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Abstract

Background: Previous studies have shown that the crystalline structure of cellulose is negatively correlated with
enzymatic digestibility, therefore, pretreatment is required to break down the highly ordered crystalline structure in
cellulose, and to increase the porosity of its surface. In the present study, an organic electrolyte solution (OES)
composed of an ionic liquid (1-allyl-3-methylimidazolium chloride ([AMIM]Cl)) and an organic solvent (dimethyl
sulfoxide; DMSO) was prepared, and used to pretreat microcrystalline cellulose for subsequent enzymatic hydrolysis;
to our knowledge, this is the first time that this method has been used.

Results: Microcrystalline cellulose (5 wt%) rapidly dispersed and then completely dissolved in an OES with a molar
fraction of [AMIM]Cl per OES (c [AMIM]Cl) of greater than or equal to 0.2 at 110°C within 10 minutes. The cellulose
was regenerated from the OES by precipitation with hot water, and enzymatically hydrolyzed. As the c [AMIM]Cl of
the OES increased from 0.1 to 0.9, both the hydrolysis yield and initial hydrolysis rate of the regenerated cellulose
also increased gradually. After treatment using OES with c [AMIM]Cl of 0.7, the glucose yield (54.1%) was 7.2 times
that of untreated cellulose. This promotion of hydrolysis yield was mainly due to the decrease in the degree of
crystallinity (that is, the crystallinity index of cellulose I).

Conclusions: An OES of [AMIM]Cl and DMSO with c [AMIM]Cl of 0.7 was chosen for cellulose pretreatment because
it dissolved cellulose rapidly to achieve a high glucose yield (54.1%), which was only slightly lower than the value
(59.6%) obtained using pure [AMIM]Cl. OES pretreatment is a cost-effective and environmentally friendly technique
for hydrolysis, because it 1) uses the less expensive OES instead of pure ionic liquids, 2) shortens dissolution time,
3) requires lower energy for stirring and transporting, and 4) is recyclable.

Background
Renewable lignocellulosic biomass is the most abundant
organic material on the earth, and has been widely used
as sustainable raw material for the production of bio-
fuels and platform chemicals [1]. Enzymatic saccharifica-
tion is considered as one of the most promising ways to
break down lignocellulosic material into sugars for fer-
mentation and chemical conversion [2]. Previous studies
have shown that the degree of crystallinity of lignocellu-
losic biomass, which is related to the crystalline struc-
ture of the cellulose component, is negatively correlated

with enzymatic digestibility [3]. Therefore, pretreatment,
serving as the first step in the saccharification of bio-
mass, is required to break down the highly ordered crys-
talline structure of cellulose [4], and to increase the
porosity of its surface [5].
A number of conventional approaches have been

widely used for pretreatment, including physical (for
example, grinding, ball-milling, and irradiation), chemi-
cal (involving use of, for example, alkalis, dilute acids,
oxidizing agents, and organic solvents), physicochemical
(for example, steam explosion, ammonia-fiber explosion,
hydrothermolysis, and wet oxidation), and biological
pretreatment methods, and combinations of these [5].
Recently, ionic liquids (ILs) have been successfully used
to dissolve cellulose at room temperature, to form IL +
cellulose solutions [6-8]. The structure of cellulose
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regenerated from these solutions by precipitation was
essentially amorphous and porous, which made the sub-
sequent enzymatic hydrolysis more efficient [8-11]. ILs
are non-volatile with a low vapor pressure, and can be
easily separated by distillation or condensation [12]. Pre-
treatment with ILs is considered an environmentally
friendly alternative to conventional pretreatment meth-
ods [13]. Although pretreatment with ILs is a viable
method, it faces three major challenges [14,15]: 1) the
slow rate of dissolution within these liquids [16] means
that it takes a long time for complete dissolution of the
biomass; 2) the high viscosity of the solutions [17]
causes agglomeration of cellulose and a resulting high
consumption of energy for stirring; and 3) the high cost
of ILs [15] makes them uneconomic for commercial use.
To overcome these drawbacks, Sui et al. prepared a

homogeneous cellulose solution by adding N,N-
dimethylformamide (DMF) into a 1-allyl-3-methylimida-
zolium chloride;([AMIM]Cl). Additional DMF compo-
nent reduced the viscosity of the whole solvent at room
temperature [18]. Luo et al. reported that mixtures com-
posed of dipolar aprotic intercrystalline swelling agents
(for example, acetone, dioxane, pyridine, N-oxide, N-
methyl pyridine, and hexamethylphosphoramide), and
ILs can also dissolve wood pulp [19]. Rinaldi developed
a series of solvent systems called ‘organic electrolyte
solutions’ (OESs), which contained a polar aprotic sol-
vent (for example, DMF, N,N-dimethylacetamide, 1, 3-
dimethyl-2-imidazolidinone, and dimethyl sulfoxide
(DMSO)) and only a small molar fraction of ILs; these
solutions had a strong ability to dissolve cellulose
quickly [15]. Because of their potential novel properties,
OESs might be useful, environmentally friendly, and
cost-saving solvents for pretreatment. However, no
study has yet been performed to characterize and hydro-
lyze OES-pretreated cellulose.
The objective of this study was to evaluate the pre-

treatment effectiveness of dissolution and subsequent
regeneration of cellulose in an OES for enzymatic
hydrolysis. Therefore, we set out to: 1) design a simple
OES system using ([AMIM]Cl and DMSO) for cellulose
dissolution; 2) monitor the physical changes in the
regenerated cellulose that was precipitated by hot water
from the cellulose + OES mixture at different molar
fractions of [AMIM]Cl/OES (c [AMIM]Cl), and 3) deter-
mine the hydrolysis rate and the yield of the cellulose
after regeneration.

