Ye et al. BMC Bioinformatics 2012, 13(Suppl 6):S1
http://www.biomedcentral.com/1471-2105/13/56/S1

BMC
Bioinformatics

Exploiting sparseness in de novo genome

assembly

Chengxi Ye'”*", Zhanshan Sam Ma“, Charles H Cannon®®, Mihai Pop®’, Douglas W Yu®”"

From Second Annual RECOMB Satellite Workshop on Massively Parallel Sequencing

Barcelona, Spain. 19-20 April 2012

Abstract

Background: The very large memory requirements for the construction of assembly graphs for de novo genome
assembly limit current algorithms to super-computing environments.

Methods: In this paper, we demonstrate that constructing a sparse assembly graph which stores only a small
fraction of the observed k-mers as nodes and the links between these nodes allows the de novo assembly of even
moderately-sized genomes (~500 M) on a typical laptop computer.

Results: We implement this sparse graph concept in a proof-of-principle software package, SparseAssembler,
utilizing a new sparse k-mer graph structure evolved from the de Bruijn graph. We test our SparseAssembler with
both simulated and real data, achieving ~90% memory savings and retaining high assembly accuracy, without
sacrificing speed in comparison to existing de novo assemblers.

Background

In contrast with traditional Sanger methods, second-
generation sequencing technologies, such as Roche/454
and Illumina/Solexa, produce millions of genome frag-
ments as short DNA sequence reads (< ~150 bp for
[llumina, and < ~500 bp in length for 454, currently).
Entire genomes are reconstructed from such fragmented
data through a computational process called genome
assembly [1]. The most common approaches for solving
this problem (Overlap-Layout-Consensus, and the de
Bruijn graph) first construct a graph encoding the rela-
tionships between the sequencing reads generated dur-
ing the shotgun sequencing process. For the Overlap-
Layout-Consensus [2-5], and the related string graph
approach [6,7], each node of the graph represents a
sequencing read in the input and an edge connects two

* Correspondence: cxy@umd.edu; mpop@umiacs.umd.edu; douglas.yu@uea.
ac.uk

'Ecology & Evolution of Plant-Animal Interaction Group, Xishuangbanna
Tropical Botanic Garden, Chinese Academy of Sciences, Menglun, Yunnan
666303 China

“Ecology, Conservation, and Environment Center; State Key Laboratory of
Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese
Academy of Sciences, Kunming, Yunnan 650223 China

Full list of author information is available at the end of the article

(BiolMed Central

nodes if the corresponding sequences ‘overlap’ (the pre-
fix of one sequence matches the suffix of the other with
sufficient similarity). In the de Bruijn graph approach
[8-16], the nodes of the graph are sub-strings of length
k (k-mers) and the edges link together k-mers that over-
lap by exactly k - 1 bp only if the k + 1 bp sequence
obtained by joining the adjacent nodes is present in at
least one of the sequences in the input.

As we will describe in more detail below, irrespective of
the approach, computational representations of the result-
ing graphs require large amounts of memory, thereby
requiring substantial computational resources (both mem-
ory and run time) to assemble large genomes (such as
human). Typical memory requirements for modern
assemblers range in the hundreds of giga-bytes (GB) for
human genome assembly. Recently, several methods were
aimed at reducing the memory requirement of de novo
genome assembly. In [17], the authors proposed a highly-
compressed bitmap representation of a de Bruijn graph
that can be queried for the existence of individual edges.
With this succinct data structure, they were able to reduce
the memory consumption by a factor of ~10 compared to
common de Bruijn graph structure. In [7] the authors
relied on read compressed text data structures (the FM

© 2012 Ye et al,; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:cxy@umd.edu
mailto:mpop@umiacs.umd.edu
mailto:douglas.yu@uea.ac.uk
mailto:douglas.yu@uea.ac.uk
http://creativecommons.org/licenses/by/2.0

Ye et al. BMC Bioinformatics 2012, 13(Suppl 6):S1
http://www.biomedcentral.com/1471-2105/13/56/S1

index) to construct, on the fly, an assembly string graph.
In this paper, we propose an alternative approach to
reduce memory usage which exploits the idea of sparse-
ness in genome assembly. Specifically, instead of storing
every single k-mer (in a de Bruijn graph) or read (in an
overlap graph) as nodes, we store a sparse subset of these
nodes while still ensuring the assembly can be performed.
Here, we demonstrate that this approach greatly reduces
computational memory demands without sacrificing the
accuracy of assembly.

Memory usage of graph-based assembly paradigms

To introduce concepts central to the approach imple-
mented in SparseAssembler, we will briefly discuss the
main assembly paradigms and their corresponding
memory usage.

