
One of the many doors that open when a species’ 
genome is first sequenced is to the world of popula-
tion genomics and to the unparalleled study of the 
evolutionary divergence of closely related populations 
and species. Ever since Darwin developed his model of 
how one species splits into two (his principle of diver-
gence)1, the field of evolutionary biology has been 
divided on the question of whether Darwin’s model 
is correct. With growing access to very large amounts 
of genome data from multiple individuals of a species, 
it becomes increasingly likely that we will resolve this 
long-standing question.

Recent next-generation sequencing (NGS) technolo-
gies and assembly tools, such as restriction-site-associated  
DNA (RAD-tag)2 sequencing and genotyping by 
sequencing (GBS)3, now make it possible to obtain 
genome-scale data affordably from multiple individuals 
(reviewed in REFS 4,5). When individuals are sampled 
from multiple populations of a species, as has been done 
for humans6–8, stickleback fish2, fruitflies (Drosophila 
Population Genomics Project), Arabidopsis thaliana 
(1001 Genome Project)9, dogs10 and different species 
of great apes11–13, among others14,15, we gain an excep-
tional view not only on the variation within populations 
and species but also on the variation that lies between 
them. Data sets such as these can include millions of 
variable single-nucleotide polymorphisms (SNPs) and 
other kinds of polymorphisms and hold the promise 
of finally revealing the genetic side of how species and  
populations diverge.

However, a flood of new data may not lead directly to 
a commensurate gain in knowledge, and today, as new 
population genomic data sets are emerging, our skills 
of analysis and interpretation are partly overwhelmed. 
With the rise of large NGS data sets that reveal com-
plex patterns of variation across species’ genomes, we 
find that our best models and tools for explaining pat-
terns of variation were designed for a simpler time and 
smaller data sets. In the first place, NGS data sets present 
unique challenges, apart from their size, that result from 
the way in which they are generated. For example, it is 
common to use a reference genome to aid the assembly 
of additional NGS data, and yet this introduces a form of 
ascertainment bias, or reference bias, that can affect one’s 
findings16,17 (BOX 1). Second, most models and methods 
available to analyse NGS data have limitations that pre-
vent using all of the information in the data that bears 
on the processes of interest.

In this Review, we survey the state of the art of 
population divergence models and inference methods, 
with regard to population genomics data sets. We do 
not examine in detail the technical challenges that are 
related to NGS for correcting sequencing, assembly, SNP 
and genotype-calling errors, as these have recently been 
reviewed elsewhere4,17,18. Rather, we focus on models of 
population divergence and on methods to detect and 
to quantify gene flow, as well as methods to distinguish 
alternative modes of speciation. We discuss the limita-
tions of these methods and provide examples of their 
application to recently available genome-wide data sets.
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Single-nucleotide 
polymorphisms
(SNPs). Sites in the DNA in 
which there is variation across 
the genomes in a population, 
usually comprising two alleles 
that correspond to two 
different nucleotides.

Ascertainment bias
Systematic bias introduced  
by the sampling design (for 
example, criteria used to select 
individuals and/or genetic 
markers) that induces a 
nonrandom sample of 
observations.

Understanding the origin of  
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modelling gene flow
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Abstract | As it becomes easier to sequence multiple genomes from closely related species, 
evolutionary biologists working on speciation are struggling to get the most out of very 
large population genomic data sets. Such data hold the potential to resolve long-standing 
questions in evolutionary biology about the role of gene exchange in species formation.  
In principle, the new population genomic data can be used to disentangle the conflicting 
roles of natural selection and gene flow during the divergence process. However, there are 
great challenges in taking full advantage of such data, especially with regard to including 
recombination in genetic models of the divergence process. Current data, models, 
methods and the potential pitfalls in using them will be considered here.
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Models of species formation
Speciation in the absence of gene flow. When two popula-
tions become allopatric (that is, completely geographically 
separated), they can diverge without mixing genes and 
eventually become reproductively isolated19. Compared 
with divergence in the presence of gene exchange, this 

is a comparatively simple process, and this simplicity, 
together with clear biogeographic evidence (such as the 
finding that in island archipelagos it is common to find 
different species on different islands), convinced many 
that this was how nearly all new species formed19–24.

Speciation in the presence of gene flow. Darwin, how-
ever, envisioned that natural selection can act in dis-
parate ways over a species range to pull a species  
in different directions and eventually to split it, first into 
different varieties and finally into separate species. This 
model, which has come to be called ‘sympatric speciation’, 
was considered by many to be unlikely as gene exchange 
across a species range was considered to be a strong 
homogenizing force that counteracts divergence by natu-
ral selection. However, more recently, genetic data (for 
example, mitochondrial DNA sequences and microsat-
ellites) together with biogeographic circumstances have 
provided compelling evidence that sympatric speciation 
has occurred in numerous contexts25–27.

At the genetic level, Darwin’s model raises complexities,  
as it predicts that divergence in the presence of gene 
flow can cause different genes to experience very dif-
ferent histories. Diversifying selection favours different 
alleles in different parts of a species range (and at one or 
more loci). However, the movement of all genes across 
the range of the species as the normal result of organ-
isms reproducing and dispersing will regularly move 
alleles that are affected by the diversifying selection into  
the ‘wrong’ part of the species range. It will also cause the 
species to appear to be homogeneous when examined for 
patterns of variation at neutral genes.

