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Abstract

Fig trees are a ubiquitous component of tropical rain forests and exhibit an enormous diversity of ecologies. Focusing on
Ficus subgenus Sycomorus, a phenotypically diverse and ecologically important Old World lineage, we examined the
evolution of fruit traits using a molecular phylogeny constructed using 5 kilobases of DNA sequence data from 63 species
(50% of global diversity). In particular, we ask whether patterns of trait correlations are consistent with dispersal agents as
the primary selective force shaping morphological diversity or if other ecological factors may provide a better explanation?
Fig colour, size and placement (axial, cauliflorous, or geocarpic) were all highly evolutionarily liable, and the same fruit traits
have evolved in different biogeographic regions with substantially different dispersal agents. After controlling for
phylogenetic autocorrelation, we found that fig colour and size were significantly associated with fig placement and plant-
life history traits (maximum plant height and leaf area, respectively). However, contrary to prevailing assumptions, fig
placement correlated poorly with known dispersal agents and appears more likely determined by other factors, such as
flowering phenology, nutrient economy, and habitat preference. Thus, plant life-history, both directly and through its
influence on fig placement, appears to have played a prominent role in determining fruit traits in these figs.
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Introduction

Many plants co-opt animals to disperse their seeds by offering

a reward for swallowing them in the form of fruit. Fruits vary

tremendously in size and nature of the reward, and are presented

in a variety of ways that require different abilities on the part of the

seed disperser to locate and access them. The obvious correlation

between the morphology and behaviour of putative seed dispersers

and fruit characteristics often has led to an assumption that co-

evolution with seed dispersers has driven the diversification of fruit

syndromes [1,2]. However, this hypothesis remains largely un-

tested [2]. Moreover, frugivore assemblages are typically highly

variable in space and time and comprise species ranging from seed

predators to seed dispersers that vary substantially in body size and

other traits affecting seed dispersal outcomes both qualitatively

and quantitatively. Furthermore, the same lineage of plants,

oftentimes the same species, may be exposed to unrelated

frugivore lineages, with disparate morphologies and behaviour,

in different parts of their range. We might, therefore, expect seed

dispersal modes to be rather loosely defined [1,3] and determined

to a substantial degree by other aspects of plant ecology, such as

nutrient economy or regeneration niche.

Figs (Ficus; Moraceae) comprise a large (ca. 750 species),

pantropical woody plant genus that exhibits an enormous diversity

of ecologies, including different plant life-forms, a huge range in

plant size and leaf size, and a broad spectrum of fruit types [4–6].

However, all species possess a similar pollination system [7].

Highly specific fig pollinating wasps (Agaonidae, Chalcidoidea,

Hymenoptera) enter a closed inflorescence (or ‘‘fig’’) through

a narrow, bract-lined passage to reproduce. Once inside, they

pollinate and attempt to oviposit on some flowers. In monoecious

Ficus species, ovules that receive an egg are galled and the wasp

larva feeds on the gall tissue, while pollinated flowers missed by the

wasps develop into seeds. Later when the adult wasp offspring

emerge, they first mate within the fig and then the female wasps

disperse carrying the fig’s pollen. Shortly thereafter the fig ripens

into a fig fruit (pseudo-fruit) [6]. In dioecious species, the figs on

male trees specialise in producing wasps (and thereby dispersing

pollen), while those on female trees produce only seeds. The wasps

enter the female figs and attempt to oviposit, but the styles are too

long and they fail to lay any eggs [6]. In addition, there are large

numbers of non-pollinating wasp (mostly Chalcidoidea) species

that exploit the mutualism. Most of these use long ovipositors to

pierce the thick wall of the fig from the outside and have a negative

impact on pollinator production [8].

The combination of high global and local species richness and

diverse ecologies built around a highly conserved reproductive

system makes Ficus an ideal model for comparative study [9,10].
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However, previous evolutionary studies have been limited to

datasets with either sparse sampling at a global level (e.g. [11]) or

taxonomically diverse assemblages from a single locality [2,12].

Phylogenetically focused studies offer a better opportunity to

examine the evolution of functional traits and their interactions

[13,14].

