Anticancer Activity of Tirucallane Triterpenoids from Amoora dasyclada

Shu-Min Yang^{a,b}, Qi-Shi Song^a, Chen Qing^c, Da-Gang Wu^b, and Xi-Kui Liu^{b,*}

- ^a Xishuangbanna Tropical Botanical Garden, the Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
- ^b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China. Fax: +86-871-5150227. E-mail: liuxikui@mail.kib.ac.cn
- ^c Yunnan Pharmacological Laboratory of Natural Products, Kunming Medical College, Kunming, Yunnan 650031, P.R. China
- * Author for correspondence and reprint requests
- Z. Naturforsch. 61c, 193-195 (2006); received August 9/October 17, 2005

A new tetranortriterpene 3α -acetoxy-24,25,26,27-tetranortirucalla-7-ene-23(21)-lactone (3), and eleven other compounds were isolated from the twigs of *Amoora dasyclada*. The structure of compound 3 was identified on the basis of spectroscopic data, and the bioactive experiments of 1 and 3–5 against AGZY 83-a (human lung cancer cells) and SMMC-7721 (human liver cancer cells) are documented. Among them, compound 5 exhibited a strong activity against SMMC-7721.

Key words: Amoora dasyclada, Tirucallane Triterpenoid, Anticancer Activity

Introduction

In previous papers, we reported four new tirucallane-type triterpenoids (1, 2, 4, 5) from the twigs of Amoora dasyclada (How et T. Chen) C. Y. Wu (Yang *et al.*, 2004a, b); here we present another tirucallane-type triterpenoid obtained during our continuing study on the same plant: 3α acetoxy-24,25,26,27-tetranortirucalla-7-ene-23(21)lactone (3). Seven other compounds, taraxerone (6), taraxerol (7) and taraxerol acetate (8), scopoletin (9), stigmast-5-en- 3β , 7α -diol (10), β -sitosterol (11), β -sitosterol-D-glucoside (12), were isolated from the same source. The bioactive experiments of 1 and 3-5 against AGZY 83-a (human lung cancer cells) and SMMC-7721 (human liver cancer cells) were also assayed. Among them, compound 5 exhibited a strong activity against SMMC-7721 with the IC₅₀ value of $8.41 \times 10^{-3} \mu$ M/ml.

Results and Discussion

Compound **3** (white needles) has a molecular formula of C₂₈H₄₂O₄ established by HR-ESI-MS (m/z 465.2989 [M + Na]⁺). The ¹H and ¹³C NMR spectra of it were in good agreement with those of **2** indicating that **3** was also a tirucallane derivative (Yang *et al.*, 2004a). The IR spectrum showed the presence of a γ -lactone group (1784 cm⁻¹); it was further confirmed by the long correlations between $\delta_{\rm H}$ 4.37 (1H, t, J = 8.7 Hz, H-21 α); 3.90 (1H, t, J = 9.3 Hz, H-21 β) with $\delta_{\rm C}$ 176.9 (s, C-23), 39.2 (d, C-20) and 34.2 (t, C-22); $\delta_{\rm H}$ 2.52 (1H, dd, J =19.0, 6.5 Hz, H-22 α); 2.17 (1H, dd, J = 18.3, 13.8 Hz, H-22 β) with $\delta_{\rm C}$ 72.4 (t, C-21), C-20 and C-23. The signals at $\delta_{\rm H}$ 2.52, 2.17 showed a large coupling constant of 13.8 Hz and a small coupling constant of 6.5 Hz, respectively, which revealed axial orientations for H-20 and H-22 α . Comparing the ¹H and ¹³C NMR spectra of **3** with those of **2**, except the γ -lactone group [$\delta_{\rm C}$ 176.9 (s, C-23)], there was an acetoxy group in **3** [$\delta_{\rm C}$ 170.7(s), 21.3 (q)], and the signals at $\delta_{\rm H}$ 2.04 (3H, s) and 4.66 (bs) also indicated that an α -acetoxy group was located at C-3 instead of a hydroxy group in 2. The cross peaks between $\delta_{\rm H}$ 2.04 (3H, s) and $\delta_{\rm C}$ 170.7 (s, CH₃COO), $\delta_{\rm H}$ 4.66 (bs) and $\delta_{\rm C}$ 170.7, 33.6 (s, C-4), 45.6 (d, C-5), 22.9 (t, C-2), 31.8 (t, C-1) in the HMBC spectrum supported this assumption.