Overlap-Layout-Consensus and string graphs
As briefly outlined above, in the OLC paradigm, the
graph contains the reads as nodes, and the edges indi-
cate that the reads overlap. For a given genome coverage
¢ (the average number of reads covering a particular
base in the genome) for every read, this approach, thus,
requires storing approximately ¢ overlaps, each of which
requires storing a 4-8 byte pointer, as well as at least
another 2 bytes of additional information about the
overlap (coordinates within the reads, level of similarity,
etc.) If we take into account that each read must also
record its sequence and possible quality value, we also
require an additional 2-8 bits of information per base-
pair per read. Storing this graph for a typical human
genome sequenced with reads of length 100 at a cover-
age of 50, requires between ~300-900 GB of memory.
Note that in this analysis we omit repeats and errors,
both of which further increase the memory requirement.
The string graph approach dramatically reduces the
memory requirement by a factor roughly proportional

Page 2 of 8

to the depth of coverage. A string graph is an overlap
graph where transitive edges have been removed, speci-
fically if read A overlaps reads B and C, and B also over-
laps C, (Figure la) the overlap (4, C) is removed from
the graph as it can be inferred from the overlaps
between (4, B), and (B, C) (Figure 1b). As a result, each
read only needs to store roughly one overlap (multiple
overlaps may need to be recorded due to sequencing
errors and repeats), reducing the theoretical memory
requirement to roughly 6-18 GB of memory. On real
data, a recent assembler relying on the string graph
approach was reported to use 54 GB memory for
human genome assembly [7].

de Bruijn graph based assembly
In the de Bruijn graph, edges can be implicitly represented
by saving only the presence of the neighbouring nucleo-
tides (at most 4 for each k-mer). A common first stage of
de Bruijn graph-based de novo assemblers is to build the
graph by storing all the k-mers and their neighbouring
nucleotide(s). A k-mer is considered being different only
in orientation with its reverse complement, and only one
of the two (chosen by lexical-order) is saved. Let all k-
mers be encoded in bits: 00, 01, 10, 11, respectively, for A,
C, G, T, and let 4 bits be used to indicate the presence/
absence of the 4 possible edges/nucleotides on every side
(Figure 2a, b). Thus, each k-mer uses 2 x k + 4 x 2 bits of
memory, and the minimum space requirement S, for a
genome of size g is approximately S; = G x (2 x k + 4 x
2), assuming no additional information needs to be saved.
Note that this number does not, in theory, depend on
depth of coverage (a k-mer is only stored once irrespective
of how many reads contain it). However sequencing errors
add a huge number of false k-mers, thus extra space has to
be used to reach successful assembly.

Typically, k-mer sizes of 21~51 bp are used because
shorter k-mers result in branching, and therefore, in

N
N

(a)

overlap (a, ¢) is removed.

Figure 1 From overlap graph to a string graph. (a) an overlap graph, in which all the overlaps are recorded. (b) the string graph, transitive

(b)

Ye et al. BMC Bioinformatics 2012, 13(Suppl 6):S1
http://www.biomedcentral.com/1471-2105/13/S6/S1

Page 3 of 8

O

AACTGGTTACCTGCCGTG

(a)

000001111010111100010111100101101110

[— 1

(b)

=R —]

AACTGGTTACCTGCCGTG

(c)

11 11)01]11)10

0000011110101111000101111001011011 10

\

(d)
Figure 2 A node with branches in the de Bruijn graph and the sparse k-mer graph. (a) A node with branches in a de Bruijn graph. (b) The

binary implementation of (a). (c) A node with branches in a sparse k-mer graph. (d) The binary implementation of (c). The k-mers which are
nodes in the graph are squared in the blocks. Neighbouring nucleotides indicating the edges of the graph are circled.

ambiguity in the assembly. As a consequence, the
memory space required for saving all k-mers can be
huge. Using traditionally techniques, over 300 GB
memory can be used even with a small k-mer size of
20 [9], and it is common to use over 100 GB memory
even with error-corrected reads with few false k-mers
[13]. Recent advances in k-mer counting (e.g., Jellyfish
[18] and BFcounter [19]) can help improve the memory
requirements of de Bruijn graph construction. The
approach we describe below targets the actual informa-
tion stored in the graph, thus allowing further memory
reductions beyond those achieved by the aforemen-
tioned tools.

Sparse assembly graph

The approach we propose here involves skipping some
fraction of the k-mers or reads, thus reducing the size of
the overall assembly graph necessary to capture the
information. Using the example above from the OLC
graph, instead of storing overlaps (A4, B) and (B, C), we
could simply store overlap (4, C) and eliminate read B
from the graph. In the de Bruijn graph, we simply store
only one out of every g (g <k) k-mers, attempting to sub-
sample as evenly across the original graph as possible.
As a result, the size of the de Bruijn graph is reduced by
a factor of approximately g (see full details in materials
and methods).