Here, we examine the evolution of fruit traits in Ficus subgenus

Sycomorus, the most diverse subgenus. Sycomorus is monophyletic

with approximately 130 species distributed from Africa to Fiji and

is the only subgenus with both monoecious and dioecious

members. The figs vary from ,0.5 cm to .10 cm in diameter

and are presented in a diversity of positions and styles (Fig. 1) [15].

Some species have axial figs (Fig. 1b). A large proportion are

cauliflorous and may be borne from small nodes (Fig. 1a), on

ramifying woody branchlets (Fig. 1d), or on long rope-like stolons

that dangle from the trunk and main branches (Fig. 1f). In one

particularly interesting form, the figs are borne on stolons that run

along the ground for up to ten or more metres (Fig. 1g) [4]. In

most of these geocarpic species the figs lie half-buried in the

surface soil immediately beneath the leaf litter, but in some species

they may be found up to 10 cm underground (Fig. 1h) [15]. How

the pollinating wasps are able to enter such figs remains a mystery.

The seeds of Sycomorus species may be dispersed by birds or

mammals, including arboreal, terrestrial or scansorial species, and

bats [16]. In stature species vary from wispy shrubs (Fig. 1b) less

than one metre in height to canopy giants with trunks over a metre

in diameter (Fig. 1a). Many species are pioneer plants and a critical

component of regenerating forests [5]. In summary, Sycomorus is

a species-rich, phenotypically diverse, widely distributed and

ecologically important Old World lineage.

We employed multiple genetic loci (5 kb) to reconstruct the

evolutionary history of Sycomorus. Next we examined the evolution

of fig colour (red or green, see Methods section), size and

placement (axial, cauliflorous types (i) and (ii), or geocarpic, see

Methods section) with respect to other functional traits, including

breeding system, maximum plant and leaf size, and biogeography.

Specifically, we asked whether patterns of trait correlations are

consistent with dispersal agents as the primary selective force

shaping fruit morphological diversity or if other ecological factors

might provide a better explanation.

Results

Phylogenetic Analyses
The genes contained few gaps and these were easily aligned. All

reconstructions produced similar topologies with moderate to

strong supports for most clades. We arbitrarily chose to map node

support values on the ML topology (Fig. 2). Our phylogenetic

reconstruction corresponded poorly to current taxonomy, con-

firming results of other phylogenetic studies (e.g. [11]) (Fig. 2).

Evolution of Fruit Traits
Fig colour was an evolutionarily liable trait (Fig 2, Fig. S1c). Our

optimal model for fig colour explained 34% of the deviance after

controlling for phylogenetic auto-correlation and retained just fig

placement and plant maximum size (Table 1). Relative to axial

figs, cauliflorous type (i), cauliflorous type (ii) and geocarpic figs,

and those on smaller trees were significantly more likely to ripen

red.

Fig size varied substantially within lineages (Fig. 2, Fig S1d). The

optimal model for fig size retained fig placement and leaf area and

their interactive effect (Fig. 3; Table S2). Relative to axial figs,

cauliflorous type (ii) and geocarpic figs were significantly larger,

and there was a significant positive effect of leaf size on fig size for

axial and cauliflorous type (i) figs.

As with the other traits, fig placement was an evolutionarily

liable trait (Fig. 2, Fig. S1b). When we modelled fig placement as

a function of the other traits, we found only fig colour and plant

size were retained in the optimal model (McFadden r2 = 0.407,

likelihood ratio test: x2 = 65.7, P=1.69610–6, Table S3), which

was a similar result to that obtained for fig colour.

Frugivores
Frugivory records were only available for 32 out of the 63

species included in our phylogeny [16], precluding explicit

phylogenetic analyses. However, three conclusions can be drawn

(Table 2). (i) For all fig placement types, except geocarpic, mixed

assemblages of birds or primates and bats comprised the largest

category. (ii) Birds have been recorded at all four types of fig

placement. (iii) Bats have been recorded at all types of fig

placement except geocarpic.