Results and discussion
In total, 22 cellulose samples pretreated with OES at
various molar fractions (c [AMIM]Cl from 0 to 1.0) were
enzymatically hydrolyzed (396 runs) for different times
(from 3 to 72 hours). Enzymatic hydrolysis of the
untreated cellulose (36 runs), and cellulose pretreated

only with hot water (36 runs) was also conducted for
comparison.

Viscosity of organic electrolyte solutions
The parameters of the Vogel-Fulcher-Tammann (VFT)
and Arrhenius models were estimated by fitting the
reported viscosity data [20,21] (Table 1). Based on these
models, the calculated viscosities of pure [AMIM]Cl (c
[AMIM]Cl = 1.0) and pure DMSO (c [AMIM]Cl = 0) were
16.35 and 0.61 cP at 110°C, respectively. Based on the
Grunberg-Nissan mixing law, the viscosity of the OES
preparations with c [AMIM]Cl from 0.1 to 0.9 (in steps of
0.1) was calculated as 0.85, 1.18, 1.64, 2.27, 3.16, 4.39,
6.10, 8.47, and 11.77 cP, respectively, at the dissolution
temperature of 110°C. Compared with pure [AMIM]Cl,
the OES had a lower viscosity because of the additional
DMSO component. This could be an advantage as it
may avoid agglomeration during rapid dispersing of cel-
lulose in the OES. Moreover, a practical flow-process
system can be easily used with the low-viscosity OES to
pretreat cellulose, which could save energy in pipeline
transport and stirring the samples.

Cellulose dissolution and regeneration
The cellulose solutions and OES were prepared by stir-
ring the mixturs of crystalline cellulose and OES at 110°
C (detailed pretreatment conditions are summarized in
Table 2). The cellulose dispersed instantaneously, and
rapidly dissolved within 10 minutes in OES with c
[AMIM]Cl of 0.2 to 0.9. However, large amounts of cellu-
lose were suspended at low c [AMIM]Cl values (that is, 0
and 0.1), and agglomerated at the high value (c [AMIM]Cl

of 1.0) because of the high viscosity of pure [AMIM]Cl.
To ensure all the cellulose was completely dissolved, all
mixtures were stirred for another 50 minutes. With
pure DMSO (c [AMIM]Cl = 0), there was still precipita-
tion of crystalline cellulose at the bottom of the tube
after 60 minutes of mixing (Figure 1a), indicating that
the cellulose was insoluble in pure DMSO. When the c
[AMIM]Cl was increased to 0.1, the precipitated sample
disappeared, but the mixture was totally opaque, owing
to the formation of cellulose colloidal granules. As c

Table 1 Estimated parameters for Vogel-Fulcher-
Tammann (VFT) and Arrhenius models (equations
4 and 5)

Model c2 R2 Parameter Value Error

VFT 7.95 0.99 K 0.17 0.073

Θ 56.27 5.86

B 762.53 86.79

Arrhenius 0.0005 0.99 A 0.010 0.012

E -35.88 379.97

R -0.023 0.23
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[AMIM]Cl increased further, the mixtures gradually
cleared, and at c [AMIM]Cl ≥ 0.3, the mixtures were
totally transparent because the cellulose had completely
dissolved in the OES.
It has been reported previously [13,22] that cellulose

solubility in pure [AMIM]Cl was less than 0.18 (w/v) or

0.17 (w/w). In the present study, we found that when c
[AMIM]Cl was equal to 0.1, 0.2, and 0.3, the weight ratio
of (cellulose/[AMIM]Cl) in the OES was approximately
0.27, 0.15, and 0.11 (w/w), respectively (Table 2). When
the weight ratio of (cellulose/[AMIM]Cl) in the OES
was equal to 0.27 (> 0.17), the cellulose did not dissolve,
but rather swelled (Figure 2b). Therefore, there was no
evidence that DMSO promoted cellulose dissolution in
the OES.
Zhang et al. proposed a dissolution mechanism of cel-

lulose in pure [AMIM]Cl, suggesting that the free Cl-

anions associate with cellulose hydroxyl protons and the
free cations complex with the cellulose hydroxyl oxy-
gens, leading to the disruption of hydrogen bonding in
the cellulose and its consequent dissolution [23]. DMSO
is unable to donate cations and anions, so it has no
positive effect in promoting cellulose dissolution. There-
fore, in the OES dissolution system, a lower concentra-
tion of [AMIM]Cl with fewer Cl- anions and cations had
a reduced ability to destroy the cellulose crystal struc-
ture for dissolution.
The dissolution ability of cellulose in the OES can also

be interpreted by the hydrogen bond-accepting ability
(basicity) of the system, as measured by the Kamlet-Taft
parameter b [15,24]. A system with a higher b value
represents a higher hydrogen bond-accepting ability,
which can significantly reduce the crystallinity of

