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A B S T R A C T

Human-elephant conflict (HEC) affects people and wild elephants negatively, and support for harmonious 
coexistence is needed. With the current human footprint, wildlife is displaced, and people living near wildlife 
want safe interactions. Conservation interventions are needed to manage human-elephant coexistence in real- 
time. This research, using deep learning models, provides the fundamental mechanics for acoustic detection of 
elephants in an automated early-warning system, currently under development. We examine the use of con-
volutional neural networks (CNNs) for classifying Asian elephant (Elephas maximus) sounds and non-elephant 
sounds. The results demonstrated the ability of CNNs to process bioacoustics data across various sample sizes, 
with the best-performing model achieving 98.45 % average test accuracy (balanced sample sizes, a k-fold 
approach with 10 % for testing). But when we infer CNN models built with Sri Lankas elephant vocalizations 
with unseen Malaysias elephant vocalizations, the performance of the models dropped to an average of 67.93 % 
accuracy and F1 score between 0.67 and 0.81, regardless of the initial training dataset size. We used Principal 
Component Analysis to compare 15 sound parameters extracted from spectrograms of elephant calls from Sri 
Lanka and Malaysia, and found that the sound characteristics between the two subspecies largely overlapped but 
with some differences. We conclude that the CNN models can detect elephant sounds but perform best with local 
data. The use of bioacoustic monitoring and automated detection can potentially support harmonious coexis-
tence between humans and elephants, but for endangered species targeted by poachers, safeguards are needed. 
Additionally, we need discourse on research ethics and local communitys rights.
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1. Introduction

Biodiversity loss, alongside climate change and environmental 
pollution, is now at a rate that is traversing alarmingly past the safety 
boundaries of what makes our planet livable for humankind (Rockström 
et al., 2009). The global assessment by the Intergovernmental Science- 
Policy Platform for Biodiversity and Ecosystem Services (IPBES) high-
lighted the anthropogenic degradation of nature, with 75 % of terrestrial 
ecosystems and 66 % of marine environments heavily altered by man, 
and this is expected to worsen with the event of climate change (IPBES, 
2019). The Target 4 of the Convention on Biological Diversity’s 
Kunming-Montreal Global Biodiversity Framework highlighted the need 
for urgent management actions to effectively manage human-wildlife 
conflict, to transform conflict to coexistence (IUCN, 2023).

Human-wildlife conflict definition promoted by the IUCN SSC 
Human-Wildlife Conflict and Coexistence Specialist Group, encompass 
not only visible impact of conflict on injuries and lives of both human 
and wildlife, as well as peoples livelihood, but also hidden or perceived 
negative impacts from the wildlife and from disagreements that arises 
between different groups of stakeholders (IUCN, 2023). Hence, it is 
important to consider how different groups of stakeholders can work 
together as part of conflict resolution. In particular, conflict with wild 
elephants has always ranked high, provoking strong sentiments from the 
communities who are affected, members of the public, and the media 
(Barua, 2010; Kansky and Knight, 2014; Tan et al., 2020; Vasudev and 
Goswami, 2020).

The Asian elephant (Elephas maximus) lives in fragmented pop-
ulations across 13 countries in Asia, and is listed as ‘Endangered’ on the 
IUCN Red List of Threatened Species (Williams et al., 2020). There are 
four extant subspecies of Asian elephants, including E.m.indicus, E.m. 
maximus, E.m.borneensis, and E.m.sumatranus (Williams et al., 2020). 
Wild elephants have large home ranges reaching hundreds of square 
kilometers and their populations often live and roam in areas outside of 
protected areas (Calabrese et al., 2017; Fernando and Pastorini, 2011). 
As natural habitats are increasingly lost and fragmented by anthropo-
genic activities (Sukumar, 2003; Williams et al., 2020), wild elephants 
frequently come into contact with humans in agricultural land (de la 
Torre et al., 2021). Human-elephant conflict (HEC) often involves crop 
damage and property damage, and with occasional cases of injuries or 
death to humans and elephants (Williams et al., 2020), resulting in 
negative perceptions towards conflict.

Management of conflict situations is important to safeguard both 
people and wildlife. The setting up of early warning systems for HEC, 
like in Annamalai Hills, India, has helped to reduce human injuries and 
death in an agricultural landscape with human settlements (Kumar and 
Raghunathan, 2014; persn. Comm Ananda Kumar). This study seeks to 
complement such efforts with the development of artificial intelligence 
(AI), here defined as computer systems that has the ability to perform 
tasks that typically require human intelligence (Fang et al., 2019), and 
advances in machine learning, to carry out automated detection of ele-
phants, especially where direct sightings of elephants are difficult. This 
effort is part of a project that is trying to foster a harmonious coexistence 
between the agriculture communities and elephants in movement cor-
ridors and shared landscapes (www.ace-coalition.com). Previous ap-
proaches to automatic detection of elephants have been largely 
dependent on the combination of passive acoustic monitoring (PAM) 
and supervised learning (Wrege et al., 2017; Swider et al., 2022), which 
heavily require human interventions in the training process such as 
feature extraction (Keen et al., 2017). Additionally, such studies have 
been mainly concentrated in African elephants, with limited research 
done in Asian elephants.

