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e Background and Aims Neutral theory predicts that the diversity and relative abundance of species in ecological
communities do not depend on their specific traits. This prediction remains controversial, as many studies
suggest that variations in the niches of species determine the structure of communities. The aim of this study
was to test empirically the relative importance of niche and neutral processes as drivers of species abundance
within plant communities along a successional gradient.

e Methods Information on the abundance (density and frequency) and traits (aboveground individual biomass and
seed mass) of >90 species was collected in alpine and sub-alpine meadows of the Tibet Plateau (China). A succes-
sional gradient (1, 3, 15 and 30 years after abandonment) was established in a sub-alpine meadow. The relationships
between species traits and their abundance were evaluated using regression models.

o Key Results Seed mass was negatively related to both species density (r = —0-6270, P < 0-001) and frequency
(r=-0-5335, P =0:005) in the 1-year meadow. Such relationships disappeared along the successional gradient
evaluated (P > 0-07 in the 3-, 15- and 30-year meadows). Data gathered in all sites showed a significant negative
relationship between the average individual biomass of a given species and its density within the community
(r <-0-30, P < 0-025 in all cases).

e Conclusions The results show that seed mass was a key driver of species abundance in early successional commu-
nities, and that niche forces may become more important as succession progresses. They also indicate that predic-

tions from neutral theory, in its current form, do not hold for the meadow communities studied.
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INTRODUCTION

The neutral theory of biodiversity proposed by Hubbell
(2001) has invigorated research on the mechanisms
driving the distribution and abundance of species within
communities. This theory assumes that all individuals of
all species are functionally equivalent, i.e. individuals do
not have species-specific traits influencing their fitness,
longevity, movements or likelihood of speciation (Bell,
2001; Hubbell, 2001). Accordingly, it predicts that any
given species trait should be uncorrelated with its abun-
dance in a community (Hubbell, 2001; McGill et al.,
2006a). Neutral theory strongly emphasizes the role of sto-
chastic events such as dispersal, local extinction and specia-
tion as drivers of community structure and diversity.
Predictions from neutral theory are contrary to basic
assumptions of niche theory, which asserts that the
species must differ in their traits, and often show trade-offs,
in order to co-exist within a community for long periods of
time (Chesson, 2000; Chase and Leibold, 2003; Condit
et al., 2006; McGill et al., 2006b; Westoby and Wright,
2006).
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Empirical support for the neutral theory remains equiv-
ocal, with studies both supporting (Hubbell, 2001; Condit
et al., 2002; Volkov et al., 2003; Hubbell, 2005, 2006) and
rejecting (McGill, 2003; Gilbert and Lechowicz, 2004;
Volkov et al., 2005; Wootton, 2005; Gilbert et al., 2006;
Harpole and Tilman, 2006; Thompson and Townsend,
2006) its predictions. The fact that random forces alone
cannot explain many patterns observed in nature suggests
that factors such as variations in the niches of species are
important determinants of the structure of ecological com-
munities. Indeed, recent studies are incorporating elements
of both niche and neutral theory to develop a more general
framework for explaining such structure (Uriarte and
Reeve, 2003; Tilman, 2004; Gravel et al., 2006; Zhou and
Zhang, 2006; Adler et al., 2007). In this regard, the conti-
nuum hypothesis proposed by Gravel et al. (2006) assumes
that communities are located in a continuum determined by
stochastic and deterministic forces depending on three
factors: species niche overlap, species richness and dispersal
capabilities. According to their model, diversity and abun-
dance patterns along environmental gradients will be the
consequence of the balance between stochastic processes
and competitive exclusion. Additionally, Gravel er al.
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(2006) show that there is a positive relationship between neu-
trality and the dispersal capabilities of species, suggesting
that the latter may be a key process to link niche and
neutral approaches.