An additional major player in the divergence process, 
particularly when gene flow is occurring, is recombina-
tion, which is the breaking and rejoining of chromo-
somes that happens during meiosis every generation 
and that allows different parts of the genome to have 
different histories. Because of recombination, an allele 
that is favoured by selection and that is increasing in 
frequency will carry with it in its trajectory towards 
fixation only those flanking regions to which it is most 
tightly linked28,29. Recombination also makes it possible 
for alleles at neutral loci to move by gene flow across the 
species range and to co-occur in the same population of 
genomes in which there are loci diverging by the action 
of diversifying selection30,31. Recombination thus allows 
a species to have a population of genomes with a split 
personality: to resemble two diverging gene pools at loci 
affected by diversifying selection and to resemble a sin-
gle gene pool at loci that are not under selection in this 
way. Evidence of this kind of genomic schism has come 
from a diversity of systems in recent years, on the basis of 
DNA Sanger sequence and microsatellite data32 and more 
recently from NGS data in stickleback fish2, Heliconius 
butterflies14 and flycatchers15.

Modelling population divergence. A widely used theo-
retical framework for studying speciation using genetic 
data is the ‘isolation with migration’ model, so named 
because it includes both the separation of two popula-
tions (a process called isolation) following a splitting 

Box 1 | Challenges of NGS data for population genomics

An ideal sequencing technology will output high-quality reads of lengths greater than 
the size of duplicated regions in the target genome. The current crop of technologies, 
however, generates sequences of short lengths (generally less than 500 bp and often less 
than 100 bp)4,5. Even with many reads and with paired-end libraries, genome assembly 
generally requires the aid of a reference genome. One of the main difficulties with this 
protocol, which is especially relevant for demographic inference, is genotype and 
single-nucleotide polymorphism (SNP) call uncertainty (reviewed in REFS 17,18), 
reference bias and phase uncertainty. Other challenges with next-generation sequencing 
(NGS) have recently been reviewed elsewhere4,5,17.

Reference genome bias
Sequence assembly from short sequences using a reference genome results in 
ascertainment bias116,117. That is, NGS reads that are different from their homologous 
location in the reference genome at polymorphic sites will tend to be misassembled, and 
there will be a tendency to underestimate differences between the new data and the 
reference genome, as shown in the figure, in which reads from two individuals are 
differentially mapped to a reference genome. Reads from the individual shown in blue 
are preferentially mapped owing to their similarity with the reference genome, whereas 
reads from the other individual (shown in green) are not mapped as they contain more 
differences17. Although this bias can be mitigated by using high-coverage NGS data118 or 
by doing de novo genome assemblies if possible, the bias is not easily dismissed in 
low-coverage contexts. For example, relaxation of criteria for matching NGS reads to a 
reference genome will help to avoid missing heterozygous positions but entails a 
concomitant increase in ‘false positives’. Recently, investigators have begun to address 
this bias: for example, by including models of the process generating the variation16 or by 
adding steps to the assembly pipeline that help to compensate for the bias in local 
regions of the genome119.

Phase uncertainty
When sequencing a diploid individual, two genomes are sequenced, and it is difficult to 
know whether any pair of reads came from the same or from different genomes. This 
issue does not affect the identification of heterozygous positions, but this phase 
uncertainty greatly hinders the assembly of two genomes from one diploid sample, and it 
considerably complicates the assessment of linkage disequilibrium (LD) over longer 
distances. This can have an impact on demographic estimates, especially for methods 
based on haplotypes and that use LD information (as seen in simulation studies for 
hidden Markov model (HMM)-based112 and identity by descent (IBD)-based115 methods). 
One possible approach to deal with phase uncertainty consists of integrating over all 
possible phases, as implemented in a genealogy sampler approach7. The use of 
pair-ended reads can extend the lengths of regions over which two separate sequences 
can be resolved, beyond the length of the actual reads120. If data are available from an 
individual as well as from both of their parents (a so-called ‘trio’), then it is possible to 
infer both chromosomes of the individual6. Alternatively, a population genetic statistical 
approach can be used to estimate phase when there are data from multiple individuals121. 
In the future, technology developments that allow for long reads from each chromosome 
are likely to reduce the problem of phase uncertainty122.
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Paired-end libraries
Sequencing from each end of 
the fragments in a library.  
The two sequenced ends are 
typically separated by a gap.

Sympatric speciation
The process of divergence 
between populations or 
species occupying the same 
geographical area and in 
presence of gene flow.

Diversifying selection
Natural selection acting 
towards different alleles (or 
phenotypes) being favoured in 
different regions within a single 
population or among multiple 
connected populations.

Neutral genes
Genes for which genetic 
patterns are mostly affected by 
mutation and demographic 
factors, such as genetic drift 
and migration.

Allopatric divergence
The process of divergence 
between populations or 
species that are geographically 
separated, in the absence of 
gene flow.

Linkage disequilibrium
(LD). The nonrandom 
association of alleles at 
different sites or loci.

Islands of differentiation
Genomic regions of elevated 
differentiation owing to the 
action of natural selection.

FST

The proportion of the total 
genetic variability occurring 
among populations, typically 
used as a measure of the  
level of population genetic 
differentiation.

Island model
A model introduced by Sewall 
Wright to study population 
structure comprising multiple 
populations connected to each 
other through migration.

