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Acclimation to Light Environment Changes of a Tropical
Rainforest Fern, Pteris ensif ormis
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(X ishuang banna Tropical Botanical Garden, T he Chinese A cademy of Sciences, Mengla, Yunnan 666303, China)

Abstract: Investigations of field showed that Pteris ensif ormis has the ability to acclimate to dif-—
ferent light levels. This study investigated the ability of individuals of Pteris ensif ormis to accli—
mate to low and high irradiance. Plants were cultivated in understory and gap of tropical primary
rainforest for about 40 days. Individuals growing in understory indicated more number of leaves,
bigger canopy width, higher chlorophyll contents and higher photosynthetic rates than that of
plants growing in forest gap. Plants growing in understory also exhibited a greater efficiency in
the photochemical utilization of absorbed light energy and lower ability to dissipate excess energy
nonphotochemically, relative to the plants growing in forest gap.- However, maximum photosyn—
thetic rates were similar in both sets of plants, reflecting the higher efficiency of energy conversa—
tion in the understory—growning plants and an apparent saturation of photosynthetic capacity in
the gap—growing plants. The latter may have resulted from the injury of the photosynthetic appa—
ratus in addition to an increase in nonphotochemical dissipation of excess light energy. The higher
capacity for harmless thermal dissipation of excess light energy should be beneficial in plants
growing in exposed locations and subject to drought and nutrient stresses. Thus, the results ex—
panded those plasticity in adjusting the photosynthetic apparatus to various light levels consti—
tutes a valuable adaptation to growing in different light environments in the tropical rainforest.
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Fig.-1 The light environment in the understory ( ©) and gap ( ) of primary rainforest
(measured in a clear day on Aug. 28)
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Table 1 Effect of different treatments on the growth and chlorophyll contents of Pteris ensiformis
* Chl (a+ b) _—
T reat ment s width(cm) Leaf area(cm?) (mg* g TFW) Chl a/b
L 35.2+1.6a 86. 15, 8a( 18) 1. 89+0. 37a 2.28=+0. 14a
H 27.8%2.3p 79.7%2. 41(14) 1. 320. 09 2.41=%0.204
LH - - 1. 80=%0. 13ab 2.31=%0.08a
HL - - 1. 42+0. 17p 2.38%0.114
: L. ( ); H. ( ); LH. 3d; HL. 3d,

(mean==SD, n= 4 5)

cc 33 . &g 33

Notes: L.low light environment(U nderstory); H.high light environment ( Gap); LH.understory to gap for 3 days;
HL. gap to understory for 3 days. T he data (M ean==SD, n= 4 5)sharing the different letter in column differ
significantly (P< 0. 05), The same below. “= "ot measured. “®* ”°T he data in parenthesis are the number

of health leaves of plant.
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Fig.2 The curve of photosynthetic oxygen evolution in
leaves of Pteris ensiformis under different treatments
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Fig. 3 Fractions of absorbed light energy utilized in pho-
tosynthesis (A) and dissipated nonphotochemically (B)
in the leaves of Pteris ensif ormis under different treat—
ments (mean==SD, n= 4)
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Table 2 T he fluorescence characters (mean==SD, n= 4) >
in the leaves of Pteris ensiformis under different treatments

Fv/Fm Fv/Fo Fv’/Fm~’

T reatments

L 0.83240.0038a  4.65%0.12 a 0.58=+0.05 a

H 0.7820.012 p 4.21%0.15 p 0.44=20.02 b ’
LH 0.8120.0091 ab 4. 6=20. 13 ab 0.52+0. 07 ab ’
HL 0.79=20. 01 ab 4.36+0.041}hp 047%0.04 b ’
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