Many studies have shown that the dispersal ability of a
species is closely correlated with traits such as its seed
mass (Leishman and Murray, 2001; Coomes et al., 2002;
Mabry, 2004) which, indeed, is strongly correlated with
plant abundance in many communities (Leishman and
Murray, 2001; Muller-Landau, 2003; Murray and
Leishman, 2003; Murray et al., 2004, 2005). Leishman
and Murray (2001) proposed a successional model to
explain the relationship between seed mass and the abun-
dance of species within communities. In their model, com-
munities in early successional stages are dominated by
small-seeded species with good dispersal capacities
(Leishman and Murray, 2001; Schippers et al, 2001;
Coomes et al., 2002; Mabry, 2004; Mouquet et al., 2004).
As succession progresses, communities become dominated
by large-seeded species with competitive superiority
(Leishman and Murray, 2001; Murray and Leishman,
2003; Murray et al., 2005). These predictions have been
theoretically evaluated in a series of studies (Leishman
and Murray, 2001; Guo, 2003; Eriksson, 2005), but very
few empirical tests have been conducted so far to test
them (but see Leishman and Murray, 2001; Coomes
et al., 2002). Leishman and Murray (2001) found similar
results in open woodland communities along a successional
gradient determined by fire. These authors found a negative
and non-significant relationship between seed size and
abundance in areas burned <10 years ago, but this relation-
ship became significant and positive in sites burned >15
years ago. Coomes et al. (2002) found that at least some
large-seeded species are restricted to late-successional,
nutrient-rich sites in dune communities.

To our knowledge, no previous study has empirically
evaluated the relative importance of niche and neutral
processes as determinants of community structure along a
successional gradient. The aim of this study was to do
this using the relationship between species abundance and
both seed mass and average individual biomass (hereafter
AIB) in species-rich alpine and sub-alpine meadow com-
munities. The working hypothesis was that both stochastic
and niche processes dominate in the early stage of succes-
sion, while the niche process dominates in later succes-
sional stages (Coomes et al., 2002; Gravel et al., 2006).
The main objectives of the study were to: (a) determine
empirically the relative importance of niche and neutral
processes along a successional gradient; (b) explore
whether successional time affects the neutrality of a com-
munity; and (c¢) evaluate whether AIB determines species
abundance in sub-alpine and alpine meadows.

MATERIALS AND METHODS
Study sites

A series of experiments were carried out in alpine (Maqu
and Azi) and sub-alpine (Hezuo) meadows of the eastern
part of the Qing-Hai Tibet Plateau, China (Table 1).

TaBLE 1. Characteristics of the study sites evaluated

Sites
Parameters Hezuo Maqu Azi
Latitude 34°55'N 35°58'N 33°58'N
Longitude 102°53'E 101°53'E 101°53'E
Altitude (m) 2900 3500 3500
Annual mean temperature (°C) 2-4 12 12
Annual mean precipitation (mm) 532 620 620
Vegetation type SM AM AM

SM, sub-alpine meadow; AM, alpine meadow.

The vegetation at the alpine sites is typical of species-rich
alpine meadows, and is dominated by species such as
Scirpus pumilus Vahl, Kobresia capillifolia (Decne.)
C. B. Clarke, Festuca ovina Linn, Poa poophagorum Bor,
Roegneria nutans (Keng) Keng, Anemone rivularis
Buch.-Ham. and Kobresia macrantha Boeck. In the sub-
alpine meadow, the vegetation is dominated by Agrostis
hugoniana Rendle, Stipa aliena Keng and Kobresia
humilis (C. A. Mey.) Serg.

Field sampling

To evaluate the relationships between seed mass and
species abundance along a successional gradient, exper-
imental plots were established in Hezuo in 2003. These
were laid out in fields abandoned 1, 3, 15 and 30 years
ago. The fields, located within an area of 10 kmz, had the
same orientation, facing aspect and position within the
slope. At each plot, thirty 50 x 50 cm sampling quadrats
were randomly arranged in August, during the peak of the
growing season, and the number of ramets of every
species in each quadrat (i.e. density) was counted. After
these measurements, the aboveground biomass of each
species was cut, dried at 80 °C to constant weight and
weighed. A total of 91 species were found in the surveys.
Seeds of each species were collected in nearby sites when
mature between the years 2000 and 2003. Seeds were air-
dried and kept in the laboratory. To estimate seed mass,
seeds from the collections, were pooled, 100 seeds for
each species were weighed three times, and then the
average weight was taken.