Metapopulation model
In the context of FST-based 
statistics, this is an idealized 
model in which several 
populations diverge without 
migration from a common 
ancestral gene pool (or 
metapopulation).

event from their common ancestral population as well 
as migration between populations33–35. At one extreme, 
we can consider a simple isolation model in which the 
migration rate is zero in both directions; this corresponds 
to an allopatric divergence scenario (FIG. 1a). Other models 
include isolation with migration (FIG. 1b), isolation after 
migration (FIG. 1c) and secondary contact (FIG. 1d). It has 
been shown that patterns of genetic variation in samples 
from two closely related populations or species can be 
used to distinguish a pure isolation model (FIG. 1a) from 
a model with migration33,34 (FIG. 1b–d). Furthermore, the 
growing evidence of persistent gene exchange between 
closely related species means that divergence often arises 
in the midst of conflicting evolutionary processes32.

Inferring the history of divergence
NGS data from multiple individuals offer the promise 
of disentangling the complex interplay between selec-
tion, gene flow and recombination that occurs during 
speciation with gene flow. First, by having information 
for essentially all parts of the genome, we can gain a more 
detailed and accurate picture of the demography of popu-
lations36,37. Second, it becomes possible to ask whether 
some parts of the genome have been exchanging genes 
more than others. Substantial variation in gene flow lev-
els across the genome constitutes clear, albeit indirect, 
evidence that selection is acting against gene flow to 
a greater degree in some genome regions than in oth-
ers38,39. Third, NGS data allow us to get better estimates 
of recombination rates and linkage disequilibrium (LD) 
patterns along the genome40,41, and this can in princi-
ple be used to infer the timing and magnitude of gene 
flow. Finally, polymorphism and LD along the genome 
also bear information about selective sweeps and genes 
that are the targets of diversifying selection (reviewed in 
REFS 42,43). However, all of these inferences depend on 
having a theoretical framework that connects patterns of 
variation to an explicit model.

Genome scans using indicators of divergence. Depending 
on an investigator’s question, it can sometimes be useful 
to take a fairly simple approach that does not use models 
with lots of parameters to study the levels of divergence 
between populations. This can be achieved by tailoring 
analyses to a specific component of the divergence pro-
cess and scanning across the genome while calculating 
statistics that are expected to be sensitive to that feature. 
For example, there has been lots of interest in detecting 
‘islands of differentiation’ by looking at the distribution 
of summary statistics that measure genetic differen-
tiation, such as FST

44. In the first study using RAD-tag 
sequencing, the differentiation of 45,789 SNPs along the 
genome between oceanic and freshwater populations of 
threespine sticklebacks (Gasterosteus aculeatus) showed, 
overall, reduced levels of differentiation (FST values close 
to zero)2. However, when a sliding window was run 
along the aligned genomes of freshwater and oceanic 
populations, the authors found evidence for genomic 
regions characterized by very high FST values (>0.35), 
potentially harbouring genes under divergent selection. 
Interestingly, the same genomic regions were high-
lighted in contrast to different freshwater populations, 
suggesting parallel adaptation to the freshwater environ-
ment. These results are in agreement with a larger study 
comprising seven pairs of closely related marine and  
freshwater populations comprising 5,897,368 SNPs45.

Divergence summaries can also be used within 
demographic models of divergence, such as an island 
model or a metapopulation model (reviewed in REFS 46,47). 
One approach is to scan the genome using a hierarchical 
FST model that assumes a nested island model underlying 
the divergence process48. A related approach explicitly 
accounts for variation in read depth in NGS data within 
a Bayesian framework49 and hence should be preferred 
for analysing such data.

Another type of genome scan that is targeted to 
identify recent admixture relies on comparing the 
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Figure 1 | Alternative modes of divergence. All models assume that an ancestral population of size N
A
 splits into two 

populations at time of split (t
s
). The two present-day populations have effective sizes N

1
 and N

2
, respectively. Panel a 

shows the model in which migration rate is zero in both directions, which corresponds to an allopatric divergence 
scenario. Panels b–d represent alternative models in which populations have been exchanging migrants. Gene flow 
occurs at constant rates since the split from the ancestral population (b). Migration rates are assumed to be constant 
through time, but gene flow can be asymmetric: that is, one migration rate for each direction. Panel c shows a scenario 
in which populations begin diverging in the presence of gene flow but experience a cessation of gene flow after time 
since isolation (t

i
). If the lack of current gene flow in this model is due to reproductive isolation then this represents a 

history in which divergence occurred to the point of speciation in the presence of gene flow. In panel d, we consider 
the alternative migration history in which populations were isolated and diverged for a period of time in the absence of 
gene flow, followed by secondary contact at time of secondary contact (t

sc
) and the introgression of alleles from the 

other population by gene flow.
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Nested island model
A hierarchical island model 
with groups of populations in 
which migration among 
populations within the same 
group is higher than among 
populations in different groups.

Gene trees
Bifurcating trees that represent 
the ancestral relationships of 
homologous haplotypes 
sampled from a single or 
multiple populations. A gene 
tree includes coalescent events 
and, in models with gene flow, 
migration events. A gene tree is 
characterized by a topology, 
branch lengths, coalescence 
times and migration times.

population tree (assumed to be known) with the gene 
trees inferred at a specific site. Incongruences between 
the population tree and the gene tree can be due to 
incomplete lineage sorting (shared ancestral poly-
morphism) or to gene flow. One statistic, called ‘D’, 
was specifically designed to detect introgression from 
one population to another50 (FIG. 2). Computing D 
requires a genome from each of two sister populations, 
a genome from a third population (a potential source 
of introgressed genes) and a fourth outgroup genome 
to identify the ancestral state (identified as the A allele). 
Focusing on SNPs in which the candidate source popu-
lation has the derived allele (B) and in which the two 
sister genomes have different alleles, there are two pos-
sible configurations: either ABBA or BABA. Under the 
hypothesis of shared ancestral polymorphism, the num-
ber of tree topologies of ABBA and BABA are expected 
to be equal, and the expected D will be zero. Deviations 
from that expectation are interpreted as evidence of 
introgression. As with FST genome scans, investigators 
can look at the distribution of D along the genome, 
but when using D, the aim is to find genomic regions 
that specifically experienced introgression, whereas in 
the case of FST, the goal is to identify regions of high  
differentiation, regardless of the cause.

