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Insect biogeography is poorly documented globally, particularly in the tropics. Recent intensive 
research in tropical Asia, combined with increasingly available records from citizen science, provides 
an opportunity to map the distributions of tropical Asian butterflies. We compiled a dataset of 730,190 
occurrences of 3,752 tropical Asian butterfly species by aggregating records from GBIF (651,285 
records), published literature (27,217), published databases (37,695), and unpublished data (13,993). 
Here, we present this dataset and single-species distribution maps of 1,576 species. Using these 
maps, along with records of the 2,176 remaining species, we identified areas of limited sampling (e.g., 
Myanmar and New Guinea) and predicted areas of high diversity (Peninsular Malaysia and Borneo). 
This dataset can be leveraged for a range of studies on Asian and tropical butterflies, including 1) 
species biogeography, 2) sampling prioritization to fill gaps, 3) biodiversity hotspot mapping, and 4) 
conservation evaluation and planning. We encourage the continued development of this dataset and 
the associated code as a tool for the conservation of tropical Asian insects.

1School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, china, . 2the University of 
Toronto Scarborough, 1265 Military Trail, Scarborough, ON, M1C 1A4, Canada. 3School of ecology, Shenzhen 
Campus of Sun Yat-sen University, Shenzhen, 518107, China. 4center for integrative conservation & Yunnan Key 
Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical 
Garden, Chinese Academy of Sciences, Mengla, Yunnan, China. 5Royal Botanic Gardens, Royal Botanic Gardens, 
Kew, UK. 6Moore Center for Science and Solutions, Conservation International, Arlington, VA, USA. 7Department 
of Biology, City College of New York, City University of New York, 160 Convent Avenue New York, New York, 
NY, 10031, USA. 8PhD Program in Biology, City University of New York, 365 Fifth Avenue, New York, NY, 10016, 
USA. 9Entomology Section, National Museum of Natural History, Rizal Park, Manila, 1000, Philippines. 10School 
of Biological Sciences, Monash University, Clayton, Victoria, 3168, Australia. 11czech University of Life Sciences 
Prague, faculty of environmental Sciences, Prague, czech Republic. 12Biodiversity Society, 49/1 Babar Road, Dhaka, 
1207, Bangladesh. 13Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, 
York, YO10 5DD, UK. 14Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los 
Baños, Laguna, 4031, Philippines. 15Nature Society Singapore, 510 Geylang Road, Singapore, 389466, Singapore. 
16Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Panama. 17Department of Life 
Sciences, National Cheng Kung University, Tainan City, Taiwan. 18Faculty of Sustainable Agriculture, Universiti 
Malaysia Sabah, Locked Bag No. 3, 90509, Sandakan, Sabah, Malaysia. 19bioSEA Pte Ltd., 68 Chestnut Avenue, 
Singapore, 679521, Singapore. 20Science Department, Natural History Museum, London, SW7 5BD, UK. 21insect 
Ecology Group, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK. 22national centre for 
Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), GKVK Campus, Bellary Road, Bengaluru, 
560065, India. 23Yunnan Key Laboratory of Forest Ecosystem Stability and Global Change Response, Xishuangbanna 
Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China. 24Vietnam National Museum of 
Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam. 25School of 
Biosciences, University of Melbourne, Parkville, Melbourne, Australia. 26these authors contributed equally: eugene 
Yu Hin Yau, Emily E. Jones. ✉e-mail: tbone@hku.hk

DATA DESCRIPToR

oPEN

https://doi.org/10.1038/s41597-025-05333-w
http://orcid.org/0009-0007-6038-5466
http://orcid.org/0000-0001-5956-6904
http://orcid.org/0000-0003-4047-5011
http://orcid.org/0000-0003-2936-5786
http://orcid.org/0000-0003-1871-7715
http://orcid.org/0000-0001-9837-4163
http://orcid.org/0000-0002-3860-6118
http://orcid.org/0000-0001-7349-5102
http://orcid.org/0000-0002-4899-3158
http://orcid.org/0000-0001-9999-2254
mailto:tbone@hku.hk
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-025-05333-w&domain=pdf


2Scientific Data |         (2025) 12:1004  | https://doi.org/10.1038/s41597-025-05333-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Background & Summary
Tropical Asia, home to multiple major global biodiversity hotspots, harbors a rich assemblage of highly 
range-restricted endemic species1. Unfortunately, reliable distribution data for many species in this region are 
scarce2. One prominent challenge for invertebrate conservation, known as the Wallacean shortfall, stems from 
our inadequate knowledge of species distributions3. Insufficient information on species distributions impedes 
the identification of vulnerable species and the efficient allocation of conservation resources across regions and 
species3,4.

