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Abstract

Ferns usually have relatively lower photosynthetic potential than angiosperms. However, it is unclear whether low
photosynthetic potential of ferns is linked to leaf water supply. We hypothesized that there is an evolutionary association of
leaf water transport capacity with photosynthesis and stomatal density in ferns. In the present study, a series of functional
traits relating to leaf anatomy, hydraulics and physiology were assessed in 19 terrestrial and 11 epiphytic ferns in a common
garden, and analyzed by a comparative phylogenetics method. Compared with epiphytic ferns, terrestrial ferns had higher
vein density (Dvein), stomatal density (SD), stomatal conductance (gs), and photosynthetic capacity (Amax), but lower values
for lower epidermal thickness (LET) and leaf thickness (LT). Across species, all traits varied significantly, but only stomatal
length (SL) showed strong phylogenetic conservatism. Amax was positively correlated with Dvein and gs with and without
phylogenetic corrections. SD correlated positively with Amax, Dvein and gs, with the correlation between SD and Dvein being
significant after phylogenetic correction. Leaf water content showed significant correlations with LET, LT, and mesophyll
thickness. Our results provide evidence that Amax of the studied ferns is linked to leaf water transport capacity, and there
was an evolutionary association between water supply and demand in ferns. These findings add new insights into the
evolutionary correlations among traits involving carbon and water economy in ferns.
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Introduction

Ferns are an important component of the forest flora, having

critical functions in ecosystem processes, especially in tropical

rainforests [1]. Their remarkable degree of diversity and

abundance reflect their ecological success in both the past and

present [1,2]. However, ferns are mostly prominent in humid and

shade habitats with low evaporative potential [1,3], and inherently

have slower growth rates and lower photosynthetic potentials than

angiosperms [2,4,5]. Although the ecological strategy and niche of

a species are relevant to its physiology and functional traits, our

understanding of fern physiology is still fragmentary [6], and the

primary determinant of photosynthetic potential in fern is not fully

understood [2].

Plant hydraulics can impose fundamental constraints on the

photosynthetic gas exchange, growth and distribution of land plants

[7–9], and ferns have lower leaf hydraulic conductance to liquid

water than angiosperms [4,10]. The geographical distribution of

ferns is significantly related to the relative water content at which

stomata close, leaf thickness, stomatal density and size in a Mexican

cloud forest [11]. The reasons in part for the preference of humid

environments by ferns would be poorly controlled evaporative

potential, low water-use efficiency and xylem hydraulic limitation

[2,12,13]. However, it is unclear whether low photosynthetic

potential of ferns is linked to their leaf hydraulics.

Leaf hydraulic conductance is highly dependent on the anatomy

of the leaf [14]. For instance, leaf venation system plays a key role

in transporting water to the site of evaporation. Leaf vein traits

provide a basis for variation in leaf hydraulic conductance, gas

exchange rate and plant performance across species or in the

contrasting environments [7,14,15]. Previous studies have sug-

gested that minor vein density (Dvein, vein length per unit leaf area)

is a critical factor determining hydraulic conductance, and

therefore water supply of a leaf [8–10]. Higher Dvein can

correspond to a higher water supply capacity since it can increase

the surface area for exchange of xylem water with surrounding

mesophyll, reducing the distance through which water travels

outside the xylem [9,16]. As water supply to evaporative surfaces is

essential to maintain stomatal opening, Dvein often shows a positive

correlation with maximum stomatal conductance and maximum

photosynthetic rate (Amax) across species [7,8,17]. Historically, the

evolution of Dvein results in high Amax during the diversification of

early angiosperms [10,18]. However, Walls (2011) found that the

relationship between Dvein and Amax in angiosperms is marginally

nonsignificant with phylogenetic regression at a global scale [19].