Genome scans using D were used, for instance, 
to detect admixture between archaic and modern 
humans51,52 and to study the patterns of introgression 
in Heliconius butterflies14. In the case of modern and 
archaic humans, unidirectional introgression from 
Neanderthals to non-African humans was estimated 
to have occurred for 1–4% of the genome51. Similarly, 
data from 642,690 SNPs point to 4–6% of the present 
day Melanesian genomes being derived from admix-
ture with Denisovans52. For Heliconius butterflies, 
RAD-tag sequencing of 4% of the genome (~12 Mb) 

indicated introgression from Heliconius timareta to 
Heliconius melpomene amaryllis (2–5% admixture), 
which are sympatric species that exhibit the same 
wing colour patterns. Interestingly, only a few regions 
exhibited significant D values, including genes known 
to contain the mimicry loci B/D and N/Yb. Despite the 
lack of an explicit test of positive selection, the fact that 
these regions harbour genes involved in mimicry is in 
agreement with an active role of selection promoting 
introgression at these regions. In these species, the pat-
terns of differentiation along the genome suggest a case 
in which most of the genome is differentiated — con-
sistent with a model of allopatric divergence (FIG. 1a) or 
divergence with limited gene flow (FIG. 1b) — whereas 
a few regions show evidence of secondary contact and 
uni- or bidirectional introgression of genes from one 
population (species) to the other (FIG. 1c). In both cases of  
humans and Heliconius spp., there was evidence  
of regions exchanged between populations that were 
already differentiated, pointing to the importance of 
secondary contact.

Although genome scan approaches are flexible and 
applicable to large genomic data sets, the focus on 
amenable summary statistics typically entails setting 
aside much of the information in a data set. A related 
limitation is that the same numerical value of a par-
ticular statistic can result from very distinct scenarios. 
For instance, a low FST can be due to shared ancestral 
polymorphism or due to gene flow44. Similarly, the D 
statistic can be significantly different from zero owing 
to other events rather than admixture. The evidence 
of admixture between modern human non-African 
populations and Neanderthals has been questioned 
by a simulation study showing that spatial expansions 
and population substructure without admixture could 
lead to D values that are similar to the observed ones53.
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Figure 2 | Disentangling ancestral polymorphism from gene flow (ABBA and BABA test). The diagram shows the 
divergence of two sister populations (1 and 2), a third population (potential source of introgressed genes; 3) and an 
outgroup population (4) over time. The black line represents the gene tree of a given site, and the star represents a 
mutation from the ancestral state (allele A) to the derived state (allele B). The pattern ABBA can occur owing to  
an ancestral polymorphism (a): that is, coalescent of lineage from population 2 with lineage from population 3 in the 
ancestral population (population ancestral to populations 1, 2 and 3), or gene flow from population 3 to population 2 
(b). Under a model with no gene flow, we expect that the pattern ABBA is as frequent as BABA owing to the fact that 
there is 50% chance that either the lineage from population 1 or from population 2 coalesces with lineage from 
population 3 in the population ancestral to populations 1, 2 and 3.
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Bayesian statistics
Statistical framework in which 
the parameters of the models 
are treated as random 
variables, allowing expression 
of the probability of 
parameters, given the data; 
this is called the posterior.  
The posterior probability is 
obtained by Bayes’ rule, and it 
is proportional to the likelihood 
times the prior.

Allele frequency spectrum
(AFS). A distribution of the 
counts of single-nucleotide 
polymorphisms with a given 
observed frequency in a single 
or multiple populations.

Genetic drift
Stochastic changes in gene 
frequency owing to finite size of 
populations, resulting from the 
random sampling of gametes 
from the parents at each 
generation.

Likelihood and model-based methods. As useful as 
genome scans with indicator variables can be to identify 
components of the divergence process, they fall short of 
providing a full portrait of divergence unless they are 
combined with other analyses. In this light, the goal for 
many investigators is to be able to calculate the likeli-
hood under a rich divergence model. For some model of 
divergence M, with a parameter set Θ, the likelihood is 
the probability (P) of the data given the parameters: that 
is, PM(Data | Θ). Having a likelihood function at hand 
allows estimating the most likely parameters of a given 
model either with frequentist or Bayesian statistics54. Also, 
comparing the likelihood of alternative models opens 
the door to model choice approaches to infer the most 
probable divergence model. Currently, there are two 
main families of likelihood-based approaches for study-
ing divergence: one based on the allele frequency spectrum 
(AFS) and a second based on sampling genealogies for 
short portions of the genome (BOX 2).