Elephants are highly social mammals and vocal learners that use 
different call types to communicate (S. de Silva, 2010; Stoeger and de 
Silva, 2014). Their vocalization ranges from infrasound (<20 Hz) 
(Stoeger and de Silva, 2014) to approximately 6 kHz (Nair et al., 2009). 
The usage of sound recordings collected via Autonomous Recording 

Units (ARU) can help increase the detection of vocal taxa, as fixed-angle 
sensors like cameras can only detect when the animal is in view. How-
ever, continuous acoustic monitoring generates large amounts of data 
that is challenging to save and transfer, and require manpower to 
manually process, making real time detection a challenge. Advances in 
AI and computer technology can address this bottleneck and carry out 
automated detection of targeted species using bioacoustics data. Deep 
learning is a type of machine learning model inspired by the structure 
and function of the brain, consisting of networks of interconnected 
nodes used to learn complex relationships between variables for a broad 
diversity of applications i.e. identifying similar objects in different im-
ages or to study the relationship between words and emotions (Emmert- 
Streib et al., 2020; Mehrish et al., 2023).

Convolutional neural networks (CNNs) are a type of deep learning 
architecture inspired by the hierarchical and local connectivity patterns 
found in the mammalian visual system, for example a cat (Jogin et al., 
2018), which is used for processing high-dimensional data such as im-
ages, videos, or sounds (Christin et al., 2019; Mehrish et al., 2023; Park 
et al., 2020). Using prior algorithms, such as multi-layer perceptrons 
(MLPs) and support vector machines (SVMs), to process data such as 
sounds generally requires the laborious task of manually designing the 
extraction process of summary features such as peak frequency and 
syllable duration for input (Stowell, 2022). CNNs effectively remove this 
step by having the ability to automatically identify and extract summary 
features from lightly-preprocessed data, keeping richer information for 
processing, thereby effectively outperforming prior algorithms by huge 
margins (Goodfellow et al., 2016; Stowell, 2022). Earlier works of 
applying CNNs to animal calls came from amphibians and birds, due to 
both being vocal species (Colonna et al., 2016; Goëau et al., 2016; 
Stowell, 2022). The application of CNNs to elephants shortly followed 
suit (Bjorck et al., 2019; Zeppelzauer et al., 2015), and it has proved 
promising for a given classification task, potentially paving the way for 
human-elephant conflict management through the development of 
sound-based early warning systems (Loo et al., 2024; Ramasubramanian 
et al., 2022; Thomas Leonid and Jayaparvathy, 2022).

The major challenge in using CNNs and other deep neural networks 
is to increase the performance of automated detection, which depends 
on the training data (Ribeiro et al., 2020). Training a CNN model re-
quires a sufficient dataset with diverse features, and training labels to 
achieve better performance (Alzubaidi et al., 2021; Karimi et al., 2020). 
Insufficient data and variation in training data may lead to poor 
generalization and affect the overall performance of the model 
(Alzubaidi et al., 2021). This problem can be surmounted to some degree 
by creating artificial variations or noise in the training data set through 
data augmentation techniques (Mehrish et al., 2023; Nolasco et al., 
2023; Park et al., 2020). In addition, there is currently a lack of evidence 
on whether different subspecies of Asian elephants vary in their vocal-
izations, which is an important gap to fill to provide scalability of CNN 
models trained on a given population of elephants.

Here, our objective is to apply CNNs to classify elephant and non- 
elephant sounds to pave the way for automated early warning systems 
(EWS), which are currently under development. We reviewed existing 
literature on bioacoustics and deep learning, and assessed the use of a 
CNN architecture (Dubey and Jain, 2019; Fukushima, 1969) to train and 
test the feasibility of the algorithm for elephant sounds. Then, we 
investigated the correlation between dataset sizes and the performance 
of the model. Finally, we tested the trained models from E.m.maximus 
(Sri Lanka) to classify E.m.indicus (Malaysia) sounds. We ran a Principal 
Component Analysis (PCA) to better understand the characteristics of 
recorded vocalizations between the two subspecies. This study will be 
useful as a case study for future applications of AI-bioacoustics methods 
as the basis of ecological studies and early warning systems for vocal 
taxa.
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2. Materials and methods

2.1. The use of deep learning and CNNs to process bioacoustics data

The Web of Science (Clarivate) search engine was used to examine 
the trend of using deep learning models for studying wildlife 
bioacoustics. The search includes scientific articles, proceeding papers 
and early access papers, but excludes reviews, book chapters and others. 
Keywords such as “deep learning”, “wildlife AND biodiversity”, 
“bioacoustics OR sound OR vocal OR calls”, “elephant”, and “Convolu-
tional Neural Network OR CNN” were used in combination. This review 
was revised on the 14th of October 2023.

