, SJaccard, SSørensen and SOchiai, attributed the lowest

values of taxonomic similarity between communities with

Coleoptera only and communities with Trichoptera only

(named C 9 T in Table 3). However, with the index SQ, we

obtained higher similarity values between two communities

composed of species from different orders than between two

communities composed of Coleoptera only. This happened

when SQwas calculated using the index of interspecies similar-

ity associated with SSokal-Sneath. It also happened, whatever the

index of interspecies similarity, when the similarities among

species were low. Overall, the analysis revealed that the impact

of the index chosen for summarizing pairwise community

similarity can be drastic. For example, using the phylogeny

with equal branch lengths (Fig. 2a), the similarity between

communities 1 and 2 is equal to 0�080 for the index SSokal-Sneath
and 0�600 for SOchiai.

Discussion

DIFFERENCES BETWEEN 1-COMDIST, SQ , AND THE NEW

INDICES

Our results first highlighted a difference in behaviour between

1-COMDIST and the other indices. A criticism that can be

raised towards COMDIST (and thus 1-COMDIST, Webb,

Ackerly & Kembel 2008) is that it would provide equal levels

of dissimilarity between two identical communities as between

two communities with distinct species. This unexpected behav-

(a) (b) (c) (d) (e)

Fig. 2. Theoretical data set. (a) The taxonomy of the real data set with equal branch lengths. The first split in the taxonomy is at the order-level (top:

Coleoptera, bottom: Trichoptera). Subsequent splits represent families, genera and species (tips). (b–d) The taxonomywas then deformed by adjust-

ing the branch lengths so that the similarities among species are increased (b) and decreased (c). In (d) equal branch lengths are considered, together

with an additional taxonomic level (e.g. phylum = Arthropoda) common to all species. This added taxonomic level increases the similarities among

all species. Open circles indicate the root node of the taxonomies. The taxonomic height of all trees (sum of branch lengths on the shortest path

between tips and root) was considered equal to unity. These taxonomies were associated with four theoretical communities defined in (e). Close

squares indicate species presences within each community.
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iour for an index of dissimilarity among communities is due to

the fact that COMDIST is an absolute index. Indeed it calcu-

lates how different species from two distinct communities are

without considering how different species from the same

community are. When measuring (dis)similarities among

communities, it is thus important to compare how (dis)similar

species from different communities are with the level of

(dis)similarity among species from the same community.

In addition, the real data set confirmed that SQ behaves

differently from the other indices when species are treated as

maximally different (i.e. zero similarity among species). We

also found very few maximally dissimilar stations (absence of

similarities between species from distinct stations). Such

scenarios of maximally dissimilar communities are likely to be

infrequent in ecological studies that incorporate similarities

among species, at least at local scales.

However, our simulations showed that the existence of max-

imally dissimilar species (and thus of maximally dissimilar

sites) did not increase the differences between SQ and the other

indices. For instance, all indices tended to have close behav-

iour when the similarities among species were artificially and

drastically increased. In contrast, SQ showed distinct values

when the interspecific similarities were decreased. By adding a

taxonomic level, we increased similarities among species and

eliminated the existence of maximally dissimilar species, but in

spite of that, SQ still provided high taxonomic similarity

between stations with only Coleoptera and stations with only

Trichoptera. In contrast, the new indices acknowledged low

similarities between these stations. The values of SQ also

depended to some extent on the coefficients used to calculate

the taxonomic and functional similarities among species. This

does not mean that SQ is meaningless. As highlighted by

Pavoine, Dufour and Chessel (2004), DQ (= 1 � SQ) can be

viewed as the distance between the centroids of two communi-

ties in a multidimensional space where species are positioned

according to their functional or phylogenetic distances. It is

now well-established that a single index cannot summarize all

aspects of biodiversity. The same conclusion holds for

(dis)similarity indices.

Comparing the new indices SSokal-Sneath, SJaccard, SSørensen
and SOchiai, we showed that all indices tend to rank communi-

ties similarly. However, the index values can be very different.

This might be annoying if one interprets the index values in an

intuitive way, from 0meaning no similarity to 1 meaning com-

plete similarity. Two data sets can thus be compared only if the

same index is used. On the other hand, as the different indices

have slightly different properties, they allow calculating com-

munity similarity from different viewpoints and perspectives.