The strongly negative optical rotation of **3** (-42.13°) suggested that it belongs to the tirucallanes (C-20 α) (Sherman *et al.*, 1980; Jolad *et al.*, 1981). In the ROESY spectrum the strong cross peaks between $\delta_{\rm H}$ 4.37 (H-21 α) and 3.90 (H-21 β) with 1.35 (H-12a), $\delta_{\rm H}$ 4.37 (H-21 α) with 0.86 (Me-18), $\delta_{\rm H}$ 3.90 (H-21 β) with 1.73 (1H, m, H-17) and 1.71 (H-12b) also indicated that **3** preferred H-20 α (C-20S) configuration to C-20R configuration proving the tirucallane-type triterpene (Mohamad *et al.*, 1999; Wang *et al.*, 2003). So compound **3** was a biodegraded product of tirucallane

0939-5075/2006/0300-0193 \$ 06.00 © 2006 Verlag der Zeitschrift für Naturforschung, Tübingen · http://www.znaturforsch.com · D

with the loss of four carbon atoms at the sidechain and it was determined to be 3α -acetoxy-24,25,26,27-tetranortirucalla-7-ene-23(21)-lactone (Fig. 1).

Fig. 1. The structures of compounds 1-5.

Experimental

General

Melting points: XRC-1 apparatus (Sichuan University, Sichuan, P.R. China), uncorrected. Optical rotations: Horiba SEAP-300 polarimeter (Kyoto, Japan). IR spectra: Bio-Rad (Richmond, CA, USA) FTS-135 infrared spectrophotometer. Oneand two-dimensional NMR spectra: Bruker AM-400 or DRX-500 spectrometers (Karlsruhe, Germany). MS data: VG Autospec-3000 spectrometer (Manchester, England).

Plant material

The twigs of *A. dasyclada* were collected in Xishuangbanna County of Yunnan Province, P.R. China, in January 2002. The plant was identified by Mr. Jingyun Cui, Xishuangbanna Tropical Botanical Garden, CAS, P.R. China.

Extraction and isolation

The first step of the isolation was the same as previously described (Yang et al., 2004b). Then fraction 2 was repeatedly chromatographed by CC over silica gel eluted with petroleum ether/EtOAc (from 1:0 to 8:2, v/v) to give compounds 6 (191 mg) and 8 (7 mg); fraction 4 was subject to repeated CC on silica gel eluted with petroleum ether/Me₂CO (from 98:2 to 7:3) to obtain compounds 1 (440 mg), 3 (19 mg), 7 (140 mg) and 11 (2.1 g); fraction 5 was submitted to repeated CC on silica gel eluted with CHCl₃/EtOAc (from 95:5 to 3:1) and then purified on a RP-18 column eluted with MeOH/H₂O (from 1:1 to 1:0) to yield compounds 2 (20 mg) and 10 (17 mg); fraction 8 was repeatedly chromatographed by CC over silica gel eluted with CHCl₃/Me₂CO (from 95:5 to 3:1) and then purified on a RP-18 and Sephadex LH-20 column successively to afford compound 9 (21 mg); fraction 9 was repeatedly chromatographed over silica gel eluted with CHCl₃/MeOH (from 95:5 to 1:1) to produce compound 12 (610 mg).

Bioassays

An improved MTT [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide] colorimetric assay was performed in 96-well plates; the experimental details were like reported previously (Niu *et al.*, 2002).

The results of anticancer activity tests of the four tirucallane triterpenoids 1 and 3–5 against AGZY 83-a (human lung cancer cells) and SMMC-7721 (human liver cancer cells) are given in Table I. In the test, 1 and 3 showed inactivity to these two cell lines, 4 and 5 exerted weak activity against AGZY 83-a, 5 exhibited strong activity against SMMC-7721.

 3α -Acetoxy-24,25,26,27-tetranortirucalla-7-ene-23(21)-lactone (3): White needles. – M.p. 214–

	IC ₅₀ [µм/ml] ^b				
	cis-Platin ^c	1	3	4	5
AGZY 83-a SMMC-7721	$\begin{array}{c} 5.673 \times 10^{-3} \\ 3.947 \times 10^{-3} \end{array}$	no activity no activity	no activity 0.171 ± 0.044	0.065 ± 0.013 no activity	$\begin{array}{c} 0.050 \pm 0.005 \\ 0.018 \pm 0.005 \end{array}$

Table I. Cytotoxicity^a of compounds 1 and 3–5.

^a AGZY 83-a, human lung cancer cells; SMMC-7721, human liver cancer cells.

^b The IC₅₀ values are presented as means \pm SE.

^c cis-Platin as positive control.