We would like to note that our approach is similar in
spirit to the minimizer idea introduced by Roberts et al.
[20]. Their approach is targeted at the task of detecting
k-mers shared between different reads. The ‘traditional’
indexing approach requires storing all k-mers within a
read. Roberts et al. [20] propose only storing the lexico-
graphically smallest k-mer (minimizer) in a size w detec-
tion window. They noted that the number of minimizers
is generally smaller than the number of all k-mers (con-
secutive k-mers often share a same minimizer), and the
memory requirement is further reduced by storing the
smaller-sized minimizers and by using a large detection
window. Our approach for simplifying the de Bruijn
graph is similar in spirit with the minimizer approach,
as we only store a sparse sub-sample of the k-mers
found in the reads. Our choice of the k-mers stored in
the graph attempts to approximate a uniform k-mer
sampling of the genome, rather than based on lexico-
graphic ordering. In future research we plan to explore
the relative benefits of the two approaches, by including
lexicographic information within the sparse k-mer selec-
tion process.

Methods

Moving to the sparse k-mer graph

In the sparse k-mer graph structure, the nodes in the
graph represent a 1/g subsample of the k-mer diversity

Ye et al. BMC Bioinformatics 2012, 13(Suppl 6):S1
http://www.biomedcentral.com/1471-2105/13/56/S1

in the entire genome. The resulting graph differs from
the typical de Bruijn graph by having longer links, i.e.
more nucleotides per branch (see Figure 2c). With the
sparsely spaced nodes, the memory requirement for
constructing the sparse k-mer graph can be considerably
less than that for building de Bruijn graphs.

Our subsampling procedures proceeds as follows: let g
equal the number of base pairs skipped between k-mers
that are stored from each sequencing read. In the ideal
case, with no branches and assuming that the k-mers
are staggered by g = 5 bases, we can store < 5 neigh-
bouring bases on each side of the k-mer. Although we
store more information for each k-mer by also extending
its links, we store many fewer k-mers than currently
implemented approaches. More precisely, the total
memory space requirement can be calculated as,
SZ%%><(2><k+2><2xg+ptr_sz)=N>< (%k+2x2+¥
where ptr_sz is the extra space required by the pointer
structures for the edge links. Compared with the de
Bruijn graph approach, we reduce k-mer storage to 1/g,
and the portion for storing edges to a half, but add a
new space requirement for storing edge links, which
requires 2 x g bits for each side of the k-mer. In our
experiments, we found that using ¢ = 10 - 25 was
effective.

Interestingly, the lower bound of memory space usage
for the sparse k-mer graph will decrease as sequencing
read length increases and more information is stored in
the links. Let reads be of length r; the sparse k-mers
scheme becomes more efficient when r-k is large. In this
case we can use large g’s and still retain sufficient infor-
mation, which will become more common with the
future improvements in sequencing technology. Follow-
ing this trend of technology advances, we can also
increase k to larger values than those used currently
while still keeping memory usage low.

As a detailed example, we explain how a sparse k-mer
graph can be constructed. We divide the process into
two rounds. In the first round, we select the k-mers that
will be used as nodes. For each sequencing read, we first
query whether any of the subsequent g k-mers has
already been used as a node. If so, we begin our sub-
sample of the read from that node. Otherwise, we select
the first k-mer as a new node. After the first scan, the
nodes are selected, and they are expected to be nearly g-
gapped if there are no sequencing errors. In real data,
we filter out the low-coverage nodes before we move to
the second round. Low-coverage nodes are regarded as
nodes in spurious branches such as tips or bubbles or
real k-mer nodes connected to a spurious branch. In the
second round, the links between the remaining nodes
are built. The accurate coverage of the k-mer nodes is
recalculated in this round. After two rounds of proces-
sing, the k-mers picked as nodes are approximately,

Page 4 of 8

though not strictly g-gapped, which results in some
redundancy in space.

To show the effect of ¢ on memory storage during
assembly, we conducted two simple comparisons using
simulated 30x error free 100 bp reads from the fifth
chromosome of the Saccharomyces cervisiae genome
(NC_001137.2), which is around 600 kbp long. First,
without any sequencing error, the number of selected
nodes, with k = 31, g = 16, is 36,932. If we set g = 1,
meaning no skipping, we observe 566,045 nodes in the
graph, indicating a 15.3 fold reduction in the size of the
graph, which does approximate 1/g. When we introduce
a uniform 1% error rate into our sequence data, we now
obtain 830,309 nodes, with k = 31 and g = 16, but the
full graph also gets larger with the error rate, now con-
taining 12,494,172 nodes, with an effective reduction by
15.0 for g = 16. Assembly time and results are also com-
parable to existing de novo assemblers, but a sparse
approach greatly reduces the memory requirements and
g can be adjusted according to the local computing
environment. Like in the de Bruijn graph the complexity
of the graph depends on the value chosen for k. The lar-
ger k is, the less complex the graph. Since the sparse
graph encodes the same branches as the original de
Bruijn graph, the conversion to a sparse graph reduces
the memory requirement but does not increase the
overall complexity of the resulting structure.