Likelihoods using the allele frequency spectrum. For a 
single SNP sampled in each of two populations, consid-
ered together with the base that is present in an outgroup 
genome, the data can be summarized as the number of 
copies of the derived allele in each of the two popula-
tions. For a large number of SNPs, these counts fill a 

discrete distribution — the allele frequency spectrum 
(AFS) — in two dimensions (one for each sampled pop-
ulation), which can be represented in graphical form 
(FIG. 3). This approach has seen renewed interest as large 
SNP data sets have become more common55–57. FIGURE 3 
shows how the AFS can vary considerably for the dif-
ferent isolation with migration models shown in FIG. 1, 
particularly how simple isolation differs from models 
with gene flow. In the absence of gene flow (FIG. 3a), the 
frequencies of SNPs found in only one population are 
different from the SNPs in the other populations because 
genetic drift drives different alleles to fixation in each 
population. By contrast, in models with gene flow, the 
cells along the diagonal exhibit a higher density (FIG. 3b) 
because there are many SNPs with similar frequencies 
in the two populations. However, as exemplified in these 
AFSs, it can be difficult to separate alternative scenarios 
with gene flow, as these tend to be similar (FIG. 3b–d).

Although the expected AFS can be generated by 
simulations55,58,59, it is also the focus of a population 
genetic theory in which differential equations describe 
the diffusion of allele frequencies in populations60,61. In 
recent years, the diffusion equation approach has been 
reawakened for the study of the AFS under isolation 
with migration models, such as the ones shown in FIG. 1 
(REFS 57,62,63). If it is assumed that the SNPs segregate 

Box 2 | Contrasting the allele frequency spectrum with genealogy-sampling approaches

Allele frequency spectrum
In two populations, the allele frequency spectrum (AFS) corresponds to a multidimensional matrix X, where each x

i,j 
entry 

gives the number of single-nucleotide polymorphisms (SNPs) with an observed derived allele count of i in population 1 
and j in population 2. The likelihood is easily computed, given the expected AFS under a given evolutionary model.  
Each entry in the expected AFS reflects the probability of a given SNP falling into that cell. Assuming that all SNPs are 
independent (that is, assuming free recombination between SNPs), these probabilities can be derived from the 
distribution of allele frequencies across populations, which in turn can be found with diffusion approximations to  
the evolutionary processes or with the coalescent. After the expected AFS is obtained under a given model, it is easy  
to compute the likelihood for an arbitrarily large number of SNPs, making this a method applicable to the analysis of 
genomic data.

Genealogy sampling
Coalescence-based models aim at extracting information about relevant selective and demographic events from gene 
trees relating homologous DNA sequences (haplotypes) sampled from multiple populations. Each locus may contain 
several SNPs, and hence haplotype data contain an extra layer of information when compared with AFS approaches.  
Most methods assume no recombination within each locus and free recombination among loci. Coalescence-based 
methods are usually based on samplers that collect genealogies from the posterior distribution. However, exploring the 
genealogical space can be extremely complex and relies on highly computationally intensive Monte Carlo algorithms, 
such as Markov chain Monte Carlo (MCMC), that do not easily extend to large genomic multi-locus data sets.

AFS Coalescence-based

Type of data SNPs (biallelic markers) Phased DNA segment (haplotype)

Assumptions about 
recombination

Free recombination among SNPs  
(all SNPs independent)

Free recombination among loci and complete 
linkage within loci

Assumptions about 
mutation

Mutation rates equal for all SNPs Mutation rates vary across loci

Likelihood Diffusion-based or 
coalescence-based

Coalescence-based

Methods Composite-likelihoods; fairly fast 
and able to deal with millions of SNPs

Monte Carlo methods based on genealogy samplers 
(such as MCMC or importance sampling) or based on 
approximate methods (such as ABC or PAC); usually 
slow and computationally intensive, compromising 
their application to large genomic data sets
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Coalescent theory
A theory that describes the 
distribution of gene trees  
(and ancestral recombination 
graphs) under a given 
demographic model that can 
be used to compute the 
probability of a given gene tree.

independently, then given both an observed and an 
expected AFS for a model of interest, the likelihood can 
be directly calculated using a multinomial distribution. 
One difficulty is that in reality most data sets include 
many SNPs that are sufficiently close to one another that 
the assumption of independence does not apply. Still, the 
same likelihood calculation can be applied (now identi-
fied as a ‘composite likelihood’57) without introducing 
bias to the parameter estimates, albeit with limited access 
to confidence intervals and other analyses for which 
a likelihood is often used64. By reducing the data to 
counts of SNP frequencies, AFS methods are also guilty 
of discarding all linkage information in the data. This 

means that these methods are not expected to be very 
sensitive to processes that can affect local LD patterns, 
such as gene flow or admixture. AFS-based analyses on 
population genomic data sets have so far mostly been 
conducted on human data57,63,65, but the same approach 
can be used to study the divergence of closely related 
species. A nice example is the study of the divergence of 
Sumatran orangutans (Pongo abelii) and Bornean oran-
gutans (Pongo pygmaeus)13. Low-coverage (8×) Illumina 
sequencing of 5 individuals from each species yielded a 
total of 12.74 million SNPs, and an AFS analysis led to 
an estimated speciation time of 400,000 years with a low 
level of gene exchange between the species13.

The AFS approach has also been applied to more 
complex models with more than two populations or spe-
cies. One example comes from the analysis of human 
data from the 1000 Genomes Project under a three- 
population isolation with migration model with gene 
flow and population expansions65. By considering only 
SNPs at synonymous sites and by explicitly model-
ling genotype calling errors, these authors estimated a 
time for expansion out of Africa around 51,000 years 
ago, a split between Europeans and East Asians around 
23,000 years ago, recent population expansion in both 
Europeans and East Asians and statistically significant 
but reduced gene flow among all populations.