Compared with angiosperms, ferns have a relatively primitive

vascular system composed of tracheid-based xylem, fixed amount
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of vascular issue, heavily pitted lateral walls bearing pit

membranes, and lower Dvein [5,13,20–22]. These features would

give ferns higher resistances to water flow, lower water transport

capacity and stomatal conductance [4,5]. Therefore, low water

transport capacity may be one of the possible reasons that ferns

have low Amax values [3]. However, to our knowledge, no study

has tested the correlation between photosynthetic rate and vein

density in ferns within an evolutionary context.

Both leaf vein architecture and hydraulic conductance can

respond rapidly to environmental factors such as light, tempera-

ture, humidity or nutrient supply [9,14,16,23]. For example,

previous studies have shown that hydraulic adjustment of fronds is

a key component in how ferns adapt to contrasting light

environments [24]. Hawaiian Plantago taxa in drier regions have

higher Dvein values [25], and the Dvein in Paphiopedilum tends to

increase from terrestrial to epiphytic habitats [26]. At a global

scale, Dvein correlated negatively with mean annual precipitation

and species’ shade tolerance index [9]. Consequently, plasticity in

vein traits may reflect the optimal solutions to achieving balance

between vein investment and environmental demand, and the

adaptation of a species to environments in different habitats

[9,27,28].

Most of the water in plants is diffused through stomata, so

stomata play a critical role in maintaining a well-balanced

hydration status of the leaf. Stomatal density and size dictate

primarily maximum stomatal conductance, and therefore potential

transpirational demand [28–30]. Increased stomatal density

enhances photosynthetic rate by modulating gas diffusion [30–

32]. Generally, leaves built for higher rates of gas exchange may

have smaller stomata [33]. In seed plants, smaller stomata can

react more quickly to environmental stimuli, and enable the leaf to

attain high diffusive conductivity under favorable conditions, while

larger stomata close slowly, and are less able to prevent hydraulic

dysfunction in dry habitats [29,33,34]. However, several papers

have showed that ferns can close stomata in response to

dehydration much faster than angiosperms [35], but likely can

not close stomata completely. Ferns also have small leaf water

potential margin between stomatal closure and leaf death due to

water stress. This is because fern stomata are predominantly

regulated by a passive response to leaf water status, while

angiosperm stomata are actively mediated by abscisic acid [35,36].

The water status of a leaf is dependent on both stomatal

regulation and water supply from the vasculature to inner tissues

[14]. The relationship between the density of vein and stomata can

Table 1. Leaf traits examined in this study.

Trait Code Unit Mean (minimum-maximum)

Leaf area LA cm22 133.01 (25.07–286.17)

Leaf mass per unit area LMA g m22 39.27 (21.22–83.17)

Cuticle thickness CT mm 1.46 (1.03–2.12)

Leaf density LD kg m23 184.17 (62.18–348.47)

Upper epidermal thickness UET mm 24.21 (12.54–35.54)

Lower epidermal thickness LET mm 18.97 (8.78–51.85)

Leaf thickness LT mm 255.33(99.85–585.16)

Mesophyll thickness MT mm 200.48 (56.24–516.71)

Stomatal density SD no. mm22 65.96 (11.69–180.99)

Stomatal length SL mm 42.95 (25.11–63.84)

Vein density Dvein mm mm22 1.12 (0.66–1.68)

Leaf water content LWC % 78.82 (65.04–91.04)

Area-based maximum photosynthetic rate Amax mmol m22 s21 3.05 (1.78–5.53)

Mass-based maximum photosynthetic rate Amass nmol g21 s21 88.27(25.68–151.04)

Stomatal conductance gs mmol m22 s21 74.97 (16.82–159.30)

Transpiration rate Tr mmol m22 s21 0.82 (0.35–2.05)

doi:10.1371/journal.pone.0084682.t001

Table 2. Differences in 16 leaf traits between terrestrial and
epiphytic ferns.