To evaluate the relationship between species abundance
and AIB in natural communities, additional data were col-
lected at the Hezuo, Maqu and Azi sites during 2001 and
2006, respectively. A total of 30 (Hezuo), 45 (Maqu) and
20 (Azi) 50 x 50 cm sampling quadrats were randomly
arranged in August, during the peak of the growing
season. The density and aboveground biomass of each
species were obtained as described above. A total of 55,
87 and 50 species were found at the Hezuo, Maqu and
Azi sites, respectively. The AIB of each species in a
given quadrat was calculated as its biomass divided by its
density in the quadrat.

Statistical analyses

To avoid confusion, density (number of individuals per
sampling quadrat) and frequency (number of quadrats a
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species appeared in) were used as surrogates of species
abundance (Guo, 2003; Murray and Leishman, 2003). The
relationship between species abundance and both seed
mass and AIB was evaluated using linear regressions.
Seed mass, AIB and abundance data were in all cases log;(-
transformed prior to these analyses.

In the regressions involving AIB, density is both the
response variable and the denominator of the predictor
variable (AIB, see above). Statistically, this causes non-
independence between predictor and response variables,
and may lead to spurious analyses because of violations in
the assumptions of regression (Berges, 1997; Brett, 2004).
To overcome this issue, and following Brett (2004), the
relationship between AIB and species abundance was evalu-
ated using bootstrapping (Roff, 2006). Regression and boot-
strapping analyses were conducted with the SigmaPlot 2006
(SPSS Inc., Chinago, IL, USA) and LSS (http:/biol-chem.
uwb.edu.pl/IP/ENG/biologia/statystyka/stats.php) software,
respectively. A total of 10 000 bootstrap replications were
used in the bootstrapping analyses.

RESULTS

At the Hezuo site, seed mass showed a significant negative
relationship with both frequency and density in the field
abandoned 1 year ago (Table 2). For the fields abandoned
3, 15 and 30 years ago, the relationships were not signifi-
cant. However, it is interesting to note a change in the
sign of the relationship from negative in the fields aban-
doned 1, 3 and 15 years ago to positive in the field aban-
doned 30 years ago (Fig. 1, Table 2). In both alpine and
sub-alpine natural meadow communities, species density
showed a significant negative relationship with AIB
(Table 3). However, species frequency only showed a
significant relationship with AIB in one of the study sites
(Table 3).

DISCUSSION

Is the relationship between species abundance and seed mass
consistent along a successional gradient in sub-alpine meadow
communities?

The results showed that the magnitude and direction of the
relationship between seed mass and species abundance

varied along succession, with a negative relationship
during early successional stages and a trend towards a posi-
tive relationship as succession progresses (Fig. 1, Table 2).
This pattern is consistent with the successional model pro-
posed by Leishman and Murray (2001). The model predicts
that in the early stages of succession, superior colonists
(including those with strong dispersal abilities) are the
most abundant species, resulting in a negative correlation
between seed mass and abundance. Over time, larger-
seeded species arrive, and they progressively outcompete
the smaller-seeded species. Thus, in intermediate stages
of succession, no clear relationship between seed mass
and abundance should occur. As time progresses and with
no disturbance, there will be a positive correlation
between seed mass and abundance. As illustrated in classi-
cal studies of MacArthur (1962) and MacArthur and Wilson
(1967), high disturbance levels select for species that
produce many and well-dispersed offspring, while low dis-
turbance levels would favour competitive species.

It is important to point out that the model of Leishman
and Murray (2001) is based on the trade-off between seed
mass and seed number within species throughout succes-
sion, and that such trade-offs are always considered as evi-
dence of niche processes (Chase and Leibold, 2003; Kneitel
and Chase, 2004; Kearney and Porter, 2006). The strong
dispersal ability of small-seeded species in early stages of
succession, and the strong competition ability of large-
seeded species in later successional stages, are key func-
tional traits implying that niche forces are at work. The
present results showed that small-seeded species were
much more abundant than large-seeded species in the
early phase of succession, indicating that dispersal pro-
cesses were an important determinant of the structure of
the studied meadows (Gravel et al., 2006). Dispersal itself
is not only a key trait of species but also an important
process shaping the structure of plant communities.
Therefore, and according to the initial hypothesis, it could
be concluded that both random and niche processes have
an impact on the structure of community in early succes-
sional stages, while deterministic forces such as competi-
tive ability of large-seeded species are dominant in later
successional stages. According to the present results, suc-
cessional stage may also be an important factor to deter-
mine where on a continuum from niche to neutrality a
particular community will fall (Gravel et al., 20006).