Discussion

Our phylogenetic analysis of Ficus subgenus Sycomorus produced

a tree that was, for the most part, well resolved, and both ML and

Bayesian analyses produced similar topologies (Fig. 2). These

results provide limited support of the current taxonomy of

Sycomorus based on morphology (Fig. 2) [17,18], no doubt reflecting

the wide diversity of ecologies and trait convergence (Fig 1 and

Fig. 2). Our phylogeny confirmed results of earlier studies in

suggesting that the ancestor of Sycomorus species was dioecious (Fig.

S1a) [11].

We found that Sycomorus fruit traits (fig placement, size, colour)

have been evolutionarily liable (Fig. 2). This is perhaps not

surprising as several dioecious species display considerable sexual

dimorphism. For example, in cauliflorous species male figs are

often borne in large clusters around the base of the tree (Fig 1e),

whereas on female trees figs are distributed in smaller clusters

along the trunk and main branches [19]. Similarly, among some

geocarpic species male figs may be found buried in the soil

(Fig. 1h), whereas female figs lie on the soil surface or are

suspended from the base of the trunk (Fig 1g).

We examined the association between fruit traits and breeding

system, biogeography, and life-history traits. Fruit traits were not

significantly associated with either breeding system or biogeogra-

phy. Thus, neither breeding system nor exposure to different,

unrelated lineages of frugivores appears to have constrained the

evolution of fruit traits in these fig species. Several of the fig species

in our study have wide ranges that extend across Wallace’s line,

emphasising the fact that fruit with similar functional attributes

can be effectively dispersed by substantially different frugivore

assembalges. Fig colour was significantly associated with fig

placement and plant maximum size (Table 1), and fig size was

significantly associated with fig placement and leaf area (Fig. 3).

The fact that smaller trees were more likely to have red figs

possibly reflects a preponderance of small frugivorous birds in

forest gaps and the understorey [1]. Moreover, it is not unusual to

find a correlation between the size of axial fruit and leaf size, as

carbon may be allocated directly from proximal leaves [20,21].

Plant water economy may also play a role, as Ficus species use

evaporative cooling for both figs and leaves [22]. Hence, dryer

environments could simultaneously select for smaller leaves and

smaller fruit.

Both fig colour and size were evolutionarily correlated with fig

placement, suggesting a central role of fig placement in de-

termining fruit traits in these species. It is often assumed that

Evolution of Fruit Traits
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cauliflory is associated with bat dispersal (e.g. [2]). However,

contrary to these expectations, cauliflorous figs were significantly

more likely to be red (Table 1) and the figs of most cauliflorous

species are fed on by mixed assemblages of frugivores (Table 2).

Other observations suggest that cauliflory may not be closely

linked to bat dispersal. For example, F. benguetensis is a bat-

dispersed species with yellow-green figs at maturity. It has

cauliflorous figs on male trees that are borne in the typical fashion

Figure 1. Diversity of functional traits in Ficus subgenus Sycomorus. a) F. variegata reaches up to 40 m high and is often one of the largest
trees in secondary forests (man in photograph , 1.5 m tall (face covered to protect identity)). The cauliflorous figs, borne from small nodes, can just
be made out on the trunk. b) F. squamosa, rheophytic (river side) shrub up to 1.5 m high with axial figs (inset). c) F. pseudopalma (inset to scale, the
man, who is ,2 m tall, is holding up a dead leaf) has the second largest leaves in the subgenus and is one of only two monopodial (unbranched)
species [15]. d) F. hispida has cauliflorous figs borne on woody branchlets (cauliflorus type (i)). e) F. cereicarpa is a cauliflorous species with very large
figs (,10 cm diameter). This is a male tree, which bears figs around the base of the tree, as is typical of several other species. Older figs, whose wasps
have already emerged, can be seen rotting behind and under bunches of newer figs. f) F. ribes has small cauliflorous figs borne on rope-like stolons
(cauliflorus type (ii)). F. semicordata: g) a female tree bearing figs at the base of the trunk and h) male figs buried in the soil. For the latter, the leaf
litter and soil were scrapped away to reveal the figs. i) Male fig of F. variegata with non-pollinating wasps (Sycophaga sp.) ovipositing through the
wall. The brown dots on other figs in the background are bruises resulting from earlier ovipositor insertions. Cauliflorous figs, like this, are often
heavily attacked by non-pollinating wasps, which can significantly reduce pollinator production and thus pollen dispersal.
doi:10.1371/journal.pone.0038432.g001

Evolution of Fruit Traits
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at the base of the trunk, but axial figs on female trees – suggesting

axial placement may sometimes be preferred by bats [19].