While recent global studies of butterfly biogeography have incorporated data from tropical Asia5,6, they have 
primarily relied on coarse, country-level data to examine biogeographic patterns5–7. The distribution informa-
tion summarized from those data is largely influenced by political boundaries rather than relevant ecological 
factors and is inadequate for identifying important conservation/vulnerable areas, which requires fine-scale, 
biogeographic data with low bias8. There have also been attempts to map spatial phylogenetic diversity using 
range maps9, but the quality of such spatial analyses is highly dependent on the range maps used, which often 
fail to capture distribution patterns at local scales, thereby limiting the resolution of the spatial pattern of inter-
est. Although fine-scale geographic distributions of several Asian butterfly groups have been mapped (e.g., 
Elymnias in Wei et al.10; Papilio in Condamine et al.11; Polyura in Toussaint et al.12; range‐restricted butterflies 
in Scriven et al.13), to date, no unified, fine-scale distribution dataset has been produced for the entire region – 
despite the importance of such a tool for examining patterns of diversity within this highly biodiverse region1,6. 
Existing locality data might not be readily accessible and frequently require aggregation and standardization. 
Fine-grained information on species distributions is an essential first step for understanding insect biodiversity 
patterns and conservation needs.

The creation of regional datasets of species distributions is aided by the recent development of large, 
open-source biodiversity data platforms such as the Global Biodiversity Information Facility (hereafter, GBIF), 
an online database that organizes crowd-sourced data from citizen science platforms, scientific literature, and 
specimen collections14. These data, however, often include large spatial biases due to uneven sampling and data 
mobilization efforts among regions14,15. Even if available, much of the fine-scale biogeographic data that could be 
employed to reduce these biases remains buried in literature and regional databases, requiring concerted efforts 
to make it analysis-ready7. Without unified and standardized datasets, it is difficult to test macroecological and 
macroevolutionary questions16, produce high-quality species distribution models17, and identify effective con-
servation targets5,6,8,18.

The process of mapping species distributions can be accomplished either through data-driven modeling 
or by relying on expert knowledge. Expert range maps drawn by experts tend to overestimate occupancy of 
species at local scales15,17,19. In addition, the quality of their source data, hence the uncertainty of the analysis, 
is often unknown16. The dependence of range maps on expert knowledge means this method is available for 
only a small subset of well-studied species7. In contrast, data-driven distribution maps offer greater transpar-
ency and reproducibility18,20. Modern modeling techniques allow the interpolation of potential distributions 
into areas for which primary data collection may not be possible, enabling the production of more detailed 
and reliable distribution maps3,21. However, major data gaps exist for occurrence records of most taxa16,22, 
particularly invertebrates, and the non-random distribution of these gaps necessitates careful treatment within 
models23.

Species distribution maps facilitate the identification of species ranges and diversity hotspots. This pro-
vides valuable insights for local conservation planning/prioritization24,25 and policy-making, paving the way 
for future investigations into butterfly biogeography5 and phylogeographic patterns24. Specifically, species dis-
tribution maps can guide the allocation of conservation resources, inform the strategic design of protected 
areas in high-suitability/biologically diverse areas, and identify low-suitability areas in need of management25,26, 
enabling effective conservation interventions. In conjunction with species distribution models (SDMs), occur-
rence datasets can help inform species reintroduction programs by identifying potentially suitable areas25,27 and 
optimal source populations28, and expedite IUCN Red List assessment, which has poor species coverage in Asia. 
Additionally, applications of SDMs include the modeling of species and community-level responses to climate 
change24,27,29 and the assessment of extinction risks30.

The need for species conservation is particularly acute in tropical Asia, defined broadly here to include South 
and Southeast Asia (Fig. 1). The area is home to over 20,000 islands, many of which were repeatedly connected 
and separated from adjacent landmasses during drastic sea-level fluctuations31. This dynamic past led to the 
evolution of numerous species endemic to single islands or island groups, and as such this region hosts some of 
the world’s greatest biodiversity – an estimated 15–25% of all well-studied terrestrial taxa and a large proportion 
of undescribed taxa32,33. This highly biodiverse region is also one of the globe’s most biologically threatened: it 
is estimated that 42% of Southeast Asia’s biodiversity may be lost by 2100 as three-quarters of its primary forests 
are lost to agriculture, urbanization, and mineral extraction32,34,35.

We present a comprehensive dataset of tropical Asian butterfly spatial occurrences, more than half of which 
are highly accurate (uncertainty < 10 km). This fills a major sampling gap, since Asia is poorly represented in 
global biodiversity data repositories15,22,36; improved datasets are urgently needed to enable effective moni-
toring and management of biodiversity across the region. Leveraging the data along with tailored SDMs, we 
generate data-driven distribution maps at a resolution of 10 km × 10 km. These maps enhance a fundamen-
tal understanding of butterfly macroecological patterns in tropical Asia. Each butterfly species’ distribution 
was individually modeled and, together with buffered occurrence points of unmodeled species, employed to 
assess regional patterns of species diversity. Combined with species distribution models, our aggregated data 
advances knowledge of butterfly macroecology and facilitates evidence-based decision-making for butterfly 
conservation in tropical Asia.
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Methods
occurrence data. We manually extracted GBIF records on 15 April 2024 for tropical Asian Papilionoidea 
(Lepidoptera: Hesperiidae, Lycaenidae, Nymphalidae, Papilionidae, Pieridae, Riodinidae; 35.64° N to 11.426° S 
and 67.588° E to 174.990° E) for the years 1970-present (Derived dataset GBIF.org37). The geographical extent 
of the study area was selected to encompass northern temperate Asia to secure sufficient data to capture the 
full niche breadth of all species in the subsequent SDMs. We included presence records derived from human 
observation, preserved specimens, material samples, or literature, provided they had associated coordinates. We 
omitted all records with >100 km coordinate uncertainty, so-called “fuzzy” taxon matches, and records for which 
the scientific name was missing or incomplete unless nomenclature could be extracted using a BOLD identifier 
(boldsystems.org). This resulted in a final number of GBIF records equalling 651,285. The complete metadata, 
filtering methods, and data usage information for this GBIF-derived dataset is available GBIF37 (https://doi.
org/10.15468/dl.9wyfb6).

