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Effects of growth light intensities on photosynthesis in seedlings of two tropical

rain forest species

WANG Bo-Yi', FENG Yu-Long"” (1. Kunming Division. X ishuangbanna T ropical Botanical Garden, Chinese A cademy of
Sciences, Kunming 650223, China; 2. College o Life Sciences, Hebei University, Baoding 071002, China) . Acta Ecologica Sinica, 2005, 25(1):
23 30.

Abstract: A cclimation to growth light intensities and the strategies of photoprotection were explored in seedlings of two tropical
rainforest tree species, Pometia tomentosa and Trema orientalis. The former is a late—successional species in forest, and its
seedlings distribute in understory or small canopy gap. W hereas the latter is a pioneer tree species, and its seedlings occur in
canopy gap. T he plant materials were raised under four light regimes [a. 3.1%/ 12.5% ( Before/ after fog disappear, percent of
sunshine) ; b. 12.5%/12.5%; ¢. 9%/36%; d. 25%/36%] for about 3 months during the foggy and wol season in 2002 at
Xishuangbanna, Yunnan Province, China. Then maximum net photosynthetic rate ( P..), chlorophyll fluorescence
parameters, chloroplast pigments content, and lamina mass per unit area (LMA) were measured. We manipulated morning
light intensities to simulate the effect of fog which could shield sunlight for about 60% 90% in the morning. Fog presents
almost every day in this season. The main purpose of this study was to determine whether decreasing morning light intensity
(the effect of fog) could ameliorate photoinhibition of photosynthesis when the light intensity was the same in the afternoon. If
so, we could condude that fog could protect tropical rainforest tree species from photoinhibition through screening sunlight in
Xishuangbanna.

For the two species, with the increase of growth light intensity LMA , non—photochemical quenching coefficient (NP Q) ,
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the carotenoid content expressed as unit leaf dry weight and expressed as unit chlorophyll, light saturation point and light
compensation point increased, while chlorophyll concentration decreased. Seedlings of the two species could acclimate to
different growth light regimes in this study through changes of physiological and morphological traits. Diurnal photoinhibition
of photosynthesis, as judged by maximum efficiency of PS  photochemistry, was significantly severer in P. tomentosa than in
T. orientalis in all growth light regimes. The acclimation capacity to high light regimes was stronger in T'. orientalis than in
P. tomentosa. With the increase of growth light intensity, P,. increased significantly, but NPQ not in T. orientalis. While
the reverse trends occurred in P. tomentosa. At the same light regimes thermal dissipation was much lower, but P, was much
higher in T'. orientalis than in P. tomentosa. This indicates that photodamage was avoided mainly through increasing light
energy utilization by photosynthesis in T. orientalis, a pioneer tree species, but through increasing thermal dissipation in
P. tomentosa, a late—successional species. In addition, photosynthetic pigments content and LM A were lower in T. orientalis
than in P. tomentosa, indicating that the percent of light energy absorbed by the former is lesser. T his can ameliorate
excitation pressure on photosystem . The effects of decreasing light intensity in the morning w as significant in P. fomentosa,
but not in T. orientalis. Decreasing light intensity in the morning could ameliorate diurnal photoinhibition of photosynthesis
significantly in P. tomentosa, but not in T'. orientalis. Fog can decrease light intensity by 60% 90% in the morning in foggy
and cool season in Xishuangbanna. Shading by fog in the morning might be important to P. tomentosa and other late—
successional species, especially to chilling sensitive speciess So we hypothesized that fog be important to the existence of
tropical rainforest in Xishuangbanna, and one of its role be to ameliorate photoinhibition of photosynthesis through decreasing
light intensity in the morning-
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Table 1 Apparent quantum yield for the seedlings of P. tomentosa and T. orientalis grown under different light regimes
( / ,RI) Light regimes (Before/ after fog disappear, percent of sunshine without fog) "
Species 3.1%/12.5% 12.5%112. 5% 9%  36% 25% / 36%
P. tomentosa 0.017+ 0.0057A, a 0.0160£ 0.0019A, a 0.022+ 0.0027A, a 0.0198+ 0.0027A, a
T. orientalis 0.0417+ 0.0015A, b 0.0476x 0.0013B, b 0.0508+ 0.0012B, b 0. 0482+ 0.0024B, b
* 35 + Mean# standard error (SE)of 3 5 separate experiments;

(P< 0.05) Different upper—and lowercase letters indicate significant different among the light regimes of the same
species and between different species in the same light regime (P< 0. 05, student’s t-+test), respectively ; the same below
2 (umol/ (m2- s))

Table 2 Maximum net photosynthetic rate for seedlings of P. tomentosa and T. orientalis grown under different light regimes

Light regimes
Species 3.1%/12.5% 12.5%1/12. 5% 9% 1 36% 25% 1/ 36%
P. tomentosa 4. 1824% 1.5270A, a 3.9625+ 0.3824A, a 3.1044£ 0. 1978A, a 4.5837x 0.8073A ,a
T. orientalis 14.9417+ 1.3477A,b 15. 4952+ 0.4929A,b 20. 8699+ 0. 3809B, b 22.4585+ 0.5112B, b
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Table 3 Contents of chlorophyll (Chl) and carotenoid (Car) per unit dry weight, and Chl/ Car for seedlings of P- tomentosa and T- orientdlis

grown under diff erent light regimes

Light regimes

Species Parameters 3.1%/12.5% 12.5%/12. 5% 9% 136% 25% | 36%
P. tomentosa Chl(mg/ g) 5.1587+ 0.4404Aa  4.1803% 0.1691Aa  4.2140+ 0. 3156Aa 4.3952+ 0. 6664Aa
Car(mg/ g) 1. 8739+ 0. 0971Aa 1. 4448+ 0. 0498Ba 1. 6334+ 0. 1243ABa 1. 7525+ 0. 2030ABa
Car/chl 0.3655+ 0.0149Aa  0.3930% 0.0078Aa  0.3876+ 0.0056Aa 0.4039+ 0.0171Aa
T. orientalis Chl(mg/ g) 4.5325+ 0. 1779Aa  3.7296% 0.4181ABa  3.4967+ 0. 1265Ba 2.9451+ 0.3375Ba
Car(mg/ g) 1.5184% 0. 0630AhL 1.2808+ 0. 1284ABa 1.2074% 0.0433Bb 1. 1238+ 0. 1101Ba
Car/chl 0.3350+ 0.0018Aa  0.3442+ 0.0039ABL 0.3453% 0.0031Bb 0.3834+ 0. 0089Ca
4 (g/m?)
Table 4 Lamina mass per unit area for P. tomentosa and T. orientalis grown under different light regimes
Svesi Light regimes
peeies 3.1%/12. 5% 12. 5%/ 12. 5% 9%/ 36% 25%/36%
P. tomentosa 36. 0042+ 0.3575Aa 37.4934+ 0.3317Ba 44.1427% 0. 1568Ca 46.0851% 0.2882Da
T. orientalis 23.7183% 0.2578Ab 26. 7628+ 0.3530Bb 35. 8032+ 0.3532Chb 44.3575% 0.5338Db
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