Trait Terrestrial Epiphytic p

Leaf area 144.46613.92 113.23621.20 ns

Leaf mass per unit area 33.6661.88 48.9564.27 **

Leaf density 205.34616.62 147.61616.85 ns

Leaf water content 78.0161.39 79.9561.82 ns

Cuticle thickness 1.4860.07 1.4460.08 ns

Upper epidermal thickness 23.9961.54 24.5861.82 ns

Lower epidermal thickness 16.9262.12 22.5161.66 *

Leaf thickness 187.74620.75 372.06647.99 ***

Mesophyll thickness 138.22619.31 308.04646.80 **

Stomatal density 87.20612.55 29.2863.07 **

Stomatal length 38.6961.93 50.3261.99 **

Area-based maximum
photosynthetic rate

3.4260.19 2.4160.21 **

Mass-based maximum
photosynthetic rate

107.2665.78 55.4768.22 ***

Stomatal conductance 88.90698.19 50.9164.99 ***

Transpiration rate 0.9560.08 0.6060.06 **

Leaf vein density 1.1960.06 0.9960.05 *

See Table 1 for trait units. The statistical differences for each trait were
determined with independent-samples t-test. The sign of the significance is
indicated as: ns, p.0.05; *, p,0.05; **, p,0.01; ***, p,0.001.
doi:10.1371/journal.pone.0084682.t002

Photosynthesis and Water Relation of Ferns
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reflect an efficient balance between investment in liquid and

vapour conductances in the leaf [23,37]. Selection for high rates of

photosynthetic gas exchange of a species may cause a shift in a

number of traits which contribute to high leaf hydraulic

conductance, because increasing only one should lead to a great

limitation by other traits [9,25]. When the maximum evaporative

capacity of the leaf is greater than the capacity of the vascular

system to maintain leaf hydration, the stomata will close [23,38].

Previous studies have found that Dvein is correlated with stomatal

density [7,17]. Ferns can close their stomata to reduce water loss,

and prevent xylem cavitation and associated dysfunction much

earlier than can the stomata of angiosperms [38]. Up to date, no

study has shown how stomatal traits are correlated with vein

density and photosynthetic gas exchange in ferns.

Leaf structural traits such as mesophyll thickness and epidermal

characteristics can affect leaf hydraulic resistance and gas

exchange [16,39–41]. For example, leaf hydraulic resistance is

related to palisade mesophyll thickness and the ratio of palisade to

spongy mesophyll thickness [7]. Thicker leaves are able to store

more water and maintain more stable hydraulic functioning

during drought periods [39,42]. In ferns such as Pyrrosia, a water-

storing tissue is described to include large parenchymal cells [3].

Species with thick leaves usually have large stomata [34], while leaf

thickness is negatively correlated with SD [26]. These facts imply

that leaf structural traits are linked to the water supply and storage

of the leaves. However, the correlation between leaf structure and

the maintenance of water balance remains largely unclear in ferns.

In the present study, we used a comparative phylogenetics

method to investigate 16 leaf traits of 30 tropical ferns consisting of

19 terrestrial and 11 epiphytic species in a common garden. Our

objectives were to examine the correlated evolution between

stomatal density and vein density, and to assess the effects of water

transport capacity on photosynthesis of tropical ferns. We tested

the following hypotheses: (1) vein density is positively correlated

with photosynthetic rate because of the strong influence of vein

density on leaf hydraulic conductance and stomatal conductance;

(2) vein density is positively correlated with stomatal density,

reflecting a balance between water supply and transpirational

demand.

Figure 1. Phylogeny with labeled nodes used for comparative analysis of trait variation among 30 fern species along with trait
values (mean ± 1 SE) for maximum photosynthetic rate (Amax; a), vein density (Dvein; b), stomatal density (SD; c), and stomatal
length (SL; d).
doi:10.1371/journal.pone.0084682.g001
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Materials and Methods

Ethics statement
All materials in the present study were collected from

Xishuangbanna Tropical Botanical Garden (XTBG), and none

of the experimental materials was collected from national parks or

other protected areas. The uses of experimental materials were

permitted for scientific research by both XTBG and Xishuang-

banna National Nature Reserve. No species under first-class state

protection were used in this research, and they were not listed in

the Inventory of Rare and Endangered Plants of China, or the

Key Protected Inventory of Wild Plants of China.