Cauliflory may have arisen in response to factors unrelated to

frugivory. For example, the production of multiple crops a year,

a common trait among cauliflorous species [23,24], may have

resulted in a need to decouple leaf and fig production physiolog-

ically and thus lead to fig production on older nodes. Alternatively,

it may be linked to the recovery of nutrients from male figs after

the pollinating wasps have emerged [19]. Cauliflorous trees drop

the male figs closer to the trunk, where nutrients are more likely to

be recovered, and in those species with large clusters of male figs at

the base of the trunk the branchlets often support a mass of

decomposing older figs and have adventitious roots (Fig. 1e).

Whether or not these speculations are correct, the common

Figure 2. Phylogeny of Ficus subgenus Sycomorus using maximum likelihood estimation. The Bayesian topology was similar and we have
mapped node support from both analyses (BP/PP). Node support was mapped for nodes with .75 BP or .0.90 PP. Also shown are fruit traits,
including fig placement (squares; black = axial, dark grey = cauliflorous type (i), no fill = cauliflorous type (ii), light grey =geocarpic), fig colour (circles;
black = red, dark grey = green), and fig diameter (triangles; light grey =,2 cm, dark grey = 2–,4 cm, black = 4+cm), biogeographic distribution
(diamonds; light grey =Africa (+Madagascar and Indian Ocean), dark grey =Asia (West of Wallace’s line), black = Pacific (East of Wallace’s line)), and
current taxonomy based on morphological characteristics.
doi:10.1371/journal.pone.0038432.g002

Evolution of Fruit Traits
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assumption that cauliflory is an evolutionary response to bat

dispersal requires reassessment.

Geocarpy arose several times within Sycomorus (Fig. 2), although

it is comparatively rare among angiosperms as a whole [25]. Our

results indicate that geocarpic figs are more likely to be red and

larger than axial figs. However, against a background of fallen

leaves red is a cryptic colour and it is noteworthy that among these

species the immature figs are also red (R. D. Harrison, personal

observations). In Borneo, geocarpic figs are eaten by small terrestrial

mammals, in particular mouse-deer [5], and odour is probably an

important cue. These frugivores may provide a relatively efficient

seed dispersal service over short distances [1], but it is not clear

why the production of long stolons (up to 10 m) or burying figs

underground should be advantageous.

Geocarpic figs are early successional pioneer plants and in

natural forest are abundant in tree-fall and landslide gaps [5]. In

such environments, favourable colonisation microsites often exist

close by and geocarpy may enable seeds to germinate directly from

where they are produced. In addition, stem mortality is high and

most geocarpic figs can regenerate from their stolons when the

main stem dies [5,6]. An association with unstable habitats was the

only commonality among a taxonomically broader analysis of

geocarpic plants in Africa [25]. Another, mutually compatible,

possibility is that invertebrate predators in the leaf litter and soil

may limit the numbers of non-pollinating fig wasps. The fact that

in those geocarpic species that exhibit sexual dimorphism, it is the

male figs that are found buried in the soil supports this conjecture

(Fig. 1g & h). Non-pollinators are often super-abundant on

cauliflorous species and have a substantial negative impact on

pollinator production and thus on pollen dispersal (Fig. 1i) [8].

Thus, we suggest that evolutionary selection for producing fig fruit

on long stolons and burying them in leaf litter or soil was probably

not driven by seed dispersal agents.

In a study of a wider taxonomic sample of Ficus from a single

locality in Papua New Guinea, fruit traits were found to be

evolutionarily correlated with seed dispersal mode and the authors

argued this supported a co-evolutionary hypothesis [2]. However,

their study did not investigate correlations with other factors [2].

Moreover, we found that fruit traits were highly liable within

Sycomorus calling into question the validity of studies, such as this,

based on a very small sample of species from a wide taxonomic

range. Nevertheless, fruit traits unquestionably have an effect on

the frequency of frugivory by different dispersal agents and the

colour changes and volatile odours released upon fig ripening

almost certainly function as signals to dispersal agents [5,26].