Table 2 Composition of the organic electrolyte solution
(OES) and weight ratio of cellulose per ionic liquid (IL) a

c [AMIM]

Cl
c

Weight, g Weight ratio of cellulose/IL, g/
g

IL DMSO Celluloseb

0 0 3 0.15 N/A

0.1 0.553 2.447 0.15 0.271

0.2 1.01 1.99 0.15 0.149

0.3 1.396 1.604 0.15 0.107

0.4 1.725 1.275 0.15 0.087

0.5 2.01 0.99 0.15 0.075

0.6 2.258 0.742 0.15 0.066

0.7 2.478 0.523 0.15 0.0605

0.8 2.746 0.254 0.15 0.0546

0.9 2.884 0.156 0.15 0.052

1.0 3 0 0.15 0.05
aWeight ratio of cellulose/IL = (gram of cellulose added in the OES)/(gram of
1-allyl-3-methylimidazolium chloride ([AMIM]Cl)/in the OES).
bWeight percentage of (cellulose/(IL + dimethylsulfoxide)) = 5%.
cMolar fraction of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl)/OES.

(a)

(b)

(c)

[AMIM]Cl = 0     0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9    1.0
Figure 1 Images of dissolved and regenerated cellulose. (a) Dissolved cellulose in organic electrolyte solution (OES), (b) cellulose regenerated
by hot water, and (c) precipitation of the regenerated cellulose after washing five times with water. The molar fraction of 1-allyl-3-
methylimidazolium chloride ([AMIM]Cl)/OES (c [AMIM]Cl) is from 0 to 1.0. (a, b) Magnetic bars are present at the bottom of the tubes.
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cellulose for dissolution [25]. According to this theory,
because [AMIM]Cl has a higher b parameter than
DMSO, as the DMSO fraction decreased (that is, the c
[AMIM]Cl increased from 0 to 1.0), the solubility of cellu-
lose in the OES increased as a result of the increase in
the hydrogen bond-accepting ability in the system.
After regeneration using water (an anti-solvent), the

cellulose became swollen at c [AMIM]Cl = 0.1, whereas
no cellulose gel was formed until the c [AMIM]Cl reached
0.3 (Figure 1b). When c [AMIM]Cl was increased from 0.3
to 1.0, the gel became gradually more agglomerated and
transparent. The regenerated cellulose was washed five
times with hot water to remove the OES before hydroly-
sis. After washing (Figure 1c), the crystalline cellulose
particles still remained and were suspended at c [AMIM]

Cl of 0 and 0.1, but they became gel-formed cellulose
blocks and precipitated out of solution at c [AMIM]Cl of
0.2 to 1.0. At c [AMIM]Cl of greater than or equal to 0.2,
the cellulose solubility in the OES increased as a result
of the reduction in the parameter b (interference of
[AMIM]Cl by DMSO). This phenomenon can also be
seen in the micrographs of the regenerated cellulose
(Figure 2a-k), in which the regenerated cellulose is seen

to be amorphous at c [AMIM]Cl of greater than or equal
to 0.2.
The recovery rate of cellulose regenerated from the

OES at different values of c [AMIM]Cl was assessed
(Figure 3), and clearly indicated there was no significant
difference between the recovery rates (P = 0.3229) at c
[AMIM]Cl from 0 to 1.0. The average recovery rate was
95.37 ± 1.41%. Additionally, c [AMIM]Cl had a slight but
insignificant effect on the recovery rate (r = 0.14, P =
0.68). This loss of cellulose was mainly due to some tiny
cellulose particles being suspended in water during
washing, which were difficult to recover.

Degree of crystallinity
The crystal structures of the cellulose had a strong
influence on its hydrolysis kinetics [26]. The crystallinity
of the cellulose regenerated from the OES was studied
by X-ray diffraction (XRD) analysis. The XRD patterns
of untreated microcrystalline cellulose and celluloses
regenerated from the OES at c [AMIM]Cl from 0 to 1.0
showed distinct peaks with diffraction angles (2θ) at
around 22.6, 20.3, 16.3, and 14.9 degrees for the
untreated cellulose (Figure 4), indicating that its crystal

(a)                                (b)                          (c)                              (d)

(e)                                (f)                          (g)                               (h)

(i)                                (j)                          (k)

60μm                           60μm 60μm 60μm

60μm                           60μm 60μm 60μm

60μm                           60μm 60μm

Figure 2 Micrographs of cellulose after regeneration from the organic electrolyte solution (OES). (a) Untreated cellulose, and (b-k)
cellulose pretreated with OES at different values of c [AMIM]Cl (molar fraction of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl)/OES): (b) 0.1, (c)
0.2, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.6, (h) 0.7, (i) 0.8, (j) 0.9, (k) 1.0.
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structure consisted of celluloses I and II [26]. After dis-
solution in the OES and subsequent precipitation with
ho water, the peak intensities at around 22.6, 16.3, and
14.9 degrees began to decrease gradually, due to the
reduction in crystalline cellulose I in the precipitated
cellulose. At c [AMIM]Cl of 0.5, the XRD pattern began to
flatten because of the presence of the more amorphous
cellulose I. As c [AMIM]Cl increased from 0 to 1, the
crystallinity index (CI; represents the percentage of crys-
talline components in the cellulose sample) of cellulose
I decreased from 0.834 to -0.319, whereas the CI of cel-
lulose II changed little (Table 3), indicating that the
crystalline structure of cellulose I was gradually
destroyed as the c [AMIM]Cl rose.
It has been reported that cellulose I is much more

