

PII: S0031-9422(98)00002-8

CYCLOPEPTIDE FROM THE SEEDS OF ANNONA MURICATA

LI CHAO-MING,* TAN NING-HUA, ZHENG HUI-LAN,† MU QING, HAO XIAO-JIANG, HE YI-NENG and ZOU JUN

Laboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, Kunming, 650204, P.R. China; † Xishuangbanna Tropical Botanic Garden, Kunming Institute of Botany, Academia Sinica, Mengla, 666303, P.R. China

(Received 3 November 1997)

Key Word Index—Annona muricata; Annonaceae; seeds; cyclopeptide; annomuricatin B.

Abstract—From the seeds of Annona muricata one new cyclopeptide, annomuricatin B [cyclo-(prolyl-asparaginyl-alanyl-tryptophyl-leucyl-glycyl-thryl)], has been isolated. The structure was elucidated by chemical and spectral methods. © 1998 Published by Elsevier Science Ltd. All rights reserved

INTRODUCTION

In our previous paper [1] we have reported one new cyclopeptide annomuricatin A from *Annona muricata* (Annonaceae). In this paper we report another new cyclopeptide named annomuricatin B obtained from the same plant seeds. The fruit of *Annona muricata* Linn. is edible in Yunnan province (China). As a part of continuing studies on Annonaceae cyclopeptides [1-3], in this paper we describe the isolation and structure determination of one new cyclopeptide annomuricatin B from the plant based on chemical and spectral methods.

RESULTS AND DISCUSSION

The cyclopeptide, annomuricatin B(1), was isolated from the CHCl₃ fraction of the alcohol extract of Annona muricata seeds by column chromatography as described in the Experimental. Annomuricatin B (1), needles, gave a negative ninhydrin reaction, and showed a high resolution positive FAB-MS spectral quasimolecular iron peak at m/z 740.3795 [(M+1)⁺, ∇ -6.3 mDa], corresponding to molecular formula $C_{35}H_{49}N_9O_9$. IR_{max} absorptions at 3300, 1650 (br) cm⁻¹ indicated that the compound might be a peptide [4]. The 400 MHz ¹H NMR and ¹³C NMR spectra clearly showed eight amide NH at δ 10.42, 9.44, 9.29, 9.17, 8.75, 8.75, 8.57, 8.36, and one NH at δ 11.79, and eight amide CO at δ 174.8, 173.0, 172.8, 172.7, 172.6, 172.1, 170.2, 169.7. Using ¹H-¹H COSY, ¹³C-¹H COSY, and COLOC spectra, the composition of amino acid residues was determined as Pro (leq), 1. The sequence of individual amino acids was assembled by COLOC experiments (J = 6 Hz and 10 Hz) as summarized in Fig. 1 [5]. The sequence was -N-Pro-Asn-Ala-Trp-Leu-Gly-Thr-CO-.To further corroborate the peptide to be a cyclopeptide, pos. FAB-MS was pursued. The compound gave $(M+1)^+$ at m/z 740 which proved the M, was

Asn (leq), Ala (leq), Trp (leq), Leu (leq), Gly (leq) and Thr (leq). The spectral data are shown in Table

gave $(M+1)^+$ at m/z 740 which proved the M, was in agreement with that of the sequence above after cyclization. Several useful fragment ions at m/z 683 [--N-Thr-Pro-Asn-Ala-Trp-Leu-CO-]⁺, 610 [--CON-Pro-Asn-Ala-Trp-Leu-CO-]⁺, and 470 [--Asn-Ala-Trp-Leu-CO-]⁺ were obtained. Therefore, the structure of the cyclopeptide named annomuricatin B (1), a heptacyclopeptide, was determined as cyclo-(prolyl-asparaginyl-alanyl-tryptophyl-leucyl-glycyl-thryl).

EXPERIMENTAL

Mp: uncorr. Optical rotation was recorded at room temp. using a 1 dm cell. FAB-MS was measured at 6 kV for an Ar beam source. NMR was taken at 400 MHz in pyridine- d_5 soln using TMS as int. standard.

Extraction and isolation of cyclopeptide

Crushed dry seeds of *A. muricata* (6 kg, collected in Xishuangbanna, Yunnan province in China) were macerated at room temp. with 95% EtOH and the extracts concd *in vacuo*. The EtOH extract was partitioned with CHCl₃ to yield the CHCl₃ fr. which was then partitioned between petrol and 90% aq. MeOH to yield the 90% aq. MeOH soluble fr. (382 g). The

^{*} Author to whom correspondence should be addressed.