In our experiments, we found that different values for
g lead to only a slight difference in assembly results,
thus, setting g to 10~15 provides substantial memory
saving without sacrifice in quality. Although increasing g
should cause us to miss some of the true links due to
sequencing error, bias, and low-coverage, we found the
assembly quality, measured by corrected NG50 and con-
tig mean size, is usually slightly improved with increas-
ing g. Also usually the assembly is better with a larger g
because many of the short repeating k-mers are not
saved as nodes, and are only implied by the edge links.
The larger the g, the fewer repeats are saved.

Last, if two reads overlap by k + g bases, an overlap
between these 2 reads is also found with the sparse k-
mer graph and there will be at least one k-mer selected
in each read. And if two reads share one specific k-mer
that has been saved in round 1, then the overlap can
also be found. Thus, the ability of encoding overlaps
between reads within the sparse k-mer graph is between
using that of de Bruijn graphs constructed with k-mer
sizes between k and (k+g). Practically we found using g
= 10~15 provides a good balance point on real datasets.

Note that the graph construction procedure outlined
above is order-dependent, i.e., different read orderings
will result in a (slightly) different choice of the sparse k-
mers selected within the graph. In our tests, this non-
deterministic behaviour does not seem to affect the

Ye et al. BMC Bioinformatics 2012, 13(Suppl 6):S1
http://www.biomedcentral.com/1471-2105/13/56/S1

performance of the algorithm (either in terms of mem-
ory requirement or accuracy), however we plan to
explore in the future the use of the minimizer concept
(described in the Background) to ensure determinism in
graph construction.

Circumventing sequencing errors and graph simplification
Sequencing errors and polymorphisms can result in
tips or bubbles [8] in the assembly graphs, irrespective
of the underlying paradigm (de Bruijn, sparse k-mer,
or overlap). To remove these unwanted structures, we
first remove the low-coverage nodes and edges. After
that, like in Velvet [8], we developed a Dijkstra-like
breadth-first search algorithm to detect bubbles and
tips, using the distance in bp to traverse the branches
from near to far. The search backtracks to the last
branching node upon reaching a visited node or a tip
end. Upon a bubble we choose the higher-coverage
branch and remove the weaker branch. Tips are
directly removed. After this step, spurious paths and
redundant structures like tiny loops and bubbles are
removed (Figure 3).

Genome assembly

The full assembly process consists of (i) building the
sparse assembly graph as described above and (ii) graph
simplification and traversal. The procedure for recon-
structing the genome is similar to that used in the de
Bruijn and string graph algorithms. A new traversal
begins at a node not visited in previous traversals, and
breaks when branches are detected; the separate traver-
sals form the individual contigs reported by the
assembler.

Page 5 of 8

Results

Recent comparisons of assembly software [21-23],
including SSAKE, VCAKE, Euler-sr, Edena, Velvet,
ABySS, SOAPdenovo, and ALLPATHS failed to discover
significant differences in the magnitude of memory
usage, which were all large: they all require > 100 GB
memory on human genome assembly even with error
free data. We therefore compare our results with only
three major state-of-the-art and purely de Bruijn graph
based assemblers: ABySS, Velvet, and SOAPdenovo.

To test the sparse assembly idea we implemented a
single threaded program SparseAssembler, based on the
sparse k-mer graph and assembly process described
above. In all tests, we set assemblers to single end single
threaded mode.

In simulated comparisons (Tables 1, 2), we uniformly
sampled 30x 100 bp reads from the fruit fly (X,
NC_004354.3; IIL, NT_033779.4; IIR, NT_033778.3; IIIL,
NT_037436.3; IIIR, NT_033777.2; IV, NC_004353.3) and
rice genomes http://rgp.dna.affrc.go.jp/J/IRGSP/Build3/
build3.html and introduced uniformly distributed errors
at 0.5% error rate and assembled using k = 31 for all
assemblers and used g = 15 for SparseAssembler. We
chose a somewhat lower error rate than commonly
encountered in practice (although after quality trimming
and error correction real datasets can achieve such low
error rates) in order to allow us to execute all the
assemblers being compared. High levels of error lead to
increased memory requirements for the majority of
existing genome assemblers. We also simulated 50x 200
bp reads (error free as well as 1% error rate) to test the
performance using various k-mer sizes on a human gen-
ome (NCBI build 39, Table 3). We used k = 31, 63, 127,