resistant to hydrolyzation than cellulose II or amor-
phous cellulose [27,28], therefore the enhancement in
hydrolysis rate and yield of regenerated cellulose in the
following hydrolysis procedure was due to the presence
of more amorphous cellulose I in the restructured cellu-
lose after pretreatment. There was a strong negative lin-
ear correlation between the CI of the regenerated
cellulose and the c [AMIM]Cl, with a correlation coeffi-
cient of 0.98 (Figure 5). Previous studies have developed

several methods to prepare certain crystal forms of cel-
lulose with different degrees of crystallinity. For exam-
ple, the cellulose structure can be reformed by simply
pouring cellulose + IL solution into a precipitation
agent, or by adding the precipitation agent into the cel-
lulose + IL solution [29,30]. In this study, we have iden-
tified another efficient method to prepare cellulose with
controlled CI, using dissolution in OES and precipita-
tion with hot water.

Surface area and degree of polymerization
Besides crystallinity, the enzymatic hydrolysis of ligno-
cellulose is influenced by other factors, such as available
surface area, degree of polymerization (DP), moisture
content, and lignin content [31]. To examine the effects
of surface area and DP on enzymatic hydrolysis, the
Bruner, Emmett, and Teller (BET) method and the
photocolorimetric method developed by Zhang and
Lynd [32] were used to determine the specific surface
area and the number-average DP (DPn), respectively.
The specific surface area of the cellulose regenerated
from the OES at different c [AMIM]Cl values from 0 to
1.0 (with steps of 0.1), was, respectively, 1.48, 1.94, 1.94,
1.53, 2.76, 2.10, 1.83, 1.75, 1.64, 1.90, and 2.04 times

0       0.1    0.2      0.3     0.4     0.5     0.6     0.7     0.8      0.9     1.0
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Figure 3 Recovery rate of the regenerated cellulose pretreated with organic electrolyte solution (OES) at different values of c [AMIM]Cl

(molar fraction of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl)/OES).
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that of the untreated cellulose (Table 3), indicating that
the pretreatment could enhance the specific surface area
of cellulose. Furthermore, no close relationship was
found between c [AMIM]Cl and specific surface area (r =
0.49, P = 0.13).
Compared with untreated cellulose, the DP of the

regenerated cellulose had a slight but insignificant
increase (P = 0.65), which indicated that cellulose pre-
treated with OES resulted in little degradation. It has
been reported that some pretreatment methods such as
acid hydrolysis (even with dilute acid) resulted in signifi-
cant decomposition of polysaccharides, which led to
lower recovery of pretreated biomass [12]. Using the
OES pretreatment, there was little cellulose decomposi-
tion, and hence a higher recovery rate of regenerated
cellulose (95.37 ± 1.41%).

Enzymatic hydrolysis of regenerated cellulose
Because hot water has been used previously as a pre-
treatment method [33], we needed to investigate

whether the hot-water rinsing of the regenerated cellu-
lose contributed to the enhancement of enzymatic
hydrolysis rather than OES dissolving. Hydrolysis tests
(468 runs) were conducted for 3, 6, 9, 12, 24, 48, and 72
hours for the untreated (36 runs), hot-water-treated (36
runs), and regenerated (pretreated with the OES; 396
runs) cellulose samples (Figure 6, Table 4). We then
compared the rate retardation constant (k) and initial
hydrolysis rate (v0) between untreated and hot-water-
treated cellulose, and found that, similar to the previous
work [33], hot-water rinsing of regenerated cellulose
enhanced enzymatic hydrolysis (P < 0.05). To control
for the influence of hot-water rinsing, its hydrolysis data
were used as a blank reference for the comparison with
those of the OES-pretreated cellulose (Table 4).
Similar to results from previous studies [9,10,22,26],

the enzymatic hydrolysis yield for the cellulose samples
pretreated with pure [AMIM]Cl (c [AMIM]Cl = 1.0) was
significantly increased; the highest hydrolysis yield was
59.6% after 72 hours, which was 6.9 times that of the
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Figure 4 X-ray diffraction (XRD) patterns of cellulose with and without pretreatment. (a) Untreated microcrystalline cellulose, and (b-k)
cellulose pretreated with organic electrolyte solution (OES) at different values of c [AMIM]Cl (molar fraction of 1-allyl-3-methylimidazolium chloride
([AMIM]Cl)/OES): (b) 0, (c) 0.1, (d) 0.2, (e) 0.3, (f) 0.4, (g) 0.5, (h) 0.6, (i) 0.7, (j) 0.8, (k) 0.9, (l) 1.0.
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hot-water-treated cellulose and 7.9 times that of the
original cellulose. Our results clearly showed that after
pretreatment with OES at c [AMIM]Cl from 0.2 to 1.0, the
hydrolysis yield improved gradually. Additionally, no sig-
nificant change was found for hydrolysis yield (54 to
59.6%) at c [AMIM]Cl = 0.7 to 1.0 (P = 0.21) after 72
hours, thus indicating that DMSO had little negative
effect on hydrolysis yield when c [AMIM]Cl was greater
than or equal to 0.7.
Regression analysis of the experimental hydrolysis