However, many fig species, including the Sycomorus species studied

here (Table 2), have mixed assemblages of frugivores [16] and the

association between fruit traits and dispersal mode is loose [1].

Although the authors did not draw attention to it, in the study

from Papua New Guinea [2] both bat-only and mixed-assemblage

dispersed figs occupied almost the entire extent of the multivariate

fruit-trait space measured. We also show that among Sycomorus

Table 1. Model results of the analysis of fig colour.

Term Estimate Std. Error t-value P

Cauliflorous (type i) 2.908 1.0208 2.849 0.004385

Cauliflorous (type ii) 5.593 1.8759 2.982 0.002866

Geocarpic 5.135 1.4713 3.490 0.000483

Plant maximum height 20.764 0.3511 22.177 0.029511

Colour was treated as a binomial response (green = 0, red = 1). We controlled for
phylogenetic auto-correlation using Moran’s eigenvectors as covariates (not
shown for clarity). Variables included in the analysis were fig placement,
breeding system (monoecious, dioecious) and biogeographic region as factors,
and fig size (log transformed), plant maximum height (square-root
transformed), and maximum leaf area (log transformed) as variates. The optimal
model retained just plant max. height and fig placement (Deviance
explained = 27.8, Residual deviance = 53.6 on 56 d.f). The factor levels for fig
placement are compared with axial figs.
doi:10.1371/journal.pone.0038432.t001

Figure 3. Panel plot of fig size (log transformed) against leaf
area (log transformed) by fig placement type. The y-axis
represents the residuals after controlling for phylogenetic auto-
correlation (see Methods). Dark grey and light grey points represent
species with ‘‘red’’ and ‘‘green’’ mature figs, respectively. Relative to
axial figs, cauliflorus type (ii) (est = 8.46863.2355, t = 2.617, p= 0.01147)
and geocarpic (est = 4.23761.5943, t = 2.658, p=0.01033) figs were
significantly larger, figs on species with larger leaves were significantly
larger (est = 0.99860.1843, t = 5.418, p= 0.000001), and there was
a significant negative interaction between fig placement and leaf area
for cauliflorous type (i) (est = –1.66560.5972, t = –2.789, p= 0.00729)
and geocarpic (est =20.81660.2978, t = –2.739, p=0.00832) species
(Table S3).
doi:10.1371/journal.pone.0038432.g003

Table 2. Frequency table of frugivory records for 32 Ficus
subgenus Sycomorus species.

Fig placement Frugivory type

(a) (b) (c) (d)

Axial 2 0 0 3

Cauliflorous (type i) 1 3 1 9

Cauliflorous (type ii) 0 0 1 5

Geocarpic 2 0 5 0

(a) bird and primate only, (b) bat only, (c) other mammals, and (d) mixed (bat
plus bird and/or primate), against fig placement. Data from [16].
doi:10.1371/journal.pone.0038432.t002
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species selection for the same fruit traits has occurred in areas with

substantially different assemblages of dispersal agents. Thus,

caution should be applied in interpreting fruit traits as a co-

evolutionary outcome of interactions with a particular group of

frugivores. Fruit colour and odour are ‘‘broad spectrum’’ signals

that may elicit responses from a wide taxonomic range of potential

seed dispersers. Moreover, in Sycomorus, we show that plant life-

history, both directly and through its effect in determining fig

placement, has likely substantially constrained the evolution of

fruit traits.

Conclusions
In Ficus subgenus Sycomorus fig fruit colour, size and placement

were highly evolutionarily liable and similar fruit traits have

evolved in regions with substantially different frugivore assem-

blages. Fig fruit colour and size were significantly associated with

plant life-history traits (plant maximum size and leaf area,

respectively) and fig placement, after controlling for phylogenetic

autocorrelation. In addition, we argue that other aspects of plant

ecology, such as phenology, nutrient status, and habitat prefer-

ence, have been important in constraining fig fruit placement.

Thus, relative to plant-life history and other aspects of their

ecology, we suggest that the role of dispersal agents may have been

comparatively minor in determining fruit traits in these figs.