	Annomuricatin B (1)		
	Н	С	
1			
2	4.42(t, 8.0)	62.0	
3	2.04(m), 1.94(m)	29.7	
4	1.80(m), 1.35(m)	25.0	
5	3.89(m), 3.68(m)	48.8	
6		172.6	
7	9.17(d, 5.2)		
8	5.04(m)	51.3	
9	3.89(m), 3.68(m)	36.2	
10	eres (), eres ()	174.8	
11	9.44(s) 8.57(s)		
12	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	172 1	
13	9.29(d, 3.2)	.,	
14	450(m)	53.1	
15	1 12 (d 7 2)	16.8	
16	1.12 (u, 7.2)	172 7	
17	8.75(d, 8.4)	172.7	
18	5.75(u, 0.4)	55 7	
10	3.89(m)	29.5	
20	5.69 (m)	123.0*	
21	7.25(t, 7.4)	121.6	
21	11.79 (s)	121.0	
22	11.79 (3)	137.5	
23	7.18(t, 7.4)	110.7	
24	7.10(1, 7.4) 7.54(1, 2, 6, 17.0)	117.2	
25	7.54 (aa, 2.6, 17.0)	112.21	
20	7.54(aa, 2.0, 17.0)	112.0	
21 70	7.85(a, 7.0)	119.2	
20		129.2*	
29	9 26 (1 0 6)	173.0	
20	8.30(a, 9.0)	57.0	
31	5.44(m)	57.9	
32	1.94(m), 1.80(m)	44.7	
35	1.94 (<i>m</i>)	25.1	
34	0.90(m)	22.6	
35		172.8‡	
36	10.42 (dd, 4.4, 8.0)		
37	4.82 (dd, 8.2, 17.0), 3.89 (m)	44.0	
38		169.7	
39	8.75 (<i>d</i> , 8.4)		
40	5.44 (<i>m</i>)	54.5	
41	4.50 (<i>m</i>)	69.1	
42	1.65 (<i>d</i> , 5.2)	20.3	
43		170.2‡	

Table 1. ¹H and ¹³C NMR spectra data of annomuricatin B (1) (in pyridine-*d*, 400 MHz for δ_{H} , 100 MHz for δ_{C} , TMS)

*†‡§indicate that data with same symbol are interchangeable.

90% aq. MeOH fr. was repeatedly chromatographed on a silica gel column and eluted with EtOAc–MeOH or CHCl₃–MeOH, affording annomuricatin B (544 mg).

Annomuricatin B (1). Yield: 9.0×10^{-3} %, needles (CHCl₃-MeOH), mp 213°, $[\alpha]_D^{19} - 37.25°$ (MeOH; c 0.51). UV λ_{max}^{MeOH} nm: 204 (3.49), 221.5 (3.53), 282 (2.65), 290 (2.61). IR ν_{max} cm⁻¹: 3300, 1650. ¹H and ¹³C NMR see Table 1. Pos. FAV-MS m/z: 740[M+1]⁺, 683 [-N-Thr-Pro-Asn-Ala-Trp

annomuricatin B (1) Fig. 1. The sequence is shown by arrows for annomuricatin B by COLOC spectra.

—Leu—CO—] ⁺ , 610	[C(ON-P	ro—Asn—Ala
TrpLeuCO]+,	and	470	[—Asn—Ala
-Trp-Leu-CO-] ⁺ .			

Acknowledgements—We thank Ms Liang Hui-Ling (Kunming Institute of Botany, China) for MS. This work was supported by Grant No. 95C083m from The Fund of Applied and Basic Science Research of Yunnan Province.

REFERENCES

- Li, C.-M., Tan, N.-H., Lu, Y.-P., Liang, H.-L., Mu, Q., Zheng, H.-L., Hao, X.-J. and Zhou, J., *Acta Botanica Yunnanica*, 1995, **17**, 459.
- Li, C.-M., Tan, N.-H., Mu, Q., Zheng, H.-I., Hao, X.-J., Wu, Y. and Zhou, J., *Phytochemistry*, 1997, 45, 521.
- Li, C.-M., Tan, N.-H., Mu, Q., Zheng, H.-I., Hao, X.-J., Liang, H.-L. and Zhou, J., *Phytochemistry*, 1997, in press.
- Tan, N.-H., Zhou, J., Chen, C.-X. and Zhao, S.-X., *Phytochemistry*, 1993, 32, 1327.
- Tan, N.-H., Wang, D.-Z., Zhang, H.-J., Chen, C.-X., Zhou, J. and Zhao, S.-X., *Chinese J. Mag. Reson.*, 1993, 10, 69.