2.2. Data collection

2.2.1. Data collection for E.m.indicus vocalizations in Malaysia
Elephant sounds for E.m.indicus were collected between October 

2021 and March 2022 (6 months), from two salt licks, Sira Gajah and 
Sira Tersau, located in Belum-Temengor Forest Complex, Perak, 
Malaysia (Appendix A1, Fig. A1.1). At each site, we deployed an ARU 
approximately two to three meters above ground (Frontier’s Lab BAR-LT 
[www.frontierlabs.com.au] at one site and Wildlife Acoustics Song 
Meter 4 [www.wildlifeacoustics.com] in the other site) together with 
three camera traps (Reconyx HyperFire 2). The ARUs were set to a 
44,100 Hz sampling rate (Browning et al., 2017) for dual purpose of 
studying elephants and soundscapes, and 24db gain on both channels 
(stereo). Both channels were used during CNN data preprocessing. Re-
cordings were saved in Waveform Audio File (.wav) format. Both ARUs 
were fitted with omnidirectional microphones. The ARUs recorded the 
soundscape for 24 h a day, which yielded ~300 MB per day. Elephant 
signals were present at various times of the day. The camera traps, 
deployed at approximately 1.5 m above ground, were used to validate 
the presence of elephants during the ARU recording period and aid 
manual annotation of sounds.

The collected sound data were manually annotated using Raven 
Sound Analysis Software (Raven Pro ver. 1.6.1, K. Lisa Yang Center for 
Conservation Bioacoustics, Cornell Lab of Ornithology) using spectro-
gram window with frequency grid spacing = 62.5 Hz and DFT size =512 
samples. Each call was annotated by drawing a selection box around the 
call approximately 2 milliseconds before and after the call of interest to 
ensure all the features were included. Elephant signals were detected 
between 1 pm to 1 am on 31/10/2021, 01–02/11/2021, and 13/02/ 
2022. The annotation exercise yielded 3 call types: roars, rumbles, and 
chirps.

2.2.2. Data collection for E.m.maximus vocalizations in Sri Lanka
Trunks & LeavesTM Inc., an elephant conservation non-profit orga-

nization, provided the data for E.m.maximus. The data were collected by 
SdS from 2006 to 2007, in Uda Walawe National Park, Sri Lanka, during 
direct observations of elephants from 6 am to 6.30 pm on a land vehicle 
(de Silva, 2010). The vocalizations were recorded using an Earthworks 
QTC50 microphone shock-mounted inside a Rycote Zeppelin windshield 
through a Fostex FR-2 field recorder (sampling rate: 48000 Hz) con-
nected to a 12 V lead acid battery (de Silva, 2010). A total of 2960 
elephant calls were in the dataset, all annotated by SdS. This dataset 
contains Bark-Rumbles, Barks, Chirp-Rumbles, and Croak-Rumbles, 
Growls, and other sounds, but excludes trumpets, squeaks and squeals. 
Detailed description of the Sri Lankan elephant sounds dataset can be 
found in de Silva (2010).

2.2.3. Non-elephant class sound data
For the non-elephant class, we used two open-source datasets from 

the DCASE 2018 Challenge: warblr10k and freefield1010 datasets 
(Stowell et al., 2019). The Warblr10k dataset consists of smartphone 
recordings of non-specific sounds such as weather noise, traffic noise, 
and human sounds, whilst the freefield1010 dataset contains excerpts 

from field recordings of bird sounds around the world (Stowell et al., 
2019). We did not collect negative classes for the dataset from the same 
study sites; however, it is a recommended and established procedure to 
do so. Since the application for the detection of elephants will be in other 
sites with more anthropogenic influence, we opted to use open-source 
datasets for this study. A follow-up test using one of the models from 
this study was conducted by Loo et al. (2024) by incorporating sound 
clips from tropical rainforest without elephants as negative classes, 
which showed that the model had indeed learnt useful features for the 
detection of elephant calls in the target domain.

2.3. Training and testing CNN models

2.3.1. Datasets preprocessing for model training
The elephant vocal data and non-elephant sound data were orga-

nized into three datasets: TL_DS (2960 E.m.maximus sounds +2960 non- 
elephant sounds), MEME_DS (520 E.m.indicus sounds +520 non- 
elephant sounds), and TL-MEME_DS which is the combination of the 
first and second datasets from above. The non-elephant sounds were 
randomly picked from the warblr10k dataset for TL_DS and the free-
field1010 dataset for MEME_DS using a stratified sampling method in 
Python’s NumPy module (Harris et al., 2020).

We preprocessed the data by applying batch normalization and data 
augmentation. Batch normalization ensures all audio files have the same 
dimensions to make the CNN process faster and more stable through 
rescaling and recentering by adjusting the inputs to each layer, which 
reduces the internal covariate shift of the network (Ioffe and Szegedy, 
2015). We use stereo clips during analysis because the model only ac-
cepts inputs in the same dimensions. We then standardized the sampling 
rate by resampling all the audio data to the same sampling rate of 
44,100 Hz and resized all the audio files to the same length (10 s). 
Silence was added on both sides of the file (beginning and end), to center 
the elephant sound (Appendix A3, Fig. A3.1).