Materials and Methods

Phylogenetic Analyses
Our sampling comprised 63 Sycomorus species (global diversi-

ty = 130 species) and represents all sections and subsections (Table

S1). Three species belonging to section Pharmacosycea were included

as an outgroup [11]. We inferred phylogenetic relationships using

five nuclear markers (ITS, 844 bp; ETS, 486 bp; G3pdh, 748 bp;

ncpGS, 1310 bp; GBSSI or Waxy region, 1673 bp). Extraction,

amplification and sequencing protocols followed Rønsted et al. [27]

(ITS, 844 bp; ETS, 486 bp; G3pdh, 748 bp), Silvieus et al. [28]

(Waxy), and Emshwiller and Doyle [29] (ncpGS). All sequences have

been deposited in GenBank (Table S1). Sequence alignment was

performed using ClustalW 1.81 default settings [30] followed by

a manual adjustment. Phylogenetic trees were estimated using

maximum likelihood (ML) and Bayesian methods. The most

appropriate model of evolution for each gene was chosen

according to AIC values using MrAIC.pl 1.4.3 [31]. Models

chosen for each partition were: HKY + C (ETS and Waxy) and

GTR + C (ITS, G3pdh, ncpGS). We performed ML analyses and

associated bootstrapping using the MPI-parallelized RAxML 7.0.4

[32]. GTRCAT approximation of models was used for ML

boostrapping (1000 replicates). RAxML 7.0.4 does not implement

a HKY model, so we used GTR instead. We used a discrete

gamma distribution with four categories. Bayesian analyses were

conducted using a parallel version of MrBayes v. 3.1.1. [33]. We

assumed across-partition heterogeneity in model parameters by

considering the parameter m. Parameter values for the model were

initiated with default uniform priors and branch lengths were

estimated using default exponential priors. To improve mixing of

the cold chain and avoid it converging on local optima, we used

Metropolis-coupled Markov Chain Monte Carlo (MCMCMC)

with each run including a cold chain and three incrementally

heated chains. The heating parameter was set to 0.02 in order to

allow swap frequencies from 20 to 70% [33]. We ran two

independent runs of 30 million generations. All values were

sampled every 3000 generations. For the initial determination of

burn-in, we examined the plot of overall model likelihood against

generation number to find the point where the likelihood started to

fluctuate around a constant value. The points sampled prior to

convergence of the chains were then discarded. We used a range of

MCMC convergence and good mixing diagnostics following

Cruaud et al. [34] and all Bayesian searches showed evidence of

sufficiently long burn-ins and convergence on the stationary

distribution (eg ESS and avstdeviation of split frequencies). The

results were based on the pooled samples from the stationary

phases of the two independent runs.

Functional Traits
Among plant functional traits, we studied breeding system, fruit

traits (placement, size, colour), leaf area and maximum plant

height. These traits are important determinants of plant re-

productive strategy, seed dispersal mode, and plant life-history

[16,35]. Data were obtained from recent taxonomic accounts

[17,18], augmented with field observations. For dioecious species,

we used female characters as we were interested in the evolution of

seed dispersal mode.

Fig placement was classified as: axial (Fig. 1b); cauliflorous with

figs borne on woody nodes or branchlets (Fig. 1a and d,

cauliflorous type (i)); cauliflorous with long rope-like stolons

(Fig. 1f, cauliflorous type (ii)); and geocarpic (Fig. 1g and h). For

fig size, we used reported diameter measurements and used data

for maximum dry diameter, as measured on herbarium material.