yield was performed based on the empirical equation
proposed by Ohmine et al. [34]. The initial hydrolysis
rate (v0) was enhanced as c [AMIM]Cl increased from 0 to
1.0 (Figure 7b, Table 5). At the same time, the rate
retardation constant (k) had a tendency to decline
(Figure 7a, Table 5). The initial hydrolysis rate of the
cellulose pretreated at c [AMIM]Cl from 0 to 1.0 (with
steps of 0.1) was, respectively, 1.00, 1.00, 2.48, 3.52, 3.40,
5.00, 3.68, 4.88, 5.48, 4.8, and 4.56 times that of the hot-
water-treated cellulose. Meanwhile, the corresponding k
value was, respectively, 1.00, 0.89, 0.44, 0.22, 0.11, 0.17,
0.06, 0.11, 0.11, 0.11, and 0.06 times. These results

Table 3 Effect of c [AMIM]Cl
a on the structure features of

untreated cellulose, and pretreated cellulose regenerated
from organic electrolyte solution (OES)

c [AMIM]Cl Crystallinity Specific
surface area,
m2/g

bDPn

CI cellulose I CI cellulose II

Untreated 0.80 0.39 2.28 125 ± 1

0 0.83 0.24 3.38 135 ± 26

0.1 0.83 0.29 4.43 130 ± 15

0.2 0.73 0.23 4.43 137 ± 22

0.3 0.67 0.31 3.49 141 ± 24

0.4 0.47 0.26 3.68 148 ± 15

0.5 0.25 0.23 4.80 133 ± 7

0.6 0.22 0.29 4.18 126 ± 0

0.7 0.008 0.28 3.99 146 ± 19

0.8 -0.03 0.36 3.75 127 ± 13

0.9 -0.14 0.33 4.34 155 ± 0

1.0 -0.32 0.26 4.65 129 ± 19
aMolar fraction of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl)/OES.
bData were based on two independent experiments.
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Figure 5 Correlation of crystallinity index of regenerated cellulose pretreated with organic electrolyte solution (OES) at different
values of c [AMIM]Cl (molar fraction of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl)/OES).

Tian et al. Biotechnology for Biofuels 2011, 4:53
http://www.biotechnologyforbiofuels.com/content/4/1/53

Page 7 of 14



showed that after pretreatment with OES, the increase
in enzymatic hydrolysis yield was not only due to the
increase in initial hydrolysis rate but also to the decline
in the rate retardation constant. There were no signifi-
cant difference in v0, and k values at c [AMIM]Cl 0.7 to
1.0 (Table 5). When c [AMIM]Cl was greater than or
equal to 0.7, a further increase in [AMIM]Cl had little
effect on hydrolysis yield.
Based on the XRD, BET, and DP results, hydrolysis

yield rose gradually as c [AMIM]Cl increased from 0.2 to
1.0, which was due to the decline in crystallinity of the
cellulose I component rather than to changes in specific
surface area or DP, as these changed little and the
change was irregular.
A large surface area assists the cellulase in accessing

the cellulose for hydrolysis. However, at low values of c
[AMIM]Cl (0 and 0.1), the specific surface area was
enhanced (respectively, 1.48 and 1.94 times that of
untreated cellulose), but the hydrolysis yield increased lit-
tle (Table 3 Table 4). This may be because the pretreated
cellulose still had a highly crystalline structure, which
played a more important role in hydrolysis than surface
area.

A higher hydrolysis rate and yield were correlated with
lower DP cellulose, which had more reducing ends of
cellulose available to provide more sites for the exocellu-
lase to begin cleavage [26]. However, no enhanced per-
formance of hydrolysis was found in this study, because
the DP changed little (Table 3).
OES has the ability to dissolve cellulose at c [AMIM]Cl

of greater than or equal to 0.2. Compared with conven-
tional ILs, the low viscosity of OES promotes cellulose
dispersion, and inhibits its agglomeration at a relative
low temperature. Thus, an OES with low viscosity can
be used to process cellulose continuously in a flow sys-
tem for industrial applications. Taking into considera-
tion the cost of the solution and the resulting hydrolysis
yield, an OES with c [AMIM]Cl of 0.7 was chosen as the
ideal solvent for cellulose pretreatment. The viscosity
was only 37% that of pure [AMIM]Cl, and the glucose
yield (54.08 ± 3.46%) was 7.2 times that of untreated
cellulose after 72 hours of hydrolysis.

Economic advantages
The economic benefits of OES pretreatment include: 1)
reduced costs of IL (for example, 70% [AMIM]Cl), 2) less
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Figure 6 Hydrolysis yield in 0, 3, 6, 12, 24, 48, and 72 hours for untreated cellulose, and cellulose pretreated with hot water and
organic electrolyte solution at different values of c [AMIM]Cl (molar fraction of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl)/OES).
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Table 4 Effect of c [AMIM]Cl
Ia on the enzymatic hydrolysis yield of pretreated cellulose by organic electrolyte solution (OES).