Roughly 73% (472,714) of these records are ‘research-grade’ observations from iNaturalist. Information on 
how this designation is made is available at GBIF.org. The accuracy of opportunistically collected data from 
crowd-sourced platforms like GBIF is often diminished due to misidentifications, taxonomic, spatial, and tem-
poral biases, as well as uneven taxonomic validation due to lack of standardized reference data14,38–41. Given 
these potential issues, and to fill geographic gaps, we supplemented these GBIF data with expert data (coauthor 
datasets, published literature) and harmonized binomials to a single expert dataset (Lamas, 2015. Catalogue of 
the butterflies (Papilionoidea), available from the author.; see below).

We extracted data from the B2D2 Database of Butterflies for Borneo provided by JKH/the Darwin 
Initiative (n = 19,417) (https://www-users.york.ac.uk/~jkh6/index.htm), a dataset for Bangladesh provided by 
SC (Chowdhury et al.42; n = 18,278), and unpublished datasets from coauthors AN, DJL, LVV, TK, and YB 
(n = 13,993). For geographic regions with relatively few records (e.g., China, Myanmar, Thailand) and for spe-
cies with < 10 records, we conducted targeted searches of post-1970 published literature on Google Scholar in 
English and Chinese (simplified and traditional) (genus OR genus + species + country name), producing an 
additional 27,217 records. Although some publications lacked collection dates for records (e.g., checklists), we 
assume that the inclusion of species in recent publications is indicative of species’ current localities. Data sources 
for all records are provided in the reference column (C) in Occurrence Records of Tropical Asian Butterflies: 
1970–2024.csv and alphabetically in Data Sources for Occurrence Records of Tropical Asian Butterflies: 1970–
2024.pdf at our Figshare repository43.

For all records in published sources, we extracted coordinates, locality name, locality type (e.g., exact coordi-
nates, city, national park, island, or province), country, and year of record (where available). If exact coordinates 
were not provided by the source, we used Google Earth Pro (v7.3.6.9345) to estimate the locality centroid for any 
record provided at the province level or below (e.g., national park or city). For records from islands ≤ 100 km at 
the widest dimension (e.g., localities within the Philippines and Indonesia), we estimated the island or archipel-
ago centroid. If a range of coordinates was provided (e.g., records from The Butterflies of Vietnam), we selected 
a point within the range.

Final binomial harmonization, validation, and authority assignment were conducted by DJL using a taxo-
nomic reference prepared by Gerardo Lamas (Lamas, 2015). Family names were aligned to GBIF.

The resulting database43 (Occurrence Records of Tropical Asian Butterflies 1970–2024) consists of 730,190 
occurrence records for 3,752 species from 551 genera. These records represent approximately 19.2% of all 

Fig. 1 Distribution of GBIF and other occurrence records in our study area. Sampling intensity was estimated 
by running kernel density on the coordinates of all available occurrence data of every species. Regions of 
Asian landmasses based on the ecoregions and biogeographic realms as revised by Dinerstein et al.78, as well as 
Wallace’s Line, Huxley’s Line, and Weber’s Line.
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described butterfly species globally44,45 (around 19,500 spp. according to Lamas (2015); but see Pinkert et al.5). 
Records of Nymphalidae (1,357 spp.; 316,584 records) comprise 43% of the dataset, followed by Lycaenidae 
(1,046 spp; 145,521 records), Papilionidae (270 spp.; 102,309 records), Pieridae (409 spp.; 97,722 records), 
Hesperiidae (636 spp.; 61,107 records), and Riodinidae (34 spp.; 6,947 records). Of the 3,752 species in the data-
base, 1,631 (43.5%) are represented by ≥ 10 records within the extent of 36° N to 10° S and 69° E to 161.6° E that 
are > 10 km apart (see details on distribution modeling below).

Most occurrence records are concentrated in a limited number of regions, for example, India (26.97% of all 
data), Taiwan (13.08% of all data), Singapore (8.48% of all data), Hong Kong (7.89% of all data), and Malaysia 
(6.82% of all data) (Fig. 1). Equatorial regions together with southern China are relatively underrepresented in 
our dataset. As much of the data is derived from GBIF, which contains a large proportion of citizen science data, 
we observed a clustering of our data in areas of high human population density and a general lack of data in 
more inaccessible regions.