We then augmented the normalized data using a time-shift technique 
by randomly shifting the audio in the temporal domain (Doshi et al., 
2021; Piczak, 2015). We converted the first augmented data into mel 
spectrogram, a graphical representation of the sound (with frequency, 
time and decibels), before applying the SpecAugment technique (Park 
et al., 2020) to mask random frequencies by adding horizontal bars on 
top of the spectrogram and mask random time steps by using vertical 
bars (Appendix A3, Fig. A3.2). The augmentation process resulted in a 
total of 5920 images ready to be fed to the model for training.

2.4. Convolutional Neural Networks (CNNs)

2.4.1. CNNs architecture
Convolutional neural networks (CNNs) are a deep learning archi-

tecture specialized in data types that exhibit grid-like structures 
(Aggarwal, 2018; Premarathna et al., 2020). In a typical image-based 
application, the convolutional layer is an essential part of a CNN ar-
chitecture that carries out feature extraction (Jogin et al., 2018). We 
used four blocks of convolutional layers followed by ReLU activation in 
each layer (Dubey and Jain, 2019; Fukushima, 1969). Then, we applied 
batch normalization to stabilize and speed up the training process by 
adjusting the inputs to each layer. After the images were processed by 
the CNN layers, the outputs were downsampled in the adaptive layer to 
reduce the overall computational cost while retaining the important 
characteristics of the extracted features. Then, they were fed into a final 
linear layer to predict the target classes, using cross-entropy loss 
together with the softmax function to calculate the probabilities. Fig. 1
shows the methods framework and schematic diagram of the CNN ar-
chitecture. The model summary, including output dimensions of each 
layer, can be found in Supplementary Materials (Table A5.1).We used an 
audio classification architecture and framework on GitHub (Doshi et al., 
2021) to develop our model using a specialized neural network devel-
opment framework in Python called PyTorch (Paszke et al., 2019). The 
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code used in this paper is provided (Avicena, 2020) and can be found in 
Appendix A2.

2.4.2. Model training
We utilized NVIDIA Tesla M60 GPU (6 cores GPU, 56GB RAM, and 

360GB disk) through Microsoft Azure Machine Learning Studio to train 
the CNN models. We aimed to achieve at least 95 % average accuracy 
and <0.2 average loss for our final model.

The TL_DS dataset was divided into various sizes of equal distribu-
tion between positive and negative classes (CNN1 to CNN10, Table 1) to 

Fig. 1. (A) The methods framework and (B) The CNN architecture with four convolutional layers, one adaptive layer, and a linear layer for prediction. Code info in 
Appendix A2.

Table 1 
CNN models with datasets, sizes and performance.

Model Dataset Dataset sizes 
(elephant sound + non-elephant sound)

Average training loss Average test loss Average training accuracy Average test accuracy

CNN1 TL_DS 54 files (27 + 27) 1.771 1.830 67.07 % 59.53 %
CNN2 TL_DS 74 files (37 + 37) 1.772 1.871 65.73 % 55.75 %
CNN3 TL_DS 150 files (75 + 75) 1.407 1.313 76.76 % 74.80 %
CNN4 TL_DS 300 files (150 + 150) 1.189 1.131 80.22 % 81.50 %
CNN5 TL_DS 600 files (300 + 300) 0.898 0.856 85.93 % 87.18 %
CNN6 TL_DS 1200 files (600 + 600) 0.597 0.519 91.42 % 93.05 %
CNN7 TL_DS 2400 files (1200 + 1200) 0.364 0.275 94.47 % 96.28 %
CNN8 TL_DS 3600 files (1800 + 1800) 0.240 0.158 96.47 % 97.71 %
CNN9 TL_DS 4800 files (2400 + 2400) 0.199 0.130 96.88 % 97.94 %
CNN10 TL_DS 5920 files (2960 + 2960) 0.167 0.095 97.37 % 98.45 %

Additional models
CNN11 MEME_DS 1040 files (520 + 520) 0.839 0.747 86.57 % 89.97 %
CNN12 TL-MEME_DS 6960 files (3480 + 3480) 0.226 0.158 95.63 % 96.78 %
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train the CNN algorithm and make comparisons between. MEME_DS was 
used for inference on models trained with the TL_DS dataset and we 
trained an additional model with it to gauge its performance (CNN11). 
Lastly, the overall combined dataset TL-MEME_DS was used to train 
another model (CNN12) to examine its performance.

We applied the k-fold cross-validation method during training for 
model performance estimation (Fushiki, 2011). Datasets were split into 
10 folds of equal size, whereby nine folds were used for training the 
model and one-fold was used for testing, and the order was swapped 
until all data were used for training and testing. For each fold, we set 
each batch size to include 128 images to run through 10 epochs. In our 
case, we chose 10 epochs in our experiment following multiple tests with 
various epoch numbers, where we found that the model stopped 
improving after 10 epochs.