Before removal. (b) After removal.

backtrack

Figure 3 Breadth-first search bubble removal in the sparse k-mer graph. Removing unwanted structures in the sparse de Bruijn graph. (a)

(b)

http://rgp.dna.affrc.go.jp/J/IRGSP/Build3/build3.html
http://rgp.dna.affrc.go.jp/J/IRGSP/Build3/build3.html

Ye et al. BMC Bioinformatics 2012, 13(Suppl 6):S1
http://www.biomedcentral.com/1471-2105/13/56/S1

Table 1 Assembly performance comparison on the fruit
fly genome

(k=31) ABySS Velvet SOAPdenovo SparseAssembler
Time (hr) 55 3 3 1

Memory peak (GB) 46 31 14 2

> 100 bp (# 23992 23,104 20,580 20,429

contigs)

Sum (kbp) 113,580 113,574 112,395 113,650
Mean size (bp) 4,734 4916 5461 5,563
N50 (bp) 18317 19576 25461 28,355
N95 (bp) 66 61 67 74
Corr NG50 (bp) 18317 19576 25461 28355
Corr NG95 (bp) 0 0 0 0
Longest contig 162,263 190,104 195,709 273977
(bp)

Coverage (%) 9624 9682 9553 97.83
Misjoins 0 6 0 0

The performance on the fruit fly genome dataset, genome size: 120,291 kbp.
Programs are run using default settings.

and fixed g = 25, corresponding to the skipped inter-
mediate k-mers. Our simulations on the human genome
with varying k highlights several interesting phenomena.
Limited by memory and read length, current assemblers
usually use small k-mer sizes (21~64) to assemble
human genomes, our simulations suggest longer read
lengths could lead to drastic improvements in human
genome assembly (Table 3). Longer reads can be
obtained with current technology, e.g., through the use
of overlapping paired-end reads, currently available
[11,24].

To test performance on real data, we compared our
approach on 100-bp-read whole-genome shotgun
sequence data generated on the Illumina platform for

Table 2 Assembly performance comparison on the rice
genome

(k=31) ABySS Velvet SOAPdenovo SparseAssembler
Time (hr) 13 7 16 5

Memory peak (GB) 69 51 29 4

> 100 bp (# 458,456 397,252 444,545 386,604

contigs)

Sum (kbp) 253,708 225,618 258,106 262,988
Mean size (bp) 553 568 581 680
N50 (bp) 538 310 655 734
N95 (bp) 38 0 40 31
Corr NG50 (bp) 538 310 655 733
Corr NG95 (bp) 38 0 0 0
Longest contig 23,220 23939 26869 26,890
(bp)

Coverage (%) 69.2 623 713 715
Misjoins 1 34 10 9

The performance on the rice genome dataset, genome size: 370,733 kbp.
Programs are run using default settings.

Page 6 of 8

Table 3 Assembly performance on the human genome

k= k=63 k= k= k=63 k=
31 127 31 127
Error free data 1% error rate
Memory peak (GB) 14 16 19 30 49 51
> 100 bp (# k 3,195 1,984 714 2,727 1554 1,359
contigs)

Sum (G bp) 237 2.79 283 229 272 2.88
Mean size (bp) 743 1,406 3,961 839 1,751 2,121
N50 (bp) 2130 6479 79906 2121 6319 49572
N90 (bp) 244 631 10,441 304 872 1,021

Longest contig 50,800 124,293 801,692 47164 124,292 537,017

(bp)

Escherichia coli K-12 MG1655 (NCBI SRA accession
ERR022075), human chromosome 14, and a whole
human genome (NA12878). The performance on some
other real datasets (including single cell reads and lon
Torrent PGM reads) can be found on our website. For
the E. coli dataset, k = 51 was used for all assemblers
(SOAPdenovo did not output reasonable results on this
dataset, so we did not include the result, with N50 ~
200), and we set g = 15 for SparseAssembler (Table 4),
for the human chromosome 14, k = 53 was used for all
assemblers, and we set g = 15 for SparseAssembler
(Table 5), and k = 31-51, g = 25 for the whole human
genome (Table 6). On these real datasets from the Illu-
mina platform, our approach used around 1/10 memory
compared with other assemblers and produced compar-
able results (Tables 4, 5). Because the bubble merging
strategy in SparseAssembler is simple, the results on real
data can include more misjoins than other assemblers
but these misjoins appear to occur within the shorter
contigs, thus achieving a corrected NG50 not much dif-
ferent from the original NG50 size (Tables 4, 5). The
corrected assembly statistics are obtained by fragment-
ing the assembly wherever errors are encountered in the