SDM methods and results. Five algorithms, Generalized Linear Model (GLM), Maximum Entropy 
(MaxEnt), Multivariate Adaptive Regression Splines (MARS), Classification Tree Analysis (CTA), and eXtreme 
Gradient Boosting (XGBOOST) were selected to create an ensemble model for each butterfly species, using the 
ensemble platform “biomod2”46 in R. We ensured that the underlying mechanism of our selection of algorithms 
was diverse and relatively balanced between the main categories of algorithms. We used 13 predictor variables for 
selection by individual models. All modeling was conducted at 10 km × 10 km resolution.

The Generalized Linear Model (GLM) is a regression-based algorithm widely used in SDMs47. They are not 
as flexible when fitting complex response curve shapes, but this also means that GLMs are less vulnerable to 
overfitting47. Maximum Entropy (MaxEnt) in our study was based on the “maxnet” R package48, which uses 
penalized maximum likelihood for model fitting. MaxEnt is one of the computationally less expensive algo-
rithms that perform well, making it a popular SDM algorithm49. MaxEnt is more capable of fitting complicated, 
non-linear response curves, enabling users to model more complex relationships by using progressively complex 
statistics based on the number of samples available50. The classification tree analysis (CTA) used by our SDM 
is based on the “rpart” R package51. The CTA algorithm recursively splits one group of data into two subgroups 
using one of the predictor variables given; therefore, the final model can be visualized as binary decision trees51. 
Finally, eXtreme Gradient Boosting (XGBoost) is one of the more computationally efficient gradient boosting 
algorithms implemented in R by the “xgboost” package52. Boosting algorithms feature an ensemble of weak 
models, each trained to minimize the errors of the previous models47,53.

For the species distribution models, we used 13 predictor variables, which comprised 8 Bioclim varia-
bles extracted from WorldClim54 (see Fig. 2), three soil variables extracted from SoilGrids55 through ISRIC 
(International Soil Reference and Information Centre)56 (see Fig. 3), and 2 vegetation variables derived from 

Fig. 2 Climatic predictor variables included in our SDMs.
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satellite data (see Fig. 3). The Bioclim variables employed included annual mean temperature (Bio 1), tem-
perature seasonality (Bio 4), maximum temperature of warmest month (Bio 5), minimum temperature of 
coldest month (Bio 6), annual precipitation (Bio 12), precipitation of wettest month (Bio 13), precipitation of 
driest month (Bio 14), precipitation seasonality (Bio 15). The soil variables at a depth of 5–15 cm were used, 
including soil pH (phh2o), soil organic carbon content in the fine earth fraction (SOC), and total nitrogen 
(nitrogen). Nitrogen is generally recognized as one of the main limiting elements for plant growth57, while 
soil organic carbon indicates soil quality58. In addition, soil pH exerts considerable influence on soil biogeo-
chemical processes, ultimately impacting plant growth59. The selection of variables for our models was guided 
by expert knowledge to reflect/cover the key limitations and resources relevant to both butterflies and their 
host plants. Knowledge of the study region and biology/ecophysiology of the species being modeled allows 
the identification of the most ecologically relevant variables; therefore, it is the preferred approach for variable 
selection47,49,60,61.

The vegetation variables used were the Normalized Difference Vegetation Index (NDVI) and Canopy Height. 
NDVI was calculated from the USGS Landsat 5 (Level 2, Collection 2, Tier 1, 1985 – 1999) and USGS Landsat 
7 (Level 2, Collection 2, Tier 1, 2000 – 2020) datasets, with a customized script to filter satellite images by cloud 
cover (retaining images with 15% or less cloud cover over land) and to obtain the mean NDVI value. Canopy 
Height data was retrieved from the ETH Global Sentinel-2 10 m Canopy Height dataset62. These vegetation 
cover variables were directly used to model the land cover/habitat available to butterflies. Mean NDVI provided 
information on the general greenness of an area, while Canopy Height data offer structural details on vegetation 
to better identify different types of habitats. Together, these variables indicate resource availability and, to some 
extent, habitat structure. To address potential issues associated with negative values in NDVI data, an alterna-
tive variable, Corrected NDVI, which contains no negative values, was also examined. The Corrected NDVI is 
derived from the equation Corrected NDVI = NDVI + 1. However, the SDMs using Corrected NDVI produced 
identical results to those using standard NDVI data, indicating that our models were unaffected by negative 
NDVI values.

The resolution of all environmental variables was set to 10 km × 10 km by averaging the values from con-
tributing grid cells. This resolution was chosen as a result of balancing the spatial accuracy of available data 
and computational capabilities. Our data includes 441,356 records with coordinate uncertainty data, while an 
additional 288,834 records do not have coordinate uncertainty data. Among the records with known coordi-
nate uncertainty, 80,374 (18.21% of records with uncertainty data) had uncertainties ranging from 1–10 km, 
and 39,302 (8.90% of records with uncertainty data) had uncertainties exceeding 10 km, thus, 10 km seemed a 
reasonable compromise to reflect this. For the construction of SDMs, the map of the study area and predicting 
variables were formatted to share the same extent, resolution, and projection. Next, the map of tropical Asia and 
all explanatory variable rasters were all projected to equal area projection EPSG:6933 and cropped to the extent 
of 36° N to 10° S and 69° E to 161.6° E to fully cover the study region. The final, cleaned dataset used in our SDMs 
included 721,335 global records.