We used accuracy and loss metrics to evaluate the models with 
respect to training and validation sets (Aggarwal, 2018). The cross- 
entropy loss function (range: 0–1) was used to calculate the loss met-
rics (Appendix A4), whereby 0 is closest to the truth (Aggarwal, 2018). 
We compared the performance of the model after undergoing 10 epochs. 
We used R statistical software version 4.2.2 (R Core Team, 2022) to 
carry out Pearson’s correlation for dataset sizes with accuracy and loss 
respectively.

2.4.3. Model validation
We used four evaluation metrics: accuracy, precision, recall, and F1 

scores (Appendix A4) (Aggarwal, 2018). Accuracy is the percentage of 
correct predictions when compared to the total number of predictions. 
When used with a balanced dataset, with equal number of positive and 
negative detections, it is less prone to bias, and the accuracy score re-
flects well the performance of the model. Precision is the ratio between 
true positives and the sum of true positives and false positives, while 
recall is the ratio between true positives and the sum of true positives 
and false negatives. The F1 score is the harmonic mean of precision and 
recall.

2.5. Comparison of E.m.indicus acoustic parameters with E.m.maximus

We compared the acoustic parameters of E.m. indicus and E.m. 
maximus using Principal Component Analysis (PCA) with a subset of 44 
sounds from E.m.indicus (Malaysia) and 70 sounds from E.m.maximus 
(Sri Lanka) of different call types. Only elephant vocalizations that did 
not overlap with other non-target signals were selected for analysis. 
There were 15 acoustic parameters measured (Appendix A5, Table A5.1) 
using Raven Pro (Ver. 2.0, K. Lisa Yang Center for Conservation 
Bioacoustics, Cornell Lab of Ornithology). Using individual PCA load-
ings (PC1 to PC4 in turn) as dependent variables, comparison was made 
between E.m. indicus and E.m. maximus acoustics using linear models. 
The PCA were carried out using the factoextra and linear model analysis 
using stats packages respectively in R statistical software version 4.2.2 (R 
Core Team, 2022).

3. Results

3.1. The use of deep learning and CNNs for processing bioacoustics data

An initial search on the keyword “deep learning” on Web of Science 
revealed 281,753 scientific and proceeding papers. When filtered with 
keywords “wildlife OR biodiversity”, the hits dropped to 890, indicating 
the publications involving deep learning models for wildlife and biodi-
versity research is about 0.32 % in comparison to other fields of study 
such as computer science, medical, engineering, telecommunications, 
and others. When the results were further filtered using keywords 
“bioacoustics OR sound OR vocal OR calls”, the number of search results 
dropped to 83, with one paper each on Asian elephants and African el-
ephants. From the 83 papers, 28 utilized the CNN approach to study the 
bioacoustics of birds, frogs, soundscapes (environmental sounds), bats, 

whales, dolphins, fish, gibbons, and other wildlife.
The overall trend for publications on deep learning shows 83.50 % of 

the papers were published in the last five years. When we examined 
across all fields of research, how many “deep learning” scientific and 
proceeding papers were on “bioacoustics OR sound OR vocal OR calls”, 
this resulted in 3904 hits, whereby 1107 used the CNN approach.

3.2. Performance of CNN models on training and evaluation sets

Our E.m.maximus CNN models’ performance increased steadily with 
dataset sizes (Table 1, Fig. 2). From CNN8 (1800 E.m.maximus sounds 
+1800 non-elephant sounds) and onwards, the model met the bench-
mark set in this study (CNN8: train accuracy: 96.47 %, test accuracy: 
97.71 %, test loss: 0.158; CNN9 (2400 + 2400): train accuracy: 96.88 %, 
test accuracy: 97.94 %, test loss: 0.130; CNN10 (2960 + 2960): train 
accuracy: 97.37 %, test accuracy: 98.45 %, test loss: 0.095). Across 10 
epochs of training, the learning curves (accuracy and loss) show various 
degrees of convergence (Appendix A6, Fig. A6.1 and Fig. A6.2). From 
Pearson’s correlation, there are significant positive relationships be-
tween dataset sizes and train-test accuracy (train accuracy: r = 0.81, 
95 % C.I. [0.37,0.95], df = 8, p-value = 0.004; test accuracy: r = 0.75, 
95 % C.I. [0.22,0.94], df = 8, p-value = 0.013); and significant negative 
relationships between dataset sizes and train-test loss (train loss: r =
− 0.86, 95 % C.I. [− 0.97, − 0.49], df = 8, p-value = 0.002; test loss: r =
− 0.84, 95 % C.I. [− 0.96, − 0.44], df = 8, p-value = 0.002).