However, AFS-based methods become computa-
tionally challenging and expensive for models with 
more than three populations. There is thus considerable 
interest in finding suitable approximations to the diffu-
sion process that do not rely on a full multidimensional 
AFS66–68. Recently, some new methods have appeared 
that implement simplified diffusion processes that do 
not include mutation models but that do account for 
divergence from common ancestry by genetic drift66–68. 
The lack of a mutational component means that these 
methods are intended for cases of recent divergence 
among populations. By modelling the branch lengths of 
the population and species tree as proportional to drift 
and by treating drift in different branches as independ-
ent (with no gene flow), it is possible to write down a 
likelihood function, opening the door to infer the pop-
ulation and species trees. It is also possible to include 
admixture within this framework by allowing for one 
population to have ancestry in multiple populations66. 
For instance, 60,000 SNPs from 82 dog breeds and wild 
canids (obtained with SNP arrays) supported a popula-
tion tree with admixture events (as in FIG. 1c) rather than 
a pure isolation model66 (as in FIG. 1a).

Likelihoods by sampling genealogies. If the recombina-
tion rate is low, such that it is unlikely to have occurred 
in the time since the common ancestor of a sample of 
sequences from one or various populations, as can be 
the case over a short region of the genome, the history 
of a sample of sequences can be described by a gene tree 
or genealogy (BOX 3). The depth and structure of such 
genealogies have been described by coalescent theory 
for a diversity of models, including the models shown 
in FIG. 1 (REFS 69–71), and this coalescent modelling 
has made it possible to calculate the likelihood for data 
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Figure 3 | Allele frequency spectrum under alternative divergence models. Each 
entry in the matrix (x,y) corresponds to the probability of observing a single-nucleotide 
polymorphism (SNP) with frequency of derived allele x in population 1 and y in 
population 2. The colours represent the log of the expected probability for each cell of 
the allele frequency spectrum (AFS). The white colour corresponds to –Inf: that is, to 
cells with an expected probability of zero. These AFSs are conditional on polymorphic 
SNPs, hence the cells (0,0) and (10,10) have zero probability. The likelihood for an 
observed AFS can be computed by comparing it with these expected AFSs. a | Isolation 
model. b | Isolation with migration. c | Isolation after migration. d | Secondary contact. 
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sets with multiple sequences of a short genomic region 
sampled from one or more populations. Rather than 
focusing on the best gene tree (as is often the case in 
phylogenetics), the likelihood is obtained by integrating 
over all possible genealogies72. Because this integration 
cannot be solved analytically except for small sample 

sizes, these approaches rely on computationally inten-
sive methods73,74. The general principle of these meth-
ods is to sample a set of genealogies that is consistent 
with the data74,75, which may in turn be used to obtain 
a posterior probability in a Bayesian approach54. These 
methods have seen tremendous advances in recent dec-
ades, making it possible to estimate effective population 
sizes, migration rates, admixture contributions and dates 
of population declines, among other parameters37,73. 
Moreover, through likelihood ratio tests75 or through 
marginal likelihoods76, it has become possible to assess 
the fit of alternative models of divergence.

A genealogy-sampling approach to the likelihood 
can easily be extended to multiple loci if each has not 
undergone recombination and if free recombination 
is assumed between loci. Under these assumptions, 
the overall likelihood is the product of that for each 
locus (BOX 3). Thus, in principle, a genealogy-sampling 
approach can be extended to a genome scale if the com-
putational power is available to handle many thousands 
of genome segments. For small sample sizes, it is possible 
to obtain analytical solutions, and this has been found 
for a two-population isolation with migration model 
with constant gene flow for the special case of two sam-
pled genomes77. When applied to the divergence between 
Drosophila melanogaster and Drosophila simulans, for a 
data set with 30,323 genomic segments (average length 
of 405 bp), a divergence time of 3.04 million years 
ago, and a non-zero migration rate from D. simulans  
to D.  melanogaster was inferred77. An alternative 
approach to computing the likelihood for larger sample 
sizes consists of using generating functions, which so far 
has been shown to be possible for up to samples of three 
gene copies78,79.

The largest data set analysed so far using a geneal-
ogy-sampling approach consists of six genomes (each 
divided into 37,574 segments of 1 kb in size): one from 
each of six human populations. The data were examined 
assuming an isolation model with five populations and  
migration between one single pair of populations7. 
Statistically significant migration was estimated between 
populations in Africa: namely, between San and Bantu, 
and San and Yoruba. Surprisingly, the estimates for the 
times of split pointed to a very old divergence between 
these African populations (108–157,000 years ago), sug-
gesting an ancient and complex population structure in 
that continent.

Related approximate likelihood methods. One general 
family of methods (so-called ‘likelihood-free’ methods) 
sidesteps the actual calculation of likelihoods by using 
direct simulations under the model of interest. These 
include approximate Bayesian computation (ABC) 
methods, which have recently been reviewed80–83. One 
advantage of ABC methods is that it can be fairly straight-
forward to include recombination in the models84.  
However, the application of ABC to genome-wide data 
sets is still in its infancy mostly owing to the prohibi-
tively high computational cost of simulating population 
genomic data, but in practice it has been shown to han-
dle data sets with hundreds85 to a few thousand loci86. 

Box 3 | Challenges of computing likelihoods with recombination

If there is free recombination among sites, the likelihood is simply the product of the 
likelihoods for each site. This is the assumption underlying the allele frequency spectrum 
(AFS)-based methods. At the other extreme, when all sites are fully linked, the ancestry  
of a sample is fully captured by a gene tree shared by all sites. This is the realm of 
coalescence-based methods and of most genealogy-sampling approaches. However, the 
reality lies in between these two extremes, and it is exactly for intermediate levels of 
recombination, when two portions of the genome are neither completely linked nor 
completely unlinked, that the calculation of the likelihood becomes very difficult.