Time,
hours

Hydrolysis yield (%) at different values of c [AMIM]C
lb

Untreated
cellulose

Hot-water 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3 1.28 ± 0.17d, e 0.78 ± 0.07e 0.85 ± 0.075e 0.91 ± 0.21e 2.22 ± 0.28d 3.04 ± 0.27c 3.02 ± 0.20c 3.34 ± 0.38b, c 3.17 ± 0.40c 4.15 ± 0.56a 3.81 ± 0.13a 3.63 ± 0.49a.b 3.62 ± 0.30ab

6 1.88 ± 0.19cd 1.03 ± 0.12e 1.33 ± 0.04e 1.41 ± 0.23d, e 3.22 ± 0.47c 5.13 ± 0.49b 5.24 ± 0.33b 6.77 ± 0.42a 5.64 ± 0.54b 7.40 ± 0.75a 7.35 ± 0.29a 7.01 ± 1.27a 7.06 ± 0.60a

12 2.49 ± 0.38f 2.68 ± 0.11f 2.5 ± 0.12f 2.51 ± 0.33f 5.98 ± 0.49e 8.74 ± 0.75d, e 10.02 ± 0.55c, d 13.88 ± 2.12b 10.85 ± 0.62c 13.9 ± 1.68a, b 14.86 ± 0.7a 13.57 ± 2.27a.b 13.62 ± 0.84a.b

24 3.96 ± 0.30f 4.09 ± 0.12f 4.02 ± 0.27f 4.03 ± 0.38f 9.53 ± 0.44e 15.05 ± 1.63d 16.48 ± 0.97d 22.35 ± 3.53b 18.29 ± 1.17c 23.18 ± 2.78a, b 24.79 ± 0.77a 23.07 ± 2.85a.b 23.53 ± 1.41a.b

48 5.76 ± 0.60g 6.69 ± 0.39g 6.28 ± 0.47g 6.62 ± 0.64g 14.49 ± 0.37f 24.18 ± 2.1e 27.43 ± 1.64e 36.69 ± 5.03c 30.98 ± 1.47d 39.81 ± 3.57b 44.34 ± 2.43a 39.38 ± 4.5b 43.19 ± 2.6a, b

72 7.50 ± 0.87f 8.62 ± 0.70f 8.12 ± 1.07f 8.52 ± 1.22f 18.87 ± 0.76e 31.45 ± 2.92d 38.76 ± 4.37c 47.51 ± 5.77c 43.5 ± 3.1c 54.08 ± 3.46ab 53.03 ± 8.92a, b 53.23 ± 5.84b 59.57 ± 6.07a

laMolar fraction of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl)/OES.
lbIn total, 468 runs were conducted. The data in each cell are based on six runs from two parallel experiments, each of which gave three parallel tests, respectively. Mean values with the same superscript letters on the
same horizontal row are not significantly different. The 95% confidence level was set at P < 0.05.
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energy required for stirring and transporting of the mix-
ture, owing to the low viscosity of the OES, 3) higher
throughput because of the shortened dissolution time, and
4) environmental benefits from the reduction of gas,

water, and solid wastes. For industrial use, the OES needs
to be separated from the anti-solvent (water) for recycling,
which can be achieved easily using commercial distillation
technology at reduced pressure [35]. Additionally, some
new technologies, such as nanofiltration, reverse osmosis,
and pervaporation [36], three-phase system precipitation
[37], and supercriticalCO2 extraction [35,36] have poten-
tial applications in recycling of OES.

Conclusions
We describe a new method for pretreatment of cellu-
lose, using an OES dissolution system composed of an
IL ([AMIM]Cl) and an organic solvent (DMSO) to
improve the rate and yield of subsequent enzymatic
hydrolysis. This OES has the ability to dissolve 5 wt%
microcrystalline cellulose in a very short time (≤ 10
minutes) at 110°C with c [AMIM]Cl of greater than or
equal to 0.2. After pretreatment with OES with c [AMIM]

Cl of 0.7, the crystallinity (cellulose I) decreased by 99%.
The initial hydrolysis rate and glucose yield in 72 hours
were, respectively, 3 and 7.2 times that of untreated cel-
lulose. The hydrolysis yield was similar to pretreatment
with the pure ILs [AMIM]Cl. The promotion of hydro-
lysis was due to the sharp decline in crystallinity rather
than to changes in the specific surface area or DP of cel-
lulose after pretreatment. Further studies are underway
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Figure 7 Influence of at different values of c [AMIM]Cl (molar fraction of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl)/OES) on (a)
rate retardation constant (k), and (b) initial hydrolysis rate (v0) for enzymatic hydrolysis of cellulose with and without pretreatment.

Table 5 Kinetics parameters of enzymatic hydrolysis of
cellulose pretreated with organic electrolyte solution
(OES) at different values of c [AMIM]Cl