The performance of CNN11 (MEME_DS, 520 + 520), trained on E.m. 
indicus sounds collected in Malaysia, rank predictably between CNN5 
(300 + 300) and CNN6 (600 + 600), with a train accuracy of 86.57 %, 
test accuracy of 89.97 % and test loss of 0.747. Whilst the overall model 
CNN12 (TL_MEME_DS (3480 + 3480), trained on both E.m.indicus and E. 
m.maximus sound files, performed lower than CNN10 despite having 
bigger data size (Table 1).

3.3. Inference on MEME_DS

The dataset sizes for models (CNN1 to CNN10) trained with E.m. 
maximus (TL_DS) vocalization had little effect on the model perfor-
mances when performing inference on unseen data from MEME_DS (520 
E.m.indicus sounds +520 non-elephant sounds), as models achieved ac-
curacy ranging from 62 % to 78 %., precision (0.66–0.83), recall value 
(0.62–0.78), and F1 scores (0.64–0.81) (Table 2). The confusion 
matrices for the models are illustrated in the Appendix, Fig. A6.3.

3.4. Comparison of acoustic parameters between E.m.indicus and E.m. 
maximus

The principal component analysis (PCA) comparison of 15 acoustic 
parameters (Appendix A5, Table A5.1 & Table A5.2) from E.m.indicus 
and E.m.maximus, found four principal components (PC1 to PC4) that 
contributed to 86.99 % of the variation explained, with the acoustic 
space of E.m.indicus and E.m.maximus generally overlapping (Appendix 
A5, Table A5.3). When using linear models to test the PC scores of the 
sound samples, we found that E.m.indicus and E.m.maximus elephant 
sounds were significantly different in PC1 (F(1,112) = 14.23, p-val-
ue<0.001; InterceptE.m.indicus = 1.186, 95 % C.I.[0.391, 1.982], t = 2.96, 
p-value = 0.004; ßE.m.maximus = − 1.932, 95 % C.I.[− 2.947, − 0.917], t =
− 3.77, p-value<0.001) and PC4 (F(1,112) = 11.40, p-value = 0.001; 
InterceptE.m.indicus = 0.392, 95 % C.I.[0.098, 0.686], t = 2.65, p-value =
0.009; ßE.m.maximus = − 0.639, 95 % C.I.[− 1.013, − 0.264], t = − 3.38, p- 
value = 0.001), but not in PC2 and PC3. The variables contributing to 
PC1 are Center Frequency (Hz), Frequency 5 % (Hz), Frequency 25 % 
(Hz), Frequency 75 % (Hz), Frequency 95 % (Hz), Max Frequency (Hz), 
and Peak Frequency (Hz); while the variables contributing to PC4 are 
Center Time (s), -Delta FrEq. (Hz), and Peak Time Relative (Appendix 
A5, Fig. A5.1).

N.R. Avicena et al.                                                                                                                                                                                                                             Biological Conservation 309 (2025) 111272 

5 



4. Discussion

The use of convolutional neural networks (CNNs) is yet to be fully 
explored for bioacoustics of wildlife and environment (28 out of 281,753 
studies). Although deep learning models have become popular in the last 
five years, their application for bioacoustics study in the field of wildlife 
and biodiversity is still limited. In this study, we investigated the cor-
relation between training data sizes with accuracy and loss performance, 
and subsequently assessed the generalization capability of models 
trained with Elephas maximus maximus in relation to unseen data from 
Elephas maximus indicus. Additionally, we explored the vocal charac-
teristics between the two elephant subspecies.

Our results show that elephant vocalizations can be successfully 

classified by CNN-based architecture. Models that were trained on 
smaller datasets achieved poorer performance levels whilst models with 
larger datasets achieved better and more stable performances (Fig. 2). 
Four of our models (CNN8–1800 elephant sounds, CNN9–2400 elephant 
sounds, CNN10–2960 elephant sounds, and CNN12–3480 elephant 
sounds) exceeded our benchmark performance with CNN10 being our 
best-performing model with 98.45 % test accuracy. Usually, models can 
be fine-tune by adjusting the hyperparameters such as by increasing the 
epochs and the convolutional layers.

We found a significant positive relationship between dataset sizes for 
training and model test performance (Table 1, Fig. 2). Generally, deep 
learning models will have higher performance levels when trained on 
larger and more diverse datasets (Ribeiro et al., 2020) and when the data 
is labelled adequately (Karimi et al., 2020; Ribeiro et al., 2020). For 
instance, our smallest model surpassing 95 % accuracy (CNN8: train 
accuracy: 96.47 %, test accuracy: 97.71 %), required 1800 labelled 
elephant sound files. Potentially, transfer learning – a technique 
involving fine-tuning existing models developed by others (Christin 
et al., 2019; de Silva et al., 2022; Emmert-Streib et al., 2020; Ghani et al., 
2023) – can be explored in future research. Usually, tweaks to the 
models can be made by fine-tuning the hyperparameters such as by 
increasing the epochs and the convolutional layers to increase learning. 
There are existing large state-of-the-art models, such as the VGG16, a 
deep CNN consisting of 138 million parameters trained on 14 million 
images belonging to 22,000 classes, that are available for wildlife con-
servationists to utilize (Emmert-Streib et al., 2020).