TABLE 2. Linear regression models fitted to the relationship between species abundance (Y) and seed mass (X) along the
successional gradient evaluated

Years after abandonment n Abundance measure Regression equation r P

1 26 D Y=0-10 - 0-64X —0-6270 <0-001
F Y=0-15 - 031X —0-5335 0-005

3 39 D Y =067 - 035X —0-2851 0-079
F Y=028 - 0-12X —0-2236 0-171

15 49 D Y =140 - 0-04X —-0-0275 0-851
F Y =0-55 - 0-0004X —0-0006 0-997

30 43 D Y=154+0-14X 0-1204 0-442
F Y =0-70 + 0-08X 0-1264 0-419

n refers to the total number of species used in the analysis. D, density, F, frequency. P-values <0-05 are in bold.
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Fi1G. 1. The relationship between abundance, i.e. (A) density and (B) frequency, and seed mass along a successional gradient (1-, 3-, 15- and 30-year
meadows). Significant relationships (P < 0-05) are denoted with solid lines.

TaBLE 3. Linear regression models fitted to the relationship
between species abundance (Y) and average individual
biomass (X) in the alpine and sub-alpine meadows evaluated

What is the relationship between abundance and AIB in both
alpine and sub-alpine meadow communities?

The clear negative relationship between species density
Sites  n Abundance  Regression equation r P and AIB found in all the sites evaluated was in clear contra-

fmeasure diction to the neutral theory prediction that any given

Az 50 D Y= —020 - 076X —03579 00105 SPecies trait should.be uncorrelated with thel.r abunda.nc.e in

F Y=071 - 019X  —0.1782 02110 the local community. The results agree with predictions

Maqu 87 D Y=-052- 101X -03767 00001 from the metabolic theory of ecology, which seeks to

F Y=073-055X  —03243 0-0021 explain the consistent relationship between a species’ body

Hezvo 55 D Y=129 - 050X —03003 00243 ;6 and metabolic rate (Brown, 2004), and match those of
F Y =060 — 0-07X —0-0930 0-4955

studies conducted with different organisms showing that
n refers to the total number of species used in the analyses. P and r the individual body mass of a species is correlated signifi-

values shown for density were obtained after bootstrapping with 10 000 cantly and negativel)f with its abundance .(DamUth, 1981,
simulations. D, density; F, frequency. P-values <0-05 are in bold. 1991; Brown and Nicoletto, 1991; Enquist et al., 1998;
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White et al., 2007). Body mass is perhaps the most funda-
mental property of an organism, and is related to many bio-
logical traits, such as abundance, lifespan and metabolism
(White et al., 2007). The importance of body mass—abun-
dance relationships has been widely recognized in both
terrestrial and aquatic ecology (Brown, 1995; Gaston and
Blackburn, 2000; Kerr and Dickie, 2001). Such relationships
are also essential to link species- and population-specific
traits to the structure and dynamics of ecological commu-
nities (Kerr and Dickie, 2001; Woodward ef al., 2005). The
present results clearly suggest that AIB plays an important
role in shaping the abundance of species in the studied
meadows. In addition to the merging of neutral and niche
theories, recent theoretical developments are also attempting
to combine neutral theory with the theory of metabolic
scaling (Gewin, 2006). Such a combination will provide
better predictions on the relationship between AIB and
species abundance.

Concluding remarks

A set of experiments was conducted to test the relative
importance of niche and neutral processes as drivers of
community structure along succession, and to evaluate if
the AIB of a species is related to its abundance within com-
munities. The results indicate that, in the early stages of
succession, both stochastic processes, such as dispersal,
and deterministic processes, such as the trade-off between
seed mass and number, were important determinants of
the structure of the studied communities. In the meadow
communities studied, AIB was negatively related to
species abundance. Advances in the development of a
unified theoretical body incorporating elements of neutral
theory, niche theory and metabolic scaling theory will
give rise to refined theory and models, improving our
ability to understand the relative importance of those
factors driving the composition and structure of plant
communities.
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