Smaller diameters often represent immature figs and the fresh

diameters given in taxonomic accounts are estimated and rarely

reliable. Mature fruit colours were divided into two groups; pink-

red-purple-black (hereafter ‘‘red’’) and green-yellow-brown (here-

after ‘‘green’’). Red figs usually mature pink-to-reddish initially

and gradually turn purple or black. Purple and black fruit often

reflect strongly in the violet to UV spectrum. Red fruit contrast

strongly with foliage or bark [16]. It is important to bear in mind

that fruit colour interacts with the visual sensitivity of potential

frugivores. Old World apes and monkeys are trichromats, with

good red vision, but most other mammals are dichromats; birds

are trichromats with increased sensitivity to violet or UV

wavelengths; whereas Old World fruit bats include both

dichromats and monochromats [37]. Dichromats can often

distinguish shades of green better than trichromats, but may not

be able to distinguish red or black fruit from foliage. Thus, red figs

should be conspicuous to apes, monkeys and birds, but will be

inconspicuous to most other mammals, including bats. Meanwhile,

green figs will be visually inconspicuous to apes, monkeys and

birds, but conspicuous to most other mammals, including some

bats. Green figs also invariably produce odours. As most birds are

trichromats with a poor sense of smell, being green tends to

exclude birds [16]. Some red figs also produce odours and thus

may be conspicuous to almost all potential frugivores [16]. We

estimated leaf area as an oval (p*K width*K length) from the

reported maximum leaf length (not including drip-tip) and

maximum leaf width. This slightly under-estimates the area of

leaves with parallel sides, but such errors will be small compared to

the overall variation in leave size.

Frugivores
Data on frugivores were obtained from the global review of

frugivory at figs [16]. Data were available for only 32 of the 63

species included in our study. Also, many of the surveys included

in this review were of short duration and hence the data should be

considered ‘‘presence only’’ records (i.e. lack of a recorded

frugivore interaction cannot be taken to mean it does not exist).
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Data Analyses
We modelled fig colour, size and placement as a function of the

other five traits and biogeographic distribution. We classified

biogeographic distributions into three categories: Africa (+Mada-

gascar-India Ocean), Asia (west of Wallace line), and Pacific (east

of Wallace line). To control for phylogenetic auto-correlation, we

calculated Moran’s eigenvectors based on Abouheif distances

across the tips of the ML phylogeny (function ‘me.phylo’ in R

package ‘adephylo’ [36,37]), and then in each model we

sequentially incorporated the largest eigenvectors as covariates

until no significant phylogenetic auto-correlation remained among

the residuals (function ‘orthogram’). To avoid over-saturating

models, addition and removal of terms was conducted manually

until we arrived at the optimal model according to AIC values. Fig

colour was treated as binomial response (function ‘glm’, famil-

y = binomial, link = logit), placement as a multinomial response

(function ‘mlogit’, package ‘mlogit’), and size as a normal response

(function ‘lm’). Fig size and leaf area were log transformed and

plant height was square-root transformed. All analyses were

conducted in R v2.14.1 [38].

Supporting Information

Figure S1 Phylogeny of Ficus subgenus Sycomorus in relation to (a)

breeding system, (b) fig placement, (c) fig colour, and (d) fig size

(dry diameter). For (a), (b) and (c) the proportional likelihood of

each state is mapped across nodes. For (d) the predicted size is

mapped across nodes. Ancestral reconstructions were conducted

using maximum likelihood as implemented in ‘ace’ from the R

package ‘ape’. This figure is available as a separate file.

(TIFF)

Table S1 Species of Ficus used for phylogenetic analysis,

associated accession numbers of ITS, ETS, G3pdh, ncpGS, waxy

region and sequence origin.

(DOC)

Table S2 Results of the analysis of fig size (diameter). Fig size

(log transformed) was modeled with Gaussian errors. We

controlled for phylogenetic auto-correlation using Moran’s

eigenvectors as covariates (not shown for clarity). Variables

included in the analysis were fig placement, fig colour, breeding

system (monoecious, dioecious) and biogeographic region as

factors, and plant maximum height (square-root transformed),

and maximum leaf area (log transformed) as variates. The model

with the lowest AIC retained fig placement, leaf area and their

interaction (adjusted r2 = 0.453, F8,54 = 7.42, P=1.306610–6).

(DOC)

Table S3 Results of the analysis of fig placement. Fig placement

was treated as a multinomial response. We controlled for

phylogenetic auto-correlation using Moran’s eigenvectors as

covariates (not shown for clarity). Variables included in the

analysis were fig colour, breeding system (monoecious, dioecious),

and biogeographic region as factors, and fig size (log transformed),

plant maximum height (square-root transformed), and leaf area

(log transformed) as variates. The optimal model retained just

plant max. height and fig colour (McFadden r2 = 0.407, likelihood

ratio test: x2 = 65.7, P=1.69610–6).

(DOC)
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