Our CNN models built with only E.m.maximus vocalizations (CNN1 
to CNN10), although achieved high test accuracy, did not perform well 
regardless of training data size, when inferred with unseen E.m.indicus 
vocalizations. The CNNs have difficulty in differentiating unseen E.m. 
indicus sounds from Malaysia, resulting in higher false negatives and 
average recall values between 0.62 and 0.78 (Table 2 & Appendix A6, 
Fig. A6.3). In a follow up study, we found CNN models built with only E. 
m.indicus vocalization collected from several localities in Malaysia, 
performed better when inferred with unseen E.m.indicus vocalization 
from Malaysia (Loo et al., 2024), highlighting the importance of local 
data in training and improving CNN models. When the vocal acoustics 
parameters were compared with PCA, we found that the sound char-
acteristics between Asian elephants from Sri Lanka and Malaysia, 
overlapped highly (Appendix A5, Table A5.3 & Fig. A5.1), with PC1 and 
PC4 showing significant differences (p-values <0.05) between the two 
subspecies, but not so for PC2 and PC3. Due to data limitation, we were 
unable to control for age groups, male or female, individuals, and 
morphology (body size) in the comparison, which we hope future 
research can explore further.

Fig. 2. Test and train accuracy with test and train loss across 10 folds validation for CNN1 to CNN10.

Table 2 
Inference results on MEME_DS (E.m.indicus) for CNN1-CNN10 models build from 
TL_DS (E.m.maximus) Sri Lanka.

Models from TL_DS 
E.m.maximus sounds

Accuracy Precision Recall (Precision- 
recall)

F1- 
Score

CNN1 (27 elephant 
+27 non-elephant 
files)

63.46 % 0.72 0.63 0.09 0.67

CNN2 (37 elephant 
+37 non-elephant 
files)

78.27 % 0.83 0.78 0.05 0.81

CNN3 (75 elephant 
+75 non-elephant 
files)

72.50 % 0.82 0.72 0.10 0.77

CNN4 (150 elephant 
+150 non- 
elephant files)

70.58 % 0.76 0.70 0.06 0.73

CNN5 (300 elephant 
+300 non- 
elephant files)

65.48 % 0.71 0.65 0.06 0.68

CNN6 (600 elephant 
+600 non- 
elephant files)

62.60 % 0.66 0.62 0.04 0.64

CNN7 (1200 
elephant +1200 
non-elephant files)

64.23 % 0.67 0.64 0.03 0.65

CNN8 (1800 
elephant +1800 
non-elephant files)

65.67 % 0.67 0.65 0.02 0.66

CNN9 (2400 
elephant +2400 
non-elephant files)

69.13 % 0.71 0.69 0.02 0.70

CNN10 (2960 
elephant +2960 
non-elephant files)

67.40 % 0.68 0.67 0.01 0.67
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Previously, a direct comparison on the percentage of call types for 
Asian elephants in Sri Lanka and India had detected differences (de 
Silva, 2010). A larger comparative study, found differences in call 
combination, order and frequency of call types between Asian elephants 
and the two African elephant species, and between different populations 
of the same elephant species (Pardo et al., 2019). These findings raise 
the question whether differences in elephant vocalizations indicate 
differences in syntax or dialects. There are studies describing animal 
vocal learning abilities of other taxa such as birds (Henry et al., 2015), 
whales (Ford, 2009), and primates (Zürcher et al., 2019). As dialects are 
often attributed to developmental learning (ontogeny) instead of genetic 
origin, akin to human culture, there are possibilities of differences in 
vocalization behavior arising between populations in distinct localities 
(Ford, 2009; Henry et al., 2015; Zürcher et al., 2019). It is argued that 
differences in vocalization behavior between elephant populations are 
associated with the function of the calls in relation to site-specific con-
ditions including habitat types (i.e. forest or open grasslands) and 
presences of threats in the surrounding areas (de Silva, 2010; Pardo 
et al., 2019). Hence, it is entirely possible that the differences in E.m. 
maximus and E.m.indicus sounds detected in this study may not be due to 
phylogenetic or genetic differentiation of these populations, but instead 
caused by differences in call usage due to habitat (i.e. open grassland in 
Sri Lanka and forest in Malaysia), differences in the recording conditions 
between the two countries, or both. Additionally, a study on African 
elephants found that an elephant can have distinct calls to address other 
elephants individually, which opens up a world of possibilities for the 
study of elephant communication (Pardo et al., 2024).