The differences among the indices only depend on how the

three components
P

ij xizjrij (similarity among the species in

different communities),
P

ij xixjrij (similarity among the spe-

cies in the first community) and
P

ij zizjrij (similarity among

the species in the second community) are combined into an

index of similarity. For example, both indices SOchiai and

Table 3. Taxonomic similarities among the theoretical communities in Fig. 2

Similarity indices among communities (S) and among species (r)

SSokal-Sneath

SQ calculated

withrSokal-Sneath SJaccard

SQ calculated

withrJaccard SSørensen SOchiai

SQ calculated

withrSørensen (=rOchiai)

Uniformmodel

Com 1 9 2 0�080 0�600 0�263 0�667 0�600 0�600 0�750
Com 3 9 4 0�403 0�954 0�719 0�963 0�915 0�915 0�973
ComC 9 T 0 0�646 0 0�600 0 0 0�525

High interspecific similaritymodel

Com 1 9 2 0�914 0�981 0�978 0�990 0�995 0�995 0�995
Com 3 9 4 0�989 0�998 0�998 0�999 0�999 0�999 0�999
ComC 9 T 0 0�215 0 0�127 0 0 0�070

Low interspecific similaritymodel

Com 1 9 2 0�001 0�501 0�003 0�503 0�011 0�011 0�505
Com3 9 4 0�146 0�940 0�258 0�941 0�420 0�420 0�942
ComC 9 T 0 0�700 0 0�700 0 0 0�700

Uniformmodel and additional taxonomic level

Com 1 9 2 0�125 0�636 0�373 0�714 0�714 0�714 0�800
Com 3 9 4 0�531 0�959 0�821 0�968 0�952 0�952 0�978
ComC 9 T 0�041 0�659 0�132 0�636 0�345 0�352 0�620

Interspecific similarities were defined as, rSokal-Sneath = a/(a + 2b + 2c), rJaccard = a/(a + b + c), rSørensen = 2a/(2a + b + c),

rOchiai = a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ bÞðaþ cÞp

, with a = sum of branch lengths from the nearest common ancestor of two species to the root of the tree, b = sum of

branch lengths from the first species to this nearest common ancestor and c = sum of branch lengths from the second species to this nearest common

ancestor. Given the ultrametric tree in this particular example, rSørensen = rOchiai. Also, wherever the average similarities among species within com-

pared communities are equal, SSørensen = SOchiai. Com 1 9 2 is the similarity among the Coleoptera communities (Com1 and Com 2) and Com

3 9 4 is the similarity among the Trichoptera communities (Com3 and Com4). Com C 9 T is the similarity between a community composed of

Coleoptera only (either Com1 or Com2) and a community composed of Trichoptera only (either Com3 or Com4). Bold values indicate situations

where Com 1 9 2 or Com 3 9 4 < Com C 9 T. Note that the data set in Fig. 2 was designed so that the similarities between communities with

Coleoptera only and communities with Trichoptera only (i.e. communities 1 9 3, 1 9 4, 2 9 3, and 2 9 4) were all equal.
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SSørensen compare the similarity among the species in different

communities (numerator) with the average similarity among

the species in the same community (denominator). However,

by substituting the geometric mean for the arithmetic mean

of
P

ij xixjrij and
P

ij zizjrij in SSørensen compared with

SOchiai, the contribution of the species similarity within two

communities to the value of the index is decreased just because

the geometric mean leads to lower values than the arithmetic

mean. From this point of view, the denominator of SSokal-Sneath
and SJaccard does not contain solely the average similarities

among species within communities but rather the difference

between these similarities and the similarity among the species

in different communities. Accordingly, in SSokal-Sneath and

SJaccard, the relevance of the similarities among the species in

different communities is decreased compared to the similarities

within communities.

Altogether, the interests of the new family of indices are thus

(i) to extend traditional similarity measures to taxonomic,

phylogenetic or functional similarities among species and

communities; (ii) to be flexible in the choice of the species’

weights (presence/absence, individual counts/biomass, relative

abundance, etc.) and in the definition of similarities among

species that can be computed in many different ways from tax-

onomy, phylogeny, functional dendrograms and functional

data sets that can contain nominal, quantitative, binary,

proportional and fuzzy variables (Appendix S2); and (iii) to

provide a particular treatment of maximally dissimilar

communities.