We used a function to further prepare the input files required by biomod2 and to generate SDMs individually 
for each species. Occurrence data of a species was first extracted from our butterfly occurrence dataset and used 
to produce a raster of resolution of 10 km × 10 km. A total of n cells in the raster were assigned a value of “1” 
to represent at least one occurrence record present in that cell, while cells with no record were assigned “n/a” 
instead of “0” since no true absence data is available.

Only species with n ≥ 10 were modeled. It has been shown that SDMs based on ten occurrence points can 
reach 90% of the maximum possible accuracy63, while recent studies suggest a minimum requirement of 3 to 13 
occurrence points in virtual simulations and 14 to 25 occurrence points in real-world conditions to infer accu-
rate SDMs64. Therefore, n = 10 was chosen as the lower limit of sample size for constructing SDMs to maximize 
the number of species modeled while maintaining a reasonably high predictive accuracy63. A total of 1,631 

Fig. 3 Non-climatic predictor variables included in our SDMs.

https://doi.org/10.1038/s41597-025-05333-w


6Scientific Data |         (2025) 12:1004  | https://doi.org/10.1038/s41597-025-05333-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

species met this qualification, whereas 1,951 species had fewer records. For each species, occurrence records 
were split into three sets: 10% of the data was first reserved for model evaluation, and another 10% was then 
partitioned for model validation, leaving the remaining 80% of data for model calibration. The partitioning of 
model validation data was repeated 5 times to generate five different combinations of calibration and validation 
occurrence data.

Before SDM construction, pseudo-absence records were generated. Despite our efforts to fill the spatial data 
gaps, the sampling effort of our dataset is still spatially biased toward highly populated areas and roads due to 
the overwhelming number of records from GBIF and iNaturalist in our dataset (more than 80%). As part of 
our effort to account for biases in our data, we integrated the spatial bias of our dataset into the generation of 
pseudo-absence records, assuming that all species were sampled in areas with at least one occurrence record of 
any species. To capture such spatial bias, we created a raster layer of the spatial sampling effort for all species 
across our study area (shown as sampling intensity in Fig. 1), which is equivalent to the bias layer commonly 
used in the MaxEnt program. This was done by pooling occurrence data of all species used in our models and 
summarising them in a raster, then performing two-dimensional kernel density estimation (kde2d) using the R 
package “MASS”65 with the default settings. We excluded cells with occurrence records and sampled the remain-
ing study area for pseudo-absence records based on the bias layer, giving more weight to well-sampled areas, 
as suggested by Phillips et al.66 and Ferrier et al.67. Following the recommendation of Barbet‐Massin et al.68, for 
calibration, validation, and evaluation data, we produced five sets of pseudo-absence data for each species, main-
taining a 1:1 ratio between the number of pseudo-absence points and occurrence points in each set.

Subsequently, we constructed SDMs for each species using five different partitions of calibration and vali-
dation occurrence data, five selected algorithms, and five sets of pseudo-absence data. This resulted in a total of 
125 SDM models (5 × 5 × 5). Both presence and pseudo-absence records were given equal weight during model 
construction to ensure a consistent prevalence of 0.5 among all species. We applied a generalized setting for all 
butterfly species for consistency across species, with adjustments made only to the learning rate and the number 
of decision trees for the XGBoost algorithm to address overfitting. Other model tuning options were retained 
at their default.

We generated binary outputs by maximizing True Skill Statistics (TSS), a widely used threshold-dependent 
index of model fit. Ensemble modeling was selected over single best models for its superior performance in rare 
species69, and its robustness to uncertainties in individual models by capturing the central tendency among 
models47,70,71. We constructed an ensemble model using all single models with TSS values greater than 0.7, 
ensuring that only “substantial” models were included72. A total of 1,576 species out of the 1,631 modeled species 
obtained one or more single models meeting such criteria, allowing the further construction of ensemble mod-
els. The ensemble model was generated using the mean algorithm71, where all candidate models’ probabilistic 
predictions were averaged without weighting. Finally, we projected the ensemble model to the current environ-
ment using the same variables when constructing the SDMs.

Ensemble models were evaluated using two metrics: TSS and Boyce index. TSS and Kappa are two of the 
most popular SDM threshold-dependent evaluation metrics. TSS was chosen over Kappa due to the inherent 
dependency of Kappa on species prevalence73. Since we are modeling thousands of species with differing degrees 
of rarity and prevalence, TSS is more appropriate for model comparison between species. TSS varies from +1 
to −1, in which +1 indicates perfect agreement with evaluation data, while a TSS value close to or less than 0 
indicates model performance comparable to a random model73.