Plant materials
We gathered samples of 30 fern species, including 19 terrestrial

and 11 epiphytic ferns, from 13 families. The names and their

ecological characteristics are presented in Table S1 in File S1. This

collection was made in a seasonal tropical rainforest at the

Xishuangbanna Tropical Botanical Garden (21u419N, 101u259E,

elevation 570 m) in southern Yunnan Province, China. All species

grow under the canopy of the forest, and can receive about 10% of

full sunlight. The mean annual temperature is 21.7uC, and the

mean annual precipitation is 1560 mm, with 80% falling during

the rainy season (May to October). The fronds were collected from

at least six individuals per species. All sampling and measurements

were conducted from June to August in 2011.

Leaf physiology
Measurements of leaf physiology were performed on the same

individuals used for our anatomical assessments. A Li-Cor 6400

portable photosynthesis system attached with a 6400-40 fluores-

cence chamber (Li-Cor Inc., Lincoln, NE, USA) was used to

measure maximum photosynthetic rate (Amax), stomatal conduc-

tance (gs), and transpiration rate (Tr) on 6 mature leaves from

different individuals of each species. All measurements were

conducted from 09:30 to 11:30 am, when CO2 uptake was

maximal and water availability was not limited. Before measure-

ments, each leaf was exposed to a light intensity of 300 mmol m22

s21 for 30 min to induce the maximum stomatal opening. This

light level was confirmed as the saturation point for photosynthesis

of ferns in the preliminary experiments. During the measurement

period, the CO2 concentration in the chamber was set to

400 mmol mol21, with leaf temperature at 25 to 27uC, light

intensity at 300 mmol m22 s21, flow rate at 200 mol s21 and leaf-

to-air vapor pressure deficit at 0.7 to 1.0 kPa.

Leaf water content (LWC) is determined on 6 mature leaves per

species from different plants. These samples were collected in the

morning, and immediately determined fresh weight, and then

oven-dried at 70uC for 48 h to obtain dry weight. We calculated

LWC as (fresh weigh-dry weight)/fresh weight 6100.

Leaf anatomy and morphology
Six mature, undamaged leaves were collected from individual

plants of each species. Each leaf was divided along the midrib.

Area of one half was measured with a Li-Cor 3000A area meter

(Li-Cor Inc., Lincoln, NE, USA), oven-dried at 70uC for 48 h to

obtain its dry mass, and calculated its leaf mass per unit area

(LMA). Another half was cleaned for 1 h in a 5% NaOH aqueous

solution. Three sections of leaf lamina were excised from the top,

middle, and bottom portions, stained with 1% safranin, and

mounted in glycerol to obtain the vein density (Dvein). Samples

were photographed at 106magnification using a Leica DM2500

microscope (Leica Microsystems Vertrieb GmbH, Wetzlar,

Germany). Vein lengths were determined from digital images via

the IMAGEJ program (http://rsb.info.nih.gov/ij/). Values for

Dvein were expressed as vein length per unit area.

The adaxial and abaxial epidermises were peeled from the

middle portions of fresh, mature leaves, and images were made

under the Leica DM2500 microscope. For each species, 6 leaves

from different individuals were used for stomatal observations.

Their stomata were tallied in 30 randomly selected fields. Stomatal

density (SD) was calculated as the number per unit leaf area.

Stomatal length (SL) was represented by the guard cell length,

possibly indicating the maximum potential opening of the pore

[43].

From samples of each species, the middle portions of mature

leaves were fixed in FAA (formalin, acetic acid, alcohol, and

distilled water, 10:5:50:35, v:v:v:v) for at least 24 h. They were

then dehydrated in an ethanol series and embedded in paraffin for

sectioning. Transverse sections, made on a Leica RM2126RT

rotary microtome (Leica Inc., Bensheim, Germany), were mount-

ed on glass slides. These tissues were examined and photographed

using the Leica DM2500 microscope. Thicknesses of the cuticle

(CT), upper epidermis (UET), lower epidermis (LET), mesophylls

(MT), and the whole-leaf (LT) were measured at the midpoint of

each transverse section with the IMAGEJ program. Six leaves per

species were taken from different individuals. Leaf density (LD)

was calculated as LMA/LT.