Table 4 Assembly performance on the E.coli genome
(ERR022075)

(k =51) ABySS Velvet SparseAssembler
Time (hr) 2 1 07
Memory peak (GB) 35 9.1 0.7

> 100 bp (# contigs) 430 632 485

Sum (bp) 4,556,772 4,413,080 4,577,604
Mean size (bp) 10,597 6,983 9438
N50 (bp) 57,655 19,067 57,830
N95 (bp) 5629 128 5,906
Corr NG50 (bp) 57,655 19,067 57,828
Corr NG95 (bp) 5629 125 5676
Longest contig (bp) 166,107 120,922 173976
Coverage (%) 99.90 96.53 99.94
Misjoins 1 12

Ye et al. BMC Bioinformatics 2012, 13(Suppl 6):S1
http://www.biomedcentral.com/1471-2105/13/56/S1

Table 5 Assembly performance on the human
chromosome 14

(k =53) ABySS Velvet SOAPdenovo SparseAssembler
Time (hr) 6 25 6. 1.9
Memory peak (GB) 49 37 30 3
> 100 bp (# contigs) 85,181 129,046 84,719 55,024
Sum (kbp) 88,603 89854 87,908 86,296
Mean size (bp) 1,041 696 1,038 1,568
N50 (bp) 3,568 1499 3,117 3,890
N95 (bp) 179 184 197 202
Corr NG50 (bp) 3,475 1,487 3,065 3,760
Corr NG95 (bp) 175 178 192 198
Coverage (%) 98.54 98.86 98.42 97.56
Longest contig (bp) 61,018 16,043 49,584 60,797
Misjoins 24 62 47 61

This dataset was downloaded from http://gage.cbcb.umd.edu/data/index.html,
genome size: 88,289,540.

data. The runtime of SparseAssember was smaller than
that for other assemblers. Raw Illumina reads (80X,
length 100) for a member of CEU HapMap population
(identifier NA12878) sequenced by the Broad Institute
were downloaded from ftp://ftp.1000genomes.ebi.ac.uk/
voll/ftp/technical/working/20101201_cg_NA12878/
NA12878.hiseq.wgs.bwa.raw.bam in the last test. This
dataset was also used in [7] and 54 GB memory was
consumed to first clean the reads before assembly, using
just half of the reads in the dataset. For testing purpose,
we also used 40x reads (the first end of the paired
library). The most expensive assembly with uncleaned
reads took 29 GB memory and roughly 1 day resulting
in an N50 size of 2,915 and assembled length of 2.70 G.
All runs were single-threaded. Though our quality is
lower than some assemblers, using corrected reads and
mate-pair information in the future is expected to
further improve the assembly result. Most other assem-
blers take hundreds of GBs of memory which is beyond

Table 6 Assembly performance on the NA12878 human
genome

k =31 k=41 k =51

Memory peak (GB) 26 29 29
> 100 bp (# k contigs) 2,740 2,800 2,744
Sum (G bp) 2.33 2.57 2.70
Mean size (bp) 743 919 3,961
N50 (bp) 2,054 2,647 2915
N95 (bp) 318 335 380
Longest contig (bp) 36,460 38,864 50,441
Corr NG50 (bp)* 1,502 2,213 2,610
Corr NG95 (bp)* 0 0 114
Misjoins* 21 19 17

* The corrected statistics are calculated by mapping back to human
chromosome 14.

Page 7 of 8

our computer’s reach, but the detailed consumptions on
similar datasets can be found in related references.

In all comparisons, our sparse k-mers based SparseAs-
sembler uses substantially less computational memory
and completed the assembly in a comparable period of
time and with comparable quality with several state-of-
the art assemblers. In tests with known reference gen-
omes (Tables 1, 2, 4, 5), the assembled results were
mapped back to the known reference genome using
MUMmer3 [22,25,26] to count the number of misjoins.
Contigs that contain false joins were broken into smaller
but accurate contigs. The corrected NG50s were calcu-
lated based on the size of these smaller contigs. This
approach is similar to that used in the GAGE assembly
evaluation [22]. We did not map back the assembled
whole human genomes because of hardware limitations,
instead in Table 6, we map the contigs back to a smaller
region, the chromosome 14.