216 °C. – $[\alpha]_{D}^{16}$ –42.13° (c 0.178, CHCl₃). – IR (KBr): v = 2922, 1781, 1728, 1631, 1462, 1373, 1248, 1174, 1101, 1032, 1019 cm⁻¹. - ¹H NMR (500 MHz, CDCl₃): δ = 5.26 (1H, d, J = 2.9 Hz, H-7), 4.37 (1H, $t, J = 8.7 Hz, H-21\alpha$, 3.90 (1H, $t, J = 9.3 Hz, H-21\beta$), 2.55 (1H, m, H-20), 2.52 (1H, dd, J = 19.0, 6.5 Hz, H-22 α), 2.30 (1H, m, H-9), 2.17 (1H, dd, J = 18.3, 13.8 Hz, H-22 β), 2.05, 1.95 (each 1H, m, H-6), 2.04 (3H, s, CH₃COO), 1.91, 1.32 (1H, m, H-16), 1.85, 1.67 (each 1H, m, H-2), 1.75 (1H, m, H-5), 1.73 (1H, m, H-17), 1.72, 1.38 (2H, m, H-1), 1.71, 1.35 (each, 1H, m, H-12), 1.64–1.48 (4H, m, H-11 and H-15), 0.97 (3H, s, Me-30), 0.94 (3H, s, Me-29), 0.86 (3H, s, Me-18), 0.82 (3H, s, Me-28), 0.76 (3H, s, Me-19). -¹³C NMR (125 MHz, CDCl₃): δ = 31.8 (t, C-1), 22.9 (t, C-2), 78.2 (d, C-3), 36.6 (s, C-4), 45.6 (d, C-5), 23.8 (t, C-6), 118.6 (d, C-7), 144.9 (s, C-8), 48.4 (d, C-9), 34.9 (s, C-10), 17.3 (t, C-11), 31.9 (t, C-12), 43.7 (s, C-13), 50.6 (s, C-14), 34.1 (t, C-15), 27.3 (t, C-16), 51.0 (d, C-17), 22.6 (q, C-18), 12.9 (q, C-19), 39.2 (d, C-20), 72.4 (t, C-21), 34.6 (t, C-22), 176.9 (s, C-23), 27.4 (q, C-28), 21.4 (q, C-29), 27.0 (q, C-30), 170.7 (s, CH₃COO), 21.3 (q, CH₃COO). – EI-MS: m/z = 442 (17, [M]⁺), 426 (13), 382 (9), 367 (100), 324 (3), 297 (4), 259 (13), 245 (6), 213 (5), 187 (13), 159 (11), 147 (9), 119 (12), 105 (9), 81 (5). – HR-ESI-MS: m/z = 465.2989 [M + Na]⁺ (calcd. for C₂₈H₄₂O₄Na, 465.2980).

Three known compounds 6-8 were identified by spectral analysis results and by comparison with the published data (Sakurai *et al.*, 1987). The $R_{\rm f}$ values of 9-12 were coincident with the standard samples in different developing solvents.

Acknowledgements

We wish to acknowledge the financial support from the Natural Science Foundation of Yunnan Province, China (2000C0001 P).

- Jolad S. D., Hoffmann J. H., Schram K. H., and Cole J. K. (1981), Constituents of *Trichilia hispida* (Meliaceae).
 4. Hispidals A and B, two new tirucallane triterpenoids. J. Org. Chem. 46, 4085–4088.
- Mohamad K., Martin M.-T., Litaudon M., Gaspard C., Sévenet T., and Païs M. (1999), Tirucallane triterpenes from *Dysoxylum macranthum*. Phytochemistry **52**, 1461–1468.
- Niu X.-M., Li S.-H., Li M.-L., Zhao Q.-S., Mei S.-X., Wang S.-J., Lin Z.-W., and Sun H.-D. (2002), Cytotoxic *ent*-kaurane diterpenoids from *Isodon eriocalyx* var. *laxiflora*. Planta Med. **68**, 528–533.
- Sakurai N., Yaguchi Y., and Inoue T. (1987), Triterpenoids from *Myrica rubra*. Phytochemistry **26**, 217–219.
- Sherman M. M., Borris R. P., Ogura M., Cordell O. G., and Farnsworth N. R. (1980), 3S,24S,25-Trihydroxytirucall-7-ene from *Ailanthus excelsa*. Phytochemistry 19, 1499–1501.
- Wang L. Y., Wang N. L., Yao X. S., Miyata S., and Kitanaka S. (2003), Euphane and tirucallane triterpene from the roots of *Euphane kansui* and their *in vitro* effects on the cell division of *Xenopus*. J. Nat. Prod. 66, 630–633.
- Yang S.-M., Ma Y.-B., Luo X.-D., Wu S.-H., and Wu D.-G. (2004a), Two new tetranortriterpenes from *Amoora dasyclada*. Chin. Chem. Lett. 15, 1187–1190.
- Yang S.-M., Ding L., Wu S.-H., Ma Y.-B., Luo X.-D., and Wu D.-G. (2004b), Two new tirucallane triterpenes with six-membered hemiacetal from *Amoora dasyclada*. Z. Naturforsch. **59b**, 1627–1629.