Data analysis
A phylogenetic tree for these 30 fern species was constructed

based on chloroplast rbcL sequences obtained from the GenBank

website (http://www.ncbi.nlm.nih.gov/genbank/). Phylogenetic

analyses for each matrix were carried out using the maximum

likelihood method in PAUP* v.4.0b10 [44]. Schneider et al. (2004)

has integrated Colysis and major components of Microsorum into

Leptochilus by using nucleotide sequences derived from three plastid

loci [45]. For simplicity, the old Latin names of species in Colysis

and Microsorum were used in the present study.

Table 3. Phylogenetic signals (K-statistics) for 14 leaf
functional traits from 30 fern species.

Trait K-statistic p

Leaf mass per unit area 0.396 0.009

Leaf density 0.289 0.045

Leaf water content 0.292 0.065

Cuticle thickness 0.329 0.422

Upper epidermal thickness 0.425 0.008

Lower epidermal thickness 0.282 0.134

Leaf thickness 0.382 0.016

Mesophyll thickness 0.363 0.019

Stomatal density 0.454 0.004

Stomatal length 1.322 0.001

Area-based maximum
photosynthetic rate

0.360 0.012

Stomatal conductance 0.660 0.010

Transpiration rate 0.296 0.032

Vein density 0.632 0.005

K value ,1 indicates that relatives resemble each other less than expected
under Brownian motion evolution along the phylogenetic tree; K value .1
shows that close relatives are more similar than expected.
doi:10.1371/journal.pone.0084682.t003

Photosynthesis and Water Relation of Ferns
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All statistical analyses were performed with R software v. 2.15.0

[46]. The phylogenetic signal (K-statistic) for each trait was

calculated using ‘picante’ based on the R package. Such K-statistics

can express the conservatism of traits. Cases where the K-value is

,1 indicate convergent traits while K.1 represents that traits are

more conserved than would be presumed from a Brownian

expectation [47].

Relationships among variables were evaluated by both pair-wise

Pearson correlations in the R package and a phylogenetically

independent contrast (PIC). Possible evolutionary associations were

assessed via PIC analysis, utilizing the molecular phylogenetic tree.

This PIC analysis was examined with the ‘‘analysis of traits’’ module

in Phylocom, which calculates the internal node values for

continuous traits [48].

Results

Leaf functional traits varied considerably across species (Table 1,

Tables S2 and S3 in File S1). The magnitude of variation was

generally smaller for physiological traits than that of the structural

traits. Among species, variation ranges of 15 traits were less than

10.0-fold, while that for SD differed by 15.5-fold. When including

Figure 2. Pearson correlations (a–c) and phylogenetically independent contrast correlations (d–f) of maximum photosynthetic rate
(Amax) with vein density (Dvein), stomatal density (SD), and leaf mass per unit area (LMA) across 30 fern species.
doi:10.1371/journal.pone.0084682.g002

Photosynthesis and Water Relation of Ferns
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morphology and anatomy, the variation in CT was smallest while

that of SD was largest. For physiology, gs had the largest variation

(9.5-fold), and LWC was the smallest (1.4-fold). In sum, the

variation was greatest for SD and smallest for LWC across all

traits.

Of the 16 leaf traits tested here, significant differences among 11

were found between terrestrial and epiphytic ferns (Table 2).

Compared with epiphytic ferns, terrestrial species tended to have

higher values for Dvein, SD, gs, Amax, and Tr, but lower values for

LMA, LET, LT, MT, and SL. However, values for leaf area, LD,

UET, LWC and CT did not differ significantly between the two

types of ferns.