Following the suggestions of Hernandez et al.74 and Breiner et al.69 to use multiple evaluation measures 
when using presence-only data, we also calculated the Boyce index for all models built to supplement TSS. 
The Boyce index is capable of providing an accurate and reliable measure of model performance for models 
based on presence-only data75, which is the key reason for its use in our study. Another reason for the use of the 
Boyce index is its lower sensitivity (correlation) to species prevalence relative to other metrics, including CVI, 
MaxKappa, and adjusted D275, while AUC and TSS also have a negative correlation with prevalence73. AUC was 
also found to produce inflated estimates of model quality when the modeled species is rare76. Boyce index ranges 
from +1 to −1, in which +1 indicates the model is of the highest quality and perfectly predicts evaluation data, 
while −1 indicates counter-prediction of evaluation data75. Boyce index with a value close to 0 indicates the 
model performs no better than a random model75.

To factor biogeography into predictions and correct for biogeographic overprediction generated by our 
SDMs (and account for differences between fundamental and realised niches), we restrained the sampling of 
pseudo-absence records and distribution maps produced by our models to regions that hosted more than 1% of 
species points (as such regions fall within species biogeographic ranges) following the methods of Zhou et al.77. 
By incorporating biogeography into model predictions, we aimed to reflect the impact of oceans as dispersal 
barriers in the SDM outputs to give a more realistic estimate of species’ distribution and reduce false positive 
predictions. We first divided the landmasses of tropical Asia into 11 biogeographic regions (Fig. 1) based on the 
ecoregions and biogeographic realms as revised by Dinerstein et al.78, as well as Wallace’s Line, Huxley’s Line, 
and Weber’s Line. For each species, we identified regions that included at least 1% of the species occurrence 
records, considering them to be “active regions”. We then cropped the SDM-predicted distribution maps to 
include only the active regions specific to each species. These cropped distribution maps were stacked together 
to generate an alpha diversity map, which illustrates the number of species present in each 10 km × 10 km cell 
across tropical Asia. The stacked SDM predictions highlighted a number of locations with relatively high diver-
sity, exceeding 600 species in some locations (Fig. 4).

Point buffer methods. A total of 2,176 species (58.0% of all recorded species in our dataset) were 
excluded from our species distribution modeling outputs either due to insufficient data or low species 
distribution model quality. Out of the 2,176 species without valid SDM outputs, we plotted and buffered 
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occurrence records of 2,070 (55.2% of all recorded species in our dataset) species which have at least 1 valid 
occurrence point within the range of 36° N to 10° S and 69° E to 161.6° E to infer alpha diversity. We first 
mapped their occurrence records and created 30 km-wide polygons (buffers) around these points to enhance 
clarity. Subsequently, the buffered occurrence points were converted into binary raster maps for each species 
and stacked to generate an additional alpha diversity map, representing species with limited occurrence 
records.

The diversity map derived from buffered occurrence points was then stacked with the species distribution 
model (SDM) projections to produce Fig. 5. This figure provides an overview of the alpha diversity of all species 
documented in our dataset. We identified two major butterfly diversity hotspots: peninsular Malaysia and the 
Sabah region of Borneo. We also found high levels of diversity predicted in Borneo, Sumatra, coastal Cambodia, 
southern Thailand, the Western Ghats in peninsular India, the Assam region of India, the Cardamom Mountains 
in Cambodia, and Vietnam.

Minimum convex polygon (MCP) methods. Among the 2,176 species without valid SDM outputs, 
there were 46 species with occurrence data widely distributed within the biogeographic regions they inhabit. 
Distributional constraints of such widespread species can challenge effective models76, as reflected by their low 
SDM validation scores (all constructed SDMs failing our TSS > 0.7 requirement), which eventually resulted in 

Fig. 4 Projected distribution of butterfly diversity based on our species distribution models, using the mean 
algorithm for ensemble modeling.

Fig. 5 Estimated distribution of butterfly diversity based on our species distribution model projections and 
buffered occurrence points (for species not included in our SDM outputs).
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the exclusion of their SDM outputs. To address this issue, we also computed minimum convex polygon (MCP) for 
each of the 46 widespread species. MCPs were first computed using all available occurrence records of the species 
concerned (after excluding those dated before 1970). To factor in dispersal barriers (biogeography), the estimated 
distributions (MCPs) were limited to biogeographic regions (Fig. 1) with at least ten occurrence records of the 
relevant species. The MCP outputs are accessible on the Figshare repository43 for reference but were not used to 
generate any of the diversity maps in this paper (these species are instead accounted for via the point buffers).

Software. We calculated the SDMs in R79, version 4.1.2. To construct and merge the SDMs into ensemble 
models, we utilized the “biomod2” package, version 4.2-446. The high-performance computing cluster HPC2021 
at The University of Hong Kong, operating on CentOS 8, was employed to run the SDMs.