A last remark can bemade on the development of this family

of indices. Indices in columns 4 of Table 2 can be applied to

vectors of species presences/absences within communities but

also to any set of elements including evolutionary units (which

would lead to the indices of Lozupone and Knight 2005 and

Ferrier et al. 2007) for measuring the phylogenetic similarity

between communities, and volumes in functional spaces

(which would embed the index of Vill�eger, Novack-Gottshall

& Mouillot 2011) for measuring the functional similarity

between communities.

THE NEW FAMILY AS A UNIF IED FRAMEWORK FOR

FUNCTIONAL SIMILARITY AND PHYLOGENETIC

SIMILARITY INDICES

A previous paper showed that, when comparing functional

diversity with phylogenetic diversity, the same mathematical

indices should be used to avoid the risk of misinterpreting dif-

ferences in functional and phylogenetic diversity by biological

processes when the differences are just mathematical artefacts

(Pavoine et al. 2013). This remark is also true for functional

and phylogenetic similarity indices. This is why we developed

(a)

(b)

(c)

Fig. 3. Scatterplots between the new indices and the index SQ applied to the real data set considering (a) minimum (zero) similarity among species;

(b) taxonomic similarity; and (c) similarities in feeding habits. Spearman correlations between the new indices andSQ are indicated on each panel.
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here a methodological framework that can apply to functional

similarities or to (taxonomic) phylogenetic similarities among

species and communities.

Among the indices of intercommunity similarity developed

in the literature, some have been designed for functional traits

(Vill�eger, Novack-Gottshall & Mouillot 2011), and others for

phylogenies (Lozupone & Knight 2005; Ferrier et al. 2007;

Pavoine, Love & Bonsall 2009; Ives & Helmus 2010;

Nipperess, Faith & Barton 2010; Chiu, Jost & Chao 2014). On

the contrary, Rao’sDQ has been suggested tomeasure any type

of dissimilarity including taxonomic, genetic, phylogenetic and

functional similarity (Nei & Li 1979; Rao 1982; Izs�ak & Papp

1995; Pavoine&Dol�edec 2005; Ricotta 2005).

Many indices developed within the functional or phyloge-

netic context can be easily transposed to the other type of data

(Pavoine & Bonsall 2011). While the development of tradi-

tional diversity indices was mainly interdisciplinary, the addi-

tion of functional vs. phylogenetic (dis)similarities among

species has split research on diversity and (dis)similarity mea-

sures. Themain difficulty when comparing functional and phy-

logenetic data is that phylogenetic data intrinsically imply a

tree-shaped structure among species. For example, the indices

developed by Lozupone and Knight (2005), Ferrier et al.

(2007), Pavoine, Love and Bonsall (2009), Nipperess, Faith

and Barton (2010), and Chiu, Jost and Chao (2014) depend on

tree-shaped structures among species (phylogenies). In general,

functional data might thus be used with these indices only if

they are artificially transformed into functional dendrograms

using clustering approaches as suggested by Petchey and Gas-

ton (2002). Such approaches add methodological choices and

the distortion of the data might be high when one or a few

functional traits only are considered. This is because a tree is a

multidimensional object (e.g. Nabben & Varga 1994), whereas

a quantitative trait can be displayed in one only dimension. In

contrast, our family of similarity indices can be usedwithmany

different data types provided similarity among species is

bounded between 0 and 1.

Some of the solutions proposed to develop functional indi-

ces implied to transform functional data into the form of data

traditionally used to measure compositional similarity among

communities. For example, Robertson, McAlpine and Maron

(2013) used a species 9 trait matrix to define functional

groups. Then, they applied the Bray–Curtis index (Bray &

Curtis 1957) on log-transformed summed densities of all

members of functional groups. In a phylogenetic context, this

solution could be adapted by measuring the Bray–Curtis index

on log-transformed summed densities/abundances/biomasses

of all members of clades. However, in comparison with our

indices, this solution considers all functional groups (or clades)

asmaximally dissimilar, which is not always the case.

In conclusion, we have introduced a new family of similarity

indices that is very flexible in the type of data used. By design-

ing this family, we advised, wherever possible, for the use of

coherent indices for measuring similarities among species and

similarities among communities; for the use of relative similar-

ity indices that integrate the diversity of the community and

that are bounded between 0 and 1; and for the use of p.s.d.

indices. This family embeds a large variety of similarity indices

developed so far for measuring species, functional or phyloge-

netic diversity and (dis)similarity.
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