Among all tested traits, only the K value for SL was .1.0,

demonstrating that this traits were phylogenetically conserved

(Figure 1, Table 3). For the others, values were ,1.0, indicating

that they were convergent.

Maximum photosynthetic rate was positively correlated with

Dvein, SD, and gs, but not with LWC and leaf structural traits

(Figures 2 and 3, Table S4 in File S1). After phylogeny was

considered, Amax was still correlated with Dvein and gs (Figures 2

and 3). Stomatal density was positively correlated with Dvein and

gs, but not with other structural traits (Figure 4, Table S4 in File

S1). After the phylogenetic effects were eliminated, the correlation

of Dvein with SD was still significant. Phenotypically and

phylogenetically, LWC was positively correlated with LET, LT,

and MT (Figure 5).

Discussion

We used a comparative phylogenetics approach to examine the

correlated evolution among leaf traits across a range of ferns in a

common garden. We found that vein density relating to water

transport capacity showed evolutionary associations with maxi-

mum photosynthetic rate and stomatal density in tropical ferns.

Variations in leaf traits between growth habits
Differences in growth habits can reveal variations in the

availability of abiotic resources. Generally, water availability is

one of the main factors that limit photosynthesis and growth of

epiphytic plants [49]. Compared with terrestrial fern, epiphytic

species has more resistive vascular systems, higher drought

tolerance, and different anatomical features [13]. In this study,

epiphytic ferns had higher values for LMA, thicknesses of whole

lamina, epidermis and mesophylls than terrestrial species (Table 2).

Thick leaves would be favorable in dry habitats because they can

store more water [29,42]. In addition, Dvein was lower for the

epiphytic type, consistent with the pattern that epiphytic orchids

have less venation than their terrestrial counterparts [26]. Torre et

al. (2003) suggested that rose grown at high relative humidity (RH)

has a significantly higher SD and SL, but a reduced Dvein and

thinner leaves when compared to moderate RH plant [50].

Contrary to our results, Dvein values are higher for Hawaiian

Plantago taxa on drier sites [25]. Since Dvein strongly determines

water transport capacity [8,9], epiphytic ferns have distinctly lower

Figure 3. Pearson correlations (a–b) and phylogenetically independent contrast correlations (c–d) of maximum photosynthetic rate
(Amax) with stomatal conductance (gs) and leaf water content (LWC) across 30 fern species.
doi:10.1371/journal.pone.0084682.g003

Photosynthesis and Water Relation of Ferns
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leaf hydraulic conductance due to low Dvein than terrestrial ferns.

Given that there is a tradeoff between hydraulic capacity and

safety [22], epiphytic ferns may have a vascular system that is

more resistant to cavitation than terrestrial species [5]. A distinct

difference in Dvein and consequent water transport capacity is

probably responsible for the significant difference in Amax between

terrestrial and epiphytic ferns. These results reflect an obvious

differentiation between epiphytic and terrestrial ferns in ecological

adaptations to the environmental conditions of their native

habitats.

Leaf traits in relation to phylogeny
Among leaf traits examined, only stomatal length (SL) showed a

strong phylogenetic conservatism (Table 3). This result is

consistent with the notion that SL is related to phylogeny in

angiosperms [34]. Previous studies have suggested that SL in

Arabidopsis is strongly correlated with genome size, but is

independent from environment [51], and that the frequency of

polyploidy in ferns (31%) is much higher than angiosperms (15%)

[52]. Polyploidy provides a rapid route for species evolution and

adaptation [53]. Thus, speciation linking to polyploidy might

explain evolutionary shifts associated with genome size and SL in

ferns.