Discussion and Conclusions

This new sparse graph approach to de novo genome
assembly, as implemented here in SparseAssembler,
consistently produces comparable results to the cur-
rent state-of-the-art de Bruijn graph-based assemblers,
demands considerably smaller amounts of computer
memory, using both simulated and real data. This
approach can be extended for a sparse string graph as
well, by selecting a sparse subset of the reads when
constructing the overlap graph. Future improvements,
such as incorporating more efficient data structures,
promise to reduce memory demand further. Also the
assembly approach used in our paper is a simple
implementation resembling the de Bruijn graph
approach, meant to illustrate the power if this
approach, and we expect much better assembly results
can be obtained by incorporating our ideas within
existing genome assemblers.

In the k-mer graph framework, the memory savings
achieved by SparseAssembler is similar to that achieved
with Conway & Bromage’s succinct data structure but is
simpler in idea and implementation. Moreover, the sav-
ings of our assemblers are scalable with the length of g.
Thus, as read lengths improve, the links between k-mers
can be extended and the graph can become even spar-
ser, reducing memory demands as sequencing technol-
ogy develops. Finally, the sparse k-mer graph shares all
advantages of the de Bruijn graph model.

Therefore, the results reported here strongly support
our idea that a sparse assembly graph retains sufficient
information for accurate and fast de novo genome
assembly of moderate-size genomes in a cheap, desktop
PC computing environment, which is usually only
equipped with several gigabytes memory. Future
improvements to SparseAssembler will focus on

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20101201_cg_NA12878/NA12878.hiseq.wgs.bwa.raw.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20101201_cg_NA12878/NA12878.hiseq.wgs.bwa.raw.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20101201_cg_NA12878/NA12878.hiseq.wgs.bwa.raw.bam
http://gage.cbcb.umd.edu/data/index.html

Ye et al. BMC Bioinformatics 2012, 13(Suppl 6):S1
http://www.biomedcentral.com/1471-2105/13/56/S1

extending this approach to a sparse string graph and the
exploitation of paired-end reads.

Availability
Related programs and code are available at:
http://sites.google.com/site/sparseassembler/.

Acknowledgements

We thank Prof. Jin Chen of the Xishuangbanna Tropical Botanical garden, Dr.
Jue Ruan in BIG, Prof. Steven Salzberg and his group, in Johns Hopkins
University, Prof. James Yorke and his group in Univ. of Maryland, Yingrui Li,
Yinglong Xie, Hao Tan in BGI and Ruigiang Li in Novogene for long-term
support and fruitful discussions. We thank Adam Phillippy and Sergey Koren
for providing scripts for generating MUMmer corrected results. This work was
supported in part by Yunnan Province, China [20080A001], and the Chinese
Academy of Sciences [0902281081, KSCX2-YW-Z-1027, Y002731079], and also
by the US National Science Foundation grant lIS-0812111.

This article has been published as part of BMC Bioinformatics Volume 13
Supplement 6, 2012: Proceedings of the Second Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-seq 2012). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/13/S6.

Author details

'Ecology & Evolution of Plant-Animal Interaction Group, Xishuangbanna
Tropical Botanic Garden, Chinese Academy of Sciences, Menglun, Yunnan
666303 China. 2Eco\ogy, Conservation, and Environment Center; State Key
Laboratory of Genetic Resources and Evolution, Kunming Institute of
Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China.
Department of Computer Science and Center for Bioinformatics and
Computational Biology, Institute for Advanced Computer Studies, University
of Maryland, College Park, MD, USA. “Computational Biology and Medical
Ecology Lab; State Key Laboratory of Genetic Resources and Evolution,
Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,
Yunnan 650223 China. *Ecological Evolution Group, Xishuangbanna Tropical
Botanic Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303
China. ®Department of Biological Sciences, Texas Tech University, Lubbock,
TX 79410 USA. “School of Biological Sciences, University of East Anglia,
Norwich, Norfolk NR47TJ UK.

Authors’ contributions

CY developed the algorithms, collected results, and wrote the software. ZM,
CC, MP, DY contributed discussions on algorithms. CY, ZM, CC, MP, and DY
wrote the manuscript. All authors read and approved the final manuscript.

Competing interests

We declare that we have no significant competing financial, professional or
personal interests that might have influenced the performance or
presentation of the work described in this manuscript.

Published: 19 April 2012

References

1. Pop M, Salzberg SL: Bioinformatics challenges of new sequencing
technology. Trends Genet 2008, 24(3):142-149.

2. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ,
Kravitz SA, Mobarry CM, Reinert KHJ, Remington KA, et al: A whole-genome
assembly of Drosophila. Science 2000, 287(5461):2196-2204.

3. Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B,
Mesirov JP, Lander ES: ARACHNE: A whole-genome shotgun assembler.
Genome Res 2002, 12(1):177-189.

4. Mullikin JC, Ning ZM: The phusion assembler. Genome Res 2003,
13(1):81-90.

5. Havlak P, Chen R, Durbin KJ, Egan A, Ren YR, Song XZ, Weinstock GM,
Gibbs RA: The atlas genome assembly system. Genome Res 2004,
14(4):721-732.