Data Records
All data, including Occurrence Records of Tropical Asian Butterflies 1970–2024 (.csv), Metadata for Occurrence 
Records of Tropical Asian Butterflies 1970–2024 (.xlsx), Data Sources for Occurrence Records of Tropical Asian 
Butterflies 1970–2024 (PDF), SDM-predicted single species distribution maps (as individual.tif files, e.g., Fig. 6, 
or as one single PDF file), single species buffered occurrences (as individual.tif files or as one single PDF file), 
single species minimum convex polygons (as individual.tif files or as one single PDF file), and documentation 
on the basis (SDM projection/MCP/Occurrence record buffer) of range maps for individual species (sp_output_
type.csv) are available from our Figshare repository43 (https://doi.org/10.6084/m9.figshare.25037645). These 
outputs are licensed under a CC BY 4.0 license. The GBIF-derived dataset (downloadable as TSV file under a 
CC BY-NC 4.0 license), associated metadata, contributing datasets, and information about our data filtering 
methods are available at GBIF37 (https://doi.org/10.15468/dl.9wyfb6).

Technical Validation
SDM model evaluation/verification. The mean TSS score of all ensemble models is 0.899, with a standard 
deviation of 0.222, while the Boyce index is 0.729, with a standard deviation of 0.325. Both evaluation metrics 
indicate that the models constructed are of good quality. The mean TSS score of our ensemble models is higher 
than 0.8, falling into the category of “almost perfect” models according to the widely used division suggested by 
Landis & Koch72 (e.g., Capinha et al.80; Jones et al.81). Since we only included models with TSS values of more than 
0.7 in our ensemble models, a high mean TSS score among the ensemble models is expected. The mean Boyce 
index of our models is higher than 0.7, which has been considered an indicator of good models in other studies 
(e.g., Rupprecht et al.82). Boyce index value of 0.5 is usually considered a cutoff for acceptable performance83.

Collaborator evaluation. Our model outputs were also inspected by experts to evaluate their plausibility. 
Plausibility checks form an important part of model validation by making sure the modeling results confine to the 
known range and possible range of the species modeled49,84, serving as a supplement to evaluation metrics, which 
only measure the goodness of fit of models.

Experts (coauthors/collaborators) agreed that our model outputs are generally reasonable and informative. 
However, it is important to note that some of the sampling biases persisted in the final model outputs despite our 
efforts to address data gaps by incorporating additional datasets. We, therefore, encourage future data contribu-
tions to improve the coverage of our dataset, especially in the areas with identified data gaps.

Although the majority of data gaps can be attributed to insufficient sampling effort, the relative absence of 
data in the Philippines (and potentially other parts of tropical Asia) is primarily a result of the dominance of 

Fig. 6 As a case study for the single species maps, an SDM-predicted distribution of Euripus nyctelius 
(Doubleday, 1845) (Nymphalidae: Apaturinae) based on our occurrence dataset is displayed.
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Facebook over other platforms like iNaturalist for citizen science data contribution. However, such data on 
Facebook contains limited information since EXIF data (containing GPS coordinates) of photos are removed 
when uploaded. Mining occurrence data with valid location records from Facebook (e.g., Chowdhury et al.18) 
and other sources may also provide useful data.

Our modeling results identified the Cardamom Mountains on the Cambodian-Thai border as a butterfly 
diversity hotspot. During the Pleistocene when sea levels were up to 120 m lower than present, and this area was 
on the eastern edge of a paleoriver watershed that included the similarly diverse Malay peninsula and extended 
south to present-day Borneo85,86. The high diversity in this area is likely relictual87. Endemism in this area likely 
contributes to high butterfly diversity, which supports our models’ prediction there.

Multiple experts pointed out the unexpected diversity differences between different parts of Borneo. While 
our models identified Sabah as a hotspot for butterfly diversity, lower diversity was predicted for other parts of 
Borneo, such as Sarawak and Kalimantan. This contradicted our expectations, as all these areas possess moun-
tainous regions and endemic species, suggesting similar levels of butterfly diversity. The heart of Borneo, char-
acterized by lower disturbance compared to other parts of the island, was also predicted to host a relatively 
lower diversity of butterflies by our models. Such a model prediction also contradicts our expectation of higher 
butterfly diversity in less disturbed areas. This inconsistency between expected and modeled butterfly diversity 
in Borneo may be attributed to sampling bias, evident through the alignment of modeled butterfly diversity with 
political boundaries and sampling intensity (Fig. 1), and the lower modeled diversity in less accessible areas such 
as the heart of Borneo (Figs. 4, 5). The lack of data in less accessible areas has been discussed by Hughes et al.15 
and Boakes et al.88, while this trend is even more obvious in citizen science data15, which constitutes a considera-
ble proportion of our dataset. However, the peak in butterfly diversity observed in northern Borneo does reflect 
the higher botanical richness in that area as modelled by Raes et al.89.

While some of the spatial variations in the sampling effort of our dataset are reflected in the spatial bias of our 
modeling results, there are several notable discrepancies between the distribution of data and modeled diversity. 
Figure 1 illustrates that Japan, Taiwan, and northern Thailand have a relatively high intensity of sampling effort 
compared to their predicted butterfly diversity in Fig. 4. Conversely, a reversed pattern is evident in Southern 
Borneo and Southern Sumatra, where our data shows low sampling effort but our models predict high butterfly 
diversity. These patterns demonstrate the robustness of the models to some of the spatial sampling biases present 
in our data.