Ia [34]

c [AMIM]Cl v0
Ib kIb R2

Untreated 0.41 ± 0.06c 0.38 ± 0.05a 0.99

Hot water 0.25 ± 0.04c 0.18 ± 0.08b 0.99

0 0.25 ± 0.01c 0.18 ± 0.01b 0.99

0.1 0.25 ± 0.01c 0.16 ± 0.01b 0.99

0.2 0.62 ± 0.04c 0.08 ± 0.01b, c 0.99

0.3 0.88 ± 0.03b 0.04 ± 0.002c, d 0.99

0.4 0.85 ± 0.06b 0.02 ± 0.003e 0.99

0.5 1.25 ± 0.02a 0.03 ± 0.0006d 0.99

0.6 0.92 ± 0.05b 0.01 ± 0.003e, f 0.99

0.7 1.22 ± 0.05a 0.02 ± 0.002e, f 0.99

0.8 1.37 ± 0.02a 0.02 ± 0.0005e, f 0.99

0.9 1.20 ± 0.04a 0.02 ± 0.001e, f 0.99

1.0 1.14 ± 0.03a 0.01 ± 0.001f 0.99
IaMolar fraction of 1-allyl-3-methylimidazolium chloride ([AMIM]Cl)/OES.
IbThe data in each cell are based on six runs from two parallel experiments,
each of which gave three parallel tests, respectively. Mean values with the
same superscript letters on the same horizontal row are not significantly
different. The 95% confidence level was set at P < 0.05.
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to examine recycling of the OES, and the integration of
microwave and ultrasonic irradiation in the OES pre-
treatment to improve the effectiveness of this process.

Methods
Preparation of the organic electrolyte solution
The molar fraction c [AMIM]Cl was defined as:

χ[AMIM]Cl =
Mole of [AMIM]Cl

Mole of [AMIM]Cl + mole of DMSO
(1)

where c [AMIM]Cl at 0 and 1.0 represent the pure
DMSO and pure [AMIM]Cl solvents, respectively.
[AMIM]Cl (99% purity; Shanghai Chengjie Chemical
Co. Ltd, Shanghai, China) was dried in a blast drier
(Yuhua DHG, Gongyi, Henan, China) at 90°C for 72
hours before use, and the OES was prepared by mixing
the dried [AMIM]Cl with DMSO (99.5% purity; Shantou
Xilong Chemical Co. Ltd, Guangdong, China) at differ-
ent molar fractions (c [AMIM]Cl) from 0.1 to 0.9 at room
temperature (Table 2).

Cellulose dissolution and regeneration
Microcrystalline cellulose (99% purity, particle size 100
μm, density 0.3 g/mL; BioBasic Inc., Shanghai, China)
was dried in an oven at 60°C for 24 hours before use. A
suspension of cellulose in OES was prepared by adding
0.15 g (5 wt%) of the microcrystalline cellulose into a
20-mL glass-stoppered test tube containing 3.0 g of
OES, with a magnetic bar. The tube was placed in an oil
bath with magnetic stirrer at 110°C for 60 minutes and
200 rpm to form the cellulose solution. The regenerated
cellulose was precipitated in the tubes by adding 15 mL
deionzed water at 90°C, and vigorously shaking the tube
for 10 seconds. The precipitated cellulose was trans-
ferred into a beaker with 50 mL fresh deionized water
at 70°C, and washed thoroughly with five changes of
deionized water to remove the residual solvent. The cel-
lulose was freeze-dried for 12 hours (Eyela 1200 freeze
dryer; Tokyo Rikakikai Co, Ltd, Tokyo, Japan), then the
recovered cellulose was weighed and used for subse-
quent enzymatic hydrolysis. The recovery rate of cellu-
lose was defined as:

Recovery rate of cellulose (% ) =
Mass of recovered cellulose(g)

0.15g
× 100 (2)

The reported data are the mean of three replicates.

Micrographs of cellulose samples
Micrographs were taken of the untreated and regener-
ated cellulose samples to evaluate any morphological
changes in the cellulosic microstructures after OES pre-
treatment. Cellulose samples (1‰ w/w) were suspended

in deionized water on labeled glass microscope slides,
then digital photomicrographs were taken using a
stereomicroscope (SMZ 1500; Nikon, Tokyo, Japan).

Crystallinity measurement
CI was determined by diffracted intensity of Cu radia-
tion (1.54 Å, 40 kV, and 200 mA) using an X-ray dif-
fractometer (TTR III; Rigaku, Tokyo, Japan). Each
sample (80 mg) was pressed into a lamellar container 20
mm in diameter, and scanned at 10 degrees/min in a
range of 2θ values from 5 to 45 degrees. CI was calcu-
lated by the empirical equation:

CI =
ICr − IAm

ICr
(3)

where ICr is the average intensity of crystalline region
at 2θ of 22.56 to 22.65 degrees for cellulose I or 21.66
to 21.75 degrees for cellulose II; and IAm represents the
average intensity of the amorphous region at 2θ of 18.96
to 19.05 degrees for cellulose I, or 15.96 to 16.05
degrees for cellulose II [26].

Viscosity of organic electrolyte solutions
Based on the viscosity data of pure [AMIM]Cl, and
DMSO from [20,21], the viscosity (h)for [AMIM]Cl and
DMSO versus temperature was studied by fitting the
VFT equation (equation 4), and Arrhenius model (equa-
tion 5), respectively, using Origin software (version 7.5;
OriginLab Co. Ltd, Northampton, MA) [38,39]. The
equations were as follows.

VFT equation : η (t) = K exp [
b

t + �
] (4)

where h(t) is the viscosity of [AMIM]Cl, t is tem-
perature (°C); and K, b, and Θ are the coefficients
(Table 1).

