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The strategies of acclimation to growth light intensity in two exotic herbaceous

species with different ecological traits in Xishuangbanna, China

ZHENG Yuan-hao's FENG Yu-dong"” (1. Kunming Division, Xishuangbanna Trop ical Botanical Garden, Chinese A cademy of
Sciences, Kunming 650223, China; 2. College of Life Sciences, H ebei University, Baoding 071002, China). Acta Ecologica Sinica, 2005, 25(4) :
727 732.

Abstract: A cclimation to growth light regimes and the strategies of photoprotection were explored in two exotic herbaceous
species, Ewp atorium adenophorum Spreng. and A momum villosum Lour. E. adenogphorum, a notorious invasive species,
spreaded into China in 1940s, and now distributes in all provinces of southwest China. It is sun species, but can grow and
develop normally in shade environment. A . villosum, being introduced to Xishuangbanna intentionally from Yangchun county,
Guangdong province, is a perennial herb and is considered as being an obligate shade plant that occurs in the understorey of
humid subtropical and tropical forest- lts seeds are important materials for Chinese medicine- Both E. adenophorum and A -
villosum influence biodiversity, structure, and function of ecosystem invaded badly, but the impact of the former on ecosystem
is much greater. The experimental materials were cultured under three light regimes for about 10 months. Lamina mass per
unit area (LMA), chloroplast pigments content, the maximum net photosynthetic rate (P ..), and chlorophyll fluorescence
paramet ers were measured during the dry and hot season in 2003 at Xishuangbanna, Yunnan province, China. In this study we
pay attention to (1) the ability and the strategies they acclimate to different light regimes and (2) are this ability associated
with their invasiveness? And how?

Under lower growth light regimes the diurnal photoinhibition of photosynthesis was not serious in E. adenagp horum
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(12.5% and 36% relative irradiance) and in A. villosum(12.5% RI). as judged by the maximum efficiency of photosystem
( PS) photochemistry, quantum yield of PS  non—cyclic electron transport. With the increase of growth light intensity
photoinhibition intensified in the two species, but photoinhibition was much more serious in A - villosum grown under 36% RI
than in E. adenophorum under 100% RI. With the increase of growth light intensity, Pmwax, LM A, non-photochemical
quenching efficiency (NP (), and carotenoid content per unit area increased; while chlorophyll content per dry mass decreased.
E. adenophorum could acclimate to large extent of environmental light regimes through changes of morphological and
physiological characteristics. This might be associated with its strong invasiveness. Reaction centres of PS inactivat ed
reversibly in E. adenophorum grown under 100% RI, as judged by initial fluorescence (F,). Inactivated but not photodamaged
reaction centres of PS  can dissipate excessive light energy too. T hermal dissipation, as judged by N PQ, increased with the
increase of diurnal and growth light intensity in both of the two species. But thermal dissipation was lesser in E. adenophorum,
even grown under 100% RI1, thaninA. villasum. The biggest diurnal N PQ was 1.6 only, smaller than that of other species in
Xishuangbanna. E. adengphorum, a sun species, protected photosynthetic apparatus from photodamage mainly through
utilizing more light energy by photosynthesis. In A. villosum P,., could increase with the increase of growth light intensity
too, but its value and increment were small. In contrast the value and increment of thermal dissipation were large in A -
villosum grown under 36% RI, with the biggest diurnal N PQ value of 5.4. F, decreased significantly with the increase of
diurnal light intensity in the morning, and maintained at low level in the afternoon, indicating large amount thermal dissipation
too- A. willosum, a shade species, protected photosynthetic apparatus from photodamage mainly through thermal dissipation.
Morphological plasticity and its ability of physiological acclimation to light were small in A . villosum- T his was consistent with
its understorey distribution.

Key words: photoinhibition of photosynthesis; photosynthetic capacity; thermal dissipation; FEup atorium adenop horum

Spreng.; A momum villosum Lour. ; exotic species
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