To determine the variable importance in our SDMs, we calculated the mean variable importance for each 
variable throughout the ensemble models of all species. Temperature seasonality (Bio 4) emerged as the most 
important variable (scoring 0.235 out of 1), followed by the minimum temperature of the coldest month (Bio 
6, scoring 0.138 out of 1), annual mean temperature (Bio 1, scoring 0.111 out of 1) and Canopy Height (scoring 
0.109 out of 1). Precipitation of driest month (Bio 14, scoring 0.0955 out of 1), Soil pH (phh2o, scoring 0.0927 
out of 1), and precipitation seasonality (Bio 15, scoring 0.0918 out of 1) also exhibited high importance in the 
models. The ranking of variable importance in the SDMs conforms to the hierarchical framework of Pearson & 
Dawson90, in which climatic variables exert greater control over species distribution at continental scales, while 
land cover and soil variables gain influence at more local scales. In addition, the high importance of temperature 
variables, particularly temperature seasonality (Bio 4), is consistent with the results of Carvalho et al.91, which 
highlighted the strong impact of temperature, especially temperature seasonality, on butterfly distribution and 
diversity.

Cross-validation with published literature. We compared the alpha diversity raster predictions made by 
our SDMs (α1) with that of SDMs recently published by Daru (2024) (α2), which map global butterfly species’ dis-
tributions (Fig. 7). A total of 1,354 butterfly species modeled by both studies were identified. Using the modeled 
distributions of these shared species, an alpha diversity map was generated for each study. Differences between 
SDM outputs was calculated by the equation α1 - α2 for every raster cell.

Most of the areas where our SDMs predict lower alpha diversity than that of Daru (2024)92 correspond to 
areas with low Canopy Height and NDVI values (Fig. 3), except for Sulawesi and New Guinea. Areas where our 
SDMs predict higher alpha diversity generally have relatively high Canopy Height or NDVI values, most of them 
contributing to diversity hotspots identified by us. Differences between our diversity results vs. Daru (2024)92 are 
caused by different underlying datasets as well as distinct modeling decisions for the SDMs.

Usage Notes
The predictor variables considered in our SDMs, which include the eight Bioclim variables and the three 
SoilGrids variables, are products of interpolation between available point data54,55. As with most data collected 
without stratified sampling, these point data are likely to be spatially biased towards densely populated and 
developed regions for the Bioclim variables54, and agricultrual areas for the SoilGrids variables55. Users should 
note that our SDMs inherit some of these biases, as well as uncertainties in the interpolation result. In particular, 
the range of butterflies dependent on narrow-ranged host plants might be underestimated.

By generating more pseudo-absences for SDMs in well-sampled areas with the use of the bias mask, we are 
essentially augmenting the weighting of extensively surveyed regions in our models, while unsampled habitats 
may be presumed as suitable. Consequently, the transferability of our models to unsampled areas is limited, 
especially when extrapolating in novel environments not covered by training data66 or in areas where biogeo-
graphic barriers prevent dispersal. This is also one of the reasons for restraining our model predictions to the 
regions where a species is known to occur so that the results are not overly optimistic. Such an approach to 
pseudo-absence generation also assumes that the data collection method is consistent throughout the entire 
dataset66, while our dataset is compiled from various sources. To use our data and models for the prediction of 
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future butterfly distribution under climate change, we suggest using the “random” method from the biomod2 
package to generate pseudo-absence records.

Regarding uncertainty in model results, we have limited confidence in the model predictions for some 
regions, e.g. New Guinea and Sulawesi (Fig. 1) due to a lack of samples and the unique biogeography of the 
islands. The presence of biogeographic barriers such as Wallace’s Line and Huxley’s Line further restrict the use 
of occurrence data from other regions to infer butterfly distribution in these specific areas. In addition to model 
uncertainties, the biogeographic barriers incorporated in our single species distribution outputs will, in reality, 
have variable impacts on species (given variation in dispersal ability for different species). Therefore, we suggest 
that users of the single species distribution maps (based on either SDM projections or MCPs) exercise caution 
and interpret the outputs with awareness of these limitations.

The butterfly occurrence and projected distribution data holds the potential for a wide range of further 
analyses. For example, overlaps between areas of high butterfly alpha diversity and Protected Areas (PAs) and 
Key Biodiversity Areas (KBAs) could shed light on gaps in conservation effort. Endemicity should also be fur-
ther investigated. While we identified butterfly alpha diversity hotspots, areas and regions with relatively lower 
butterfly alpha diversity should not be overlooked in conservation planning, especially those hosting highly 
endemic butterfly species such as Sulawesi (239 endemic butterfly species, 42.9% of total species93) and Papua 
New Guinea94 (e.g., more than 60% of butterfly taxa in New Britain were reported to be “regionally endemic”95).

Code availability
All code used to conduct synonym harmonization, preprocess environmental variables for SDMs, execute SDMs, 
process SDM outputs, and conduct point buffer analysis can be accessed in our GitHub project repository: https://
github.com/eugeneyau/Tropical-Asian-Butterfly-Distribution.
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