Arrhenius model : η (T) = A exp (
E

RT
) (5)

where h(T) is the viscosity for DMSO, T is absolute
temperature (K), A is a coefficient, E is the activation
energy, and R is the universal gas constant (Table 1).
The viscosity of the OES at different values of c

[AMIM]Cl at the dissolution temperature (110°C) was cal-
culated according to the Grunberg-Nissan mixing law
[40]:

lnηmix =
n∑

i=1
xi ln ηi (6)

where hmix is viscosity of the OES; xi, and hi are mole
fraction, and viscosity of component i.
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Number-average degree of polymerization (DPn) of
cellulose
DPn of the cellulose sample was calculated as [32]:

DPn =
glucosyl monomer concentration

reducing - end concentration
(7)

The glucosyl monomer and reducing-end concentra-
tions were measured by the phenol-sulfuric acid [41]
and modified 2,2’-bicinchoninate methods [32], respec-
tively. The samples were performed in triplicate.

Measurement of specific surface area
The specific surface area of cellulose was determined by
the BET method using gas adsorption (Tristar II 3020;
Micromeritics Instrument Co. Ltd, Northcross, GA,
USA). Samples were degassed at 100°C for 3 hours
before analysis. Nitrogen with a relative pressure of 0.05
to 0.985 was used for the analyses.

Enzymatic hydrolysis and glucose concentration
Enzymatic hydrolysis of cellulose was carried out with a
substrate concentration of 0.4% (0.04 g) in a 50 mL
Erlenmeyer flask containing 9.96 mL sodium citrate (50
mmol/L, pH 4.8) reaction buffer with Trichoderma ree-
sei cellulase (2 mg powder per gram of cellulose; > 30
filter paper units (FPU)/mg powder; Bomei Biotech Co.
Ltd, Heifei, Anhui, China), and Aspergillus niger cello-
biase (Novozyme 188; Sigma-Aldrich, St Louis, MO,
USA), a b-glucosidase enzyme (0.256 g solution per
gram cellulose, giving an approximate b-glucosidase
activity of 250 pNGU per gram solution. pNGU is
defined as the number of μmol of p-nitrophenol pro-
duced per minute with p-nitrophenyl-b-D-glucopyrano-
side as substrate catalyzed by b-glucosidase at 50°C.).
Tetracycline 400 μg, and cycloheximide 300 μg were

added to prevent bacterial growth during digestion. The
sample in the flask was incubated at 50°C with shaking
at 100 rpm for 3, 6, 12, 24, 48, and 72 hours. After
enzymatic hydrolysis, a sample (150 μL) of the superna-
tant from the product mixture was transferred to a 1.5-
mL Eppendorf centrifuge tube (Shanghai Sangon Bio-
tech, China), and separated at 12,000 rpm (approx.13400
× g) for 10 minutes. The concentration of glucose in
each sample was measured in triplicate using a biosen-
sor analyzer with immobilized glucose-oxidase mem-
branes (SBA-40D; Shandong Key Laboratory of
Biosensor, Jinan, China). Each sample was diluted until
its concentration was within the linear range of 0 to 100
mg/dL before analysis.
Untreated, hot-water-treated, and regenerated cellu-

lose samples at a given c [AMIM]Cl were prepared in
duplicate. Three parallel runs for hydrolysis were con-
ducted for each of the two prepared samples, separately.

The reported hydrolysis yield was the average of the six
results for the two prepared samples.
The hydrolysis (glucose) yield was calculated as fol-

lows:

Hydrolysis yield (% ) =
amount of glucose in the reaction system (g)

amount of cellulose added (g)
×0.9×100 (8)

Standard deviation (SD) was calculated as follows:

SD =

√∑n
i (Xi - Xm)2

n
(9)

where Xm is the root mean square of all Xi values in
the set, Xi is a measured value from the set, and n is the
number of samples in the set [42].

Data treatment
Ohmine et al. proposed an empirical equation to
describe the kinetics of enzymatic hydrolysis [34]:

X =
1
k

× ln (1 + k × v0 × τ ) (10)

where X is the hydrolysis yield (%), k is the rate retar-
dation constant, which represents the change of hydro-
lysis rate, v0 is the initial hydrolysis rate (%/hour), and τ
is the hydrolysis time (hours). In accordance with this
equation, the experimental hydrolysis yields and times
were used to determine k, and v0 via nonlinear curve fit-
ting with Origin software.
Based on the score differences calculated by the Krus-

kal-Wallis test, we used the Student-Newman-Keuls
(SNK) test to implement the multiple comparison to
infer whether hydrolysis yield differed between cellulose
samples, and found that k, and v0 differed between the
different OES preparations at various c [AMIM]Cl values
from 0 to 1.0. Pearson’s r was used to evaluate the cano-
nical correlation analysis between c [AMIM]Cl and the
recovery rate of regenerated cellulose or specific surface
area. The Kruskal-Wallis test was used to determine the
significant differences of recovery rate, DP, and hydroly-
sis yield between the celluloses regenerated from the
OES concentrations with various c [AMIM]Cl values. All
the analyses mentioned above were performed using
SAS software (version 9.0; SAS Institute Inc., Cary, NC,
USA). P < 0.05 was considered significant.

List of abbreviations
[AMIM]Cl: 1-allyl-3-methylimidazolium chloride; BET: Bruner: Emmett: and
Telle; CI: crystallinity index; DP: degree of polymerization; DPn: number-
average DP; DMSO: dimethyl sulfoxide; IL: ionic liquid; OES: organic
electrolyte solution; χ [AMIM]Cl: molar fraction of [AMIM]Cl per OES; XRD: x-ray
diffraction.
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