In a genealogy-sampling method, likelihoods are computed by integrating over the 
genealogy space. Under a model characterized by a set of parameters, given data from L 
loci, X = (X

1
, …, X

L
) and its underlying gene trees, G = (G

1
, …, G

L
), where X

i
 and G

i
 represent 

the data and gene trees of the ith locus (i = 1, …, L), respectively, the likelihood is found as a 
product over loci:

ƒ(X|Θ) =Π∫
L

i = 1

ƒ(Xi|Gi)ƒ(Gi|Θ)dGi

where f(G
i
 | Θ) is the probability of the genealogy given the parameters Θ, and f(X

i
 | G

i
) is 

the probability of the data at the ith locus, given its genealogy. The ancestral relationships 
between sequences are described by a gene tree with coalescent and migration events 
(see part a of the figure). Recombination causes different parts of the genome to have 
different genealogical histories, and so the ancestry of a set of sequences is best pictured 
as a graph known as the ancestral recombination graph (ARG) with joining events 
(coalescent events) and the splitting of gene copies into two parental copies 
(recombination events; see part b of the figure)70,101,123,124. Each recombination event 
corresponds to a split of the sequence into two subsequences that carry different 
ancestral segments. Interestingly, given the ARG, denoted A, we can look at the marginal 
gene trees for each site along the sequence and compute the likelihood as a product over 
those marginal genealogies G

i
 as

ƒ(X|Θ) = Π∫
S

i = 1

ƒ(X|Gi(A))dAƒ(A|Θ)

where S is the number of sites, and f(X | G
i
(A)) is the probability of the data at the ith site, 

given its marginal genealogy G
i
 implied by the ARG. Note that in this case, the 

parameters (Θ) include the coalescent, migration and recombination processes. The 
marginal distribution of genealogies can be obtained given the ARG, but the ARG cannot 
be obtained given the marginal genealogies. This is at the core of the difficulties of 
dealing with recombination. First, in comparison with gene trees, the ARG is dramatically 
more complex, making the search through the ARG space intractable for population 
divergence models. Second, data typically contain diffuse information about which ARGs 
are more likely.
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Generating functions
Statistical technique used  
to obtain the distribution of  
sums of random variables, as 
required in computation of the 
probability of genealogies 
given the parameters of an 
underlying model.

Haplotype
A DNA sequence that is 
inherited as a single unit in the 
absence of recombination.

Bottlenecks
Reductions in the size of 
populations owing to stochastic 
events or owing to colonization 
of new areas (founder events).

Ancestral recombination 
graphs
(ARGs). Graphs that represent 
the ancestral relationship of 
homologous DNA sequences 
sampled from a single or 
multiple populations. In models 
with gene flow, an ARG 
includes coalescent, migration 
and recombination events.

Another family of model-based methods approximates 
the likelihood as a sequence of conditional probabilities, 
with an additional term for each sequence that is added 
to a data set87. Such ‘product of approximate conditionals’  
(PAC) or so-called ‘copying model’ methods have been 
extended to numerous demographic models88,89, and 
finding better approximations has been an area of active 
research87,90,91 that is likely to continue.

Historical gene flow and LD patterns
Population geneticists have long known that the move-
ment of genes into a population can create strong pat-
terns of LD in the regions of the genome experiencing 
that gene flow41,92,93. However, it remains a challenge to 
take advantage of this phenomenon to infer the history 
of gene flow59,93,94. One approach to disentangle alterna-
tive divergence models, such as the ones shown in FIG. 1, 
is based on the distribution of haplotype block lengths95,96. 
The principle is that when a migrant enters a population, 
it carries a set of chromosomes that, as time goes by, are 
broken into smaller fragments owing to recombination 
(FIG. 4). The distribution of block lengths depends not 
only on the recombination rate but also on the frequency 
at which a given population receives immigrants, and 
the older the migration event, the shorter the blocks are 
expected to be. Thus, the distribution of block lengths 
should allow disentangling alternative scenarios. A simi-
lar idea has recently been used to separate a scenario 

of admixture from ancestral population structure in 
the case of Neanderthals and modern humans97. In this 
study, by focusing on a subset of the data, the decay of an 
LD statistic as a function of the genetic distance among 
SNPs in present day European genomes supported a 
model with gene flow from Neanderthals, which is esti-
mated to have occurred between 37,000 and 86,000 years 
ago. Other statistics have been proposed to detect more 
recent admixture events, which have mostly been 
applied to modern human populations98,99. Ideally, these 
statistics should be affected only by a specific factor, such 
as admixture. However, other demographic events (for 
example, bottlenecks) as well as selection can generate 
haplotype blocks41,100, and it is still unclear how sensi-
tive these LD statistics are to such events97. In principle, 
rather than looking at statistics of subsets of the data, a 
better description would be achieved with full-likelihood 
methods that express the probability of the entire data 
set under demographic models explicitly accounting for 
recombination and gene flow.

Likelihoods for models with recombination. Our abil-
ity to extract the information contained in LD patterns 
about migration and admixture relies on an explicit 
model of the process of recombination. However, obtain-
ing likelihoods under such models implies complex 
expressions that are difficult to solve or to approximate 
(BOX 3). Full-likelihood methods that jointly estimate 
demography and recombination rates that have been 
developed so far use a model with just a single popu-
lation101–103. Because of the difficulties of explicitly 
including intermediate levels of recombination (that is, 
neither zero recombination nor effectively free recom-
bination), most likelihood methods are limited to small 
segments of the data, as is typical with genealogy sam-
plers. Alternatively, the likelihood under simple single-
population models can be obtained for pairs of loci, as a 
function of the recombination rates, and inference pro-
ceeds assuming independence of the pairs of loci as in 
composite likelihood approaches104,105.