Phylogenetic signals for most of the traits examined here were

weak, possibly because of a departure from Brownian motion

evolution, such as adaptive evolution, that would not have been

correlated with phylogeny. This reflects the outcome of selection in

Figure 4. Pearson correlations (a–c) and phylogenetically independent contrast correlations (d–f) of stomatal density (SD) with
stomatal conductance (gs), vein density (Dvein) and cuticle thickness (CT) across 30 fern species.
doi:10.1371/journal.pone.0084682.g004

Photosynthesis and Water Relation of Ferns
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Figure 5. Pearson correlations (a–d) and phylogenetically independent contrast correlations (e–h) of leaf water content (LWC) with
cuticle thickness (CT), lower epidermal thickness (LET), leaf thickness (LT), and mesophyll thickness (MT) across 30 fern species.
doi:10.1371/journal.pone.0084682.g005

Photosynthesis and Water Relation of Ferns
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heterogeneous environments, allowing species to acclimate to their

current growing conditions [54].

Correlation of photosynthesis with water supply
As expected, Amax was positively correlated with Dvein, SD, and

gs, consistent with our hypothesis. Previous studies have suggested

that Dvein is correlated with maximum hydraulic conductance and

Amax across a wide range of species [7,16,17]. Generally, ferns

have lower Amax than angiosperms, which are attributable to their

much lower Dvein and hydraulic conductance [5,10,38]. In

contrast, angiosperms have dramatically higher values for Dvein

that parallel their higher rates of photosynthesis and transpiration

[4,16]. Feild & Brodribb (2013) found that high vein density

evolution is strongly associated with simplification of the perfora-

tion plates of primary xylem vessels. Such simple perforation plates

associated with high Dvein only occurred in the leaf xylem of

derived angiosperm clades, while scalariform perforation plates

associated with low Dvein occurred in extant basal angiosperms

and ferns [55]. Compared with that of the derived angiosperms (.

12 mm mm22) [55], the 30 tropical ferns in our study exhibited

very lower Dvein (0.66–1.68 mm mm22). Thus, due to the lower

water supply capacities than angiosperms, ferns cannot efficiently

replace the water transpired, which consequently results in a high

water potential gradient from roots to leaf and prevents the ferns

from achieving and maintaining a high leaf water potential,

stomatal conductance, and photosynthetic rate during transpira-

tion [7]. This confirmed the hypothesis in angiosperms that vein

density evolution enable higher photosynthesis [10], and low

stomatal conductance and photosynthesis of ferns could be caused

by low vein density.

Correlations among leaf functional traits
Our present results support the hypothesis that stomatal density

is closely related to Dvein. We also found that Dvein in Paphiopedilum

(Orchidaceae) is evolutionarily correlated with SD [26]. The close

correlation between Dvein and SD in ferns and Paphiopedilum

support the idea of coordinated development and functioning

between leaf veins and stomata [17], which is important for

optimizing the photosynthetic yield relative to carbon investment

in leaf venation, conserving water loss and maintaining xylem

function [6]. However, environments would modify the linkage

between Dvein and SD in woody angiosperms [23]. The most

efficient balance of vein and stomatal investment occurs when the

supply of water to evaporative sites is just enough to maintain

stomata fully open in the contrasting environments [23,37].

Leaf structural traits can affect photosynthesis through changing

the diffusion path from stomata to chloroplast or hydraulic

resistance [41]. However, our study did not find any significant

correlations between Amax and leaf structural traits such as

mesophyll thickness (Table S4 in File S1). Leaf water content was

positively correlated with thicknesses of the cuticle, upper

epidermis, lower epidermis, mesophylls, and the whole-leaf

(Figure 5). This demonstrates that leaf structural traits contribute

to water conservation. Both leaf thickness and epidermal

characteristics affect water status [40]. A thick leaf can store more

water and maintain more stable hydraulic functioning during

drought periods [42].

Conclusions
Leaf functional traits of 30 tropical ferns examined varied

considerably, but only stomatal length was strongly phylogenet-

ically conserved. We note correlated evolution between maximum

photosynthetic rate and vein density, and between stomatal density

and vein density in ferns. These results indicate that lower water

transport capacity limits the photosynthesis of these tropical ferns.

These findings provide novel insights into the correlated evolution

of traits involving water economy in early vascular plants such as

ferns.

Supporting Information
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Species means for stomatal and physiological traits of 30 ferns.
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