6. Myers EW: The fragment assembly string graph. Bioinformatics 2005,
21:79-85.

Page 8 of 8

7. Simpson JT, Durbin R: Efficient de novo assembly of large genomes using
compressed data structures. Genome Res 2011.

8. Bimey E Zerbino DR: Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 2008, 18(5):821-829.

9. Birol |, Simpson JT, Wong K, Jackman SD, Schein JE, Jones SIM: ABySS: A
parallel assembler for short read sequence data. Genome Res 2009,
19(6):1117-1123.

10. Chaisson M, Pevzner P, Tang HX: Fragment assembly with short reads.
Bioinformatics 2004, 20(13):2067-2074.

11. Gnerre S, MacCallum |, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,
Sharpe T, Hall G, Shea TP, Sykes S, et al: High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. P Nat/ Acad
Sci USA 2011, 108(4):1513-1518.

12. Himmelbauer H, Dohm JC, Lottaz C, Borodina T: SHARCGS, a fast and
highly accurate short-read assembly algorithm for de novo genomic
sequencing. Genome Res 2007, 17(11):1697-1706.

13, Li RQ, Zhu HM, Ruan J, Qian WB, Fang XD, Shi ZB, Li YR, Li ST, Shan G,
Kristiansen K, et al: De novo assembly of human genomes with massively
parallel short read sequencing. Genome Res 2010, 20(2):265-272.

14. Pevzner PA, Tang HX, Waterman MS: An Eulerian path approach to DNA
fragment assembly. P Nat/ Acad Sci USA 2001, 98(17):9748-9753.

15. Sundquist A, Ronaghi M, Tang HX, Pevzner P, Batzoglou S: Whole-Genome
Sequencing and Assembly with High-Throughput, Short-Read
Technologies. PLoS ONE 2007, 2(5).

16. Warren RL, Sutton GG, Jones SJM, Holt RA: Assembling millions of short
DNA sequences using SSAKE. Bioinformatics 2007, 23(4):500-501.

17. Conway TC, Bromage AJ: Succinct data structures for assembling large
genomes. Bioinformatics 2011, 27(4):479-486.

18. Marcais G, Kingsford C: A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics 2011, 27(6):764-770.

19. Melsted P, Pritchard JK: Efficient counting of k-mers in DNA sequences
using a bloom filter. Bmc Bioinformatics 2011, 12.

20. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA: Reducing storage
requirements for biological sequence comparison. Bioinformatics 2004,
20(18):3363-3369.

21. Deng HW, Lin Y, Li J, Shen H, Zhang L, Papasian CJ: Comparative studies
of de novo assembly tools for next-generation sequencing technologies.
Bioinformatics 2011, 27(15):2031-2037.

22, Salzberg SL, Phillippy AM, Zimin AV, Puiu D, Magoc T, Koren S, Treangen T,
Schatz MC, Delcher AL, Roberts M, et al: GAGE: A critical evaluation of
genome assemblies and assembly algorithms. Genome Res 2011.

23, Zhang WY, Chen JJ, Yang Y, Tang YF, Shang J, Shen BR: A Practical
Comparison of De Novo Genome Assembly Software Tools for Next-
Generation Sequencing Technologies. PLoS ONE 2011, 6(3).

24, Mago¢ T, Salzberg SL: FLASH: Fast Length Adjustment of Short Reads to
Improve Genome Assemblies. Bioinformatics 2011.

25, Salzberg SL, Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M,
Antonescu C: Versatile and open software for comparing large genomes.
Genome Biol 2004, 5(2).

26. Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the
elusive mis-assembly. Genome Biol 2008, 9(3).

doi:10.1186/1471-2105-13-56-S1
Cite this article as: Ye et al.: Exploiting sparseness in de novo genome
assembly. BMC Bioinformatics 2012 13(Suppl 6):S1.

(7

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BiolMed Central

http://sites.google.com/site/sparseassembler/
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S6
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S6
http://www.ncbi.nlm.nih.gov/pubmed/18262676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10731133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10731133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11779843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12529309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15059830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21245053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21245053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21217122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21217122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15256412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15256412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21636596?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21636596?dopt=Abstract

	Abstract
	Background
	Methods
	Results

	Background
	Memory usage of graph-based assembly paradigms
	Overlap-Layout-Consensus and string graphs
	de Bruijn graph based assembly
	Sparse assembly graph

	Methods
	Moving to the sparse k-mer graph
	Circumventing sequencing errors and graph simplification
	Genome assembly

	Results
	Discussion and Conclusions
	Availability
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