Among approaches that are being developed to 
include recombination in likelihood calculations are 
those based on the approximations of conditional like-
lihoods87,90,91. These methods seem promising, as these 
conditional distributions can be used to generate gene-
alogies and ancestral recombination graphs (ARGs) that 
are consistent with the data, which in turn can be used 
to compute likelihoods by importance sampling106. 
Another promising approach for models with recom-
bination for data from a small number of individuals 
(that is, three) but large numbers of loci is based on using 
generating functions for the underlying gene trees78.

A promising family of approaches treats recombina-
tion as a spatial process along the genome107,108. In this 
framework, the ancestry of each site is modelled by a 
gene tree that changes at points of recombination as one 
moves along the genome, as a function of the recombina-
tion rates and of some underlying demographic model.  
This has been implemented in hidden Markov mod-
els (HMMs) to estimate divergence times and ances-
tral effective sizes109,110 and to estimate population 

Figure 4 | Distinguishing migration events based on linkage disequilibrium block 
structure. Schematic representation of the expected distribution of the haplotype 
block lengths for an old migration event (a) and a recent migration event (b). The 
diagram shows two diverging populations that experience migration at some time in 
the past after the split and a zoom-in of what happens at the population that receives 
immigrant haplotypes. For simplicity, we assumed that all individuals share the same 
haplotype in the destination population (blue haplotype in the figure): that is,  
this haplotype has reached fixation. When a migrant haplotype (shown in red in the figure) 
enters a population, as times goes by, recombination breaks it into smaller fragments. 
Thus, blocks are expected to be shorter following an old migration event (a) than directly 
after a recent migration event (b), for which blocks are expected to be larger.
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Identity by descent
(IBD). Two haplotypes are 
identical by descent if they  
are identical copies of a 
haplotype that are shared 
between individuals within 
families and hence are 
assumed to be identical by 
descent.

size changes111 for data sets comprising a pair or trio 
of haploid genomes that are sampled from the same111 
or different populations109,110. The HMM framework 
is appealing as it allows obtaining likelihoods under 
complex models accounting for recombination and the 
correlation of genealogies of neighbouring sites. One 
main approximation is that coalescent times are treated 
in discrete time intervals rather than as a continuous 
variable. Recently, this was extended to models with 
gene flow followed by isolation112. For instance, look-
ing at 10 Mb segments from each chromosome12, the 
divergence between eastern gorillas (Gorilla beringei) 
and western gorillas (Gorilla gorilla) was estimated to 
involve a long period of continuous gene flow, since the 
split of the common ancestor (0.9–1.6 million years ago) 
until recently (80,000–200,000 years ago), after which 
gene flow ceased, fitting a model as depicted in FIG. 1c.

Finally, another promising avenue for further 
research is based on the distribution of haplotype block 
lengths as a function of immigration timing and rates96. 
This was implemented in a composite likelihood method 
based on the distribution of immigrant haplotype blocks 
(‘migrant tracts’; FIG. 4), which was shown to have power 
to infer changes in migration rates up to 1,000 genera-
tions ago in a simulation study96. One of the limitations 
of this approach is that it assumes that the migrant haplo-
type blocks can be correctly identified without error, 
which is difficult to achieve for species with reduced dif-
ferentiation. This approach has recently been extended 
to infer changes in migration rates through time95 and 
was applied to humans to infer changes in historical 
gene flow rates from Europe using admixed African–
American HapMap data. Other variations on this idea 
include methods that use summary statistics sensitive 
to LD97,113 and methods to detect tracts of identity by 
descent (IBD) for informing on rates of migration114. One 
example is the recent derivation of the expected length 
of IBD tracts under different demographic models using 

coalescent arguments115, showing that patterns of IBD 
in a sample of multiple individuals can be used to infer 
very recent demographic events (up to a few hundred 
generations ago). It is noteworthy that these models usu-
ally assume phased data, which are still difficult to obtain 
in practice (BOX 1).

Conclusions
Notwithstanding the difficulties of reference genome 
bias and phase uncertainty, population genomic data 
sets generated using NGS technologies offer tremen-
dous potential for discerning the speciation process. 
However, in the quest to understand population diver-
gence and speciation better, we wish to have theory and 
statistical methods that accommodate very large data sets 
and that connect the observed genomic patterns with rel-
evant historical events for complex models of divergence. 
Currently, the available tools do not take full advantage of 
population genomic data sets, although there are sophis-
ticated methods for taking a genome scan approach for 
particular aspects of the divergence process.

Going forwards, the greatest challenges on the theo-
retical and statistical side are to develop ways to include 
recombination fully in the analyses. Currently, AFS and 
genealogy-sampling approaches assume that different 
SNPs or loci are independently segregating, and other 
methods that take fuller account of recombination are 
restricted to smaller portions of the genome. NGS data 
have not yet changed our main paradigm of how popu-
lations diverge, but they have confirmed that natural 
selection is sometimes in conflict with gene exchange 
during the divergence process and that gene flow is a 
widespread process. We envision that great advances in 
population genomic inference will be achieved as com-
prehensive methods emerge for fully including recom-
bination in our divergence models, as these will allow 
investigators to use all of the relevant information in 
their NGS data.
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