Nonetheless, the differences in call frequencies or order should not 
affect the performance of the deep learning models if the finer acoustics 
parameters of the calls between populations are similar, and when there 
are sufficient samples of different sound quality and call types included 
in training data and converted to mel spectrograms. The differences 
detected by the PCA on sound acoustics parameters of E.m.maximus in 
Sri Lanka and E.m.indicus in Malaysia, together with poor inference by 
the CNN models across subspecies, suggest the need for further inves-
tigation. Furthermore, considering that the physical size of E.m.maximus 
does differ from E.m.indicus, there could be underlying mechanism 
(causal) explanation at play, that could influence differences in vocal 
acoustics parameters between these two subspecies. All these are 
interesting possibilities for future investigation. Future studies using 
standardized methods and equipment would be required to examine this 
area of research further.

CNN models are fundamental for many automated early warning 
detection systems for human-elephant conflict mitigation due to their 
powerful classification ability of lightly preprocessed data, which is 
evident in their use case in multiple conflict-prone areas (Gunasekara 
et al., 2021; Premarathna et al., 2020). CNN-based early warning sys-
tems have been mainly applied for visually detecting elephants, for 
example, in prevention of elephant-vehicle collisions (Gunasekara et al., 
2021). Applications using bioacoustics, however, are scarce despite their 
advantage of covering larger areas with fewer devices.

However, building a sound-based early warning system for HEC 
mitigation comes with its own unique challenges. First, the diversity of 
elephant vocalization types might introduce signals that have not been 
included in the model training datasets, potentially causing false nega-
tives. Second, external noises such as airplane or car sound, can poten-
tially lead to false positives because their harmonic structure is similar to 
elephant rumbles (Zeppelzauer et al., 2015). These two problems can be 
overcome by having more sound diversity in the training datasets. Local 
data, in this case, is preferable to increase the performance of the model 
and help account for potential heterogeneity in the soundscape where 
the early warning systems will be deployed. Additionally, having some 
manual verifications from time-to-time and returning feedback to the 
system will allow the model to perform better in a local context.

Another important challenge to address is to solve potential hard-
ware constraints. Sound data are particularly memory-intensive and 

processing them on-the-fly for automated detection requires a compu-
tationally strong processor. Additionally, this hardware must be energy 
efficient enough to process such data and ideally connected to a network 
such as cellular or WIFI signals to issue alarms when elephants are 
detected nearby, which can be a difficult task since many HEC happens 
in rural areas where access to networks and electricity might be scarce 
(Matsuura et al., 2024; Sampson et al., 2021). Memory constraints can 
be addressed, for example, by temporarily storing the full data only for 
sound processing, retaining important signals for further research pur-
poses, and deleting redundant data. Moreover, a continuous supply of 
electricity, such as solar energy, can also be embedded into the hard-
ware, however, this might not entirely be feasible in areas with thick 
vegetation and scarce sunlight due to clouds and rain. However, there 
are such systems already available for diverse purposes, although pub-
lications in this field are limited, as bioacoustics research is not yet as 
common as visual-based camera trap studies. Some notable examples 
include Rainforest Connection by Topher White (www.rfcx.org), Rain-
forest Listening (www.rainforestlistening.com) by Rainforest Partner-
ship, and Amrita Elephant Watch by AMMACHI Labs (www.amma.org).

Since elephants are endangered species targeted by poachers, the 
implementation of early warning systems must minimize the risk of 
accidentally revealing locations of elephants to poachers. The future 
system can be run independently by a trusted entity or be incorporated 
into wildlife conservation and enforcement initiatives in protected areas 
and reserves (Wich and Piel, 2021). Safeguard measures can be taken, 
for example, the location of the endangered animal can be automatically 
scrambled over a given radius before being shared with stakeholders on 
the ground so that the risk of poaching is reduced, while providing 
sufficient alerts to increase the safety of people. This system can be used 
to help foster collaboration between communities, governmental and 
enforcement agencies, plantations, and wildlife conservation 
organizations.

In community areas, there are social and ethical concerns raised over 
the privacy of people captured in photos or videos without their consent 
(Sharma et al., 2020). This evokes the discussion for a code of conduct 
for researchers, and the use of AI to automatically blur people’s faces 
and still allow data to be used for research (Sharma et al., 2020). Cer-
tification of standards and social impact studies involving indigenous 
communities should be emphasized on free, prior, and informed consent 
before or at the start of the project, to ensure the communities are aware 
of the purpose of the project and are given the chance to clarify any 
concerns. Some of these concerns are also applicable to bioacoustics 
research.

Overall, our study offers the framework to use a deep learning 
approach for processing bioacoustics data which have several potential 
real-world applications, from preventing elephant-vehicle collision to 
managing human-elephant conflict, and promoting safer human- 
elephant coexistence. Further research is needed to test the model in 
real-world scenarios and to create models with a low proportion of false 
negatives, which can be detrimental if such algorithms were to be used 
for early warning systems. Additionally, engineering works are needed 
to design a working low-cost, low-energy prototype for use.

5. Conclusion

The application of sound-based deep learning models can have 
important implications for human-elephant conflict mitigation. Our 
study provides the first step in developing an early warning system to 
detect elephants based on their calls. Further research will be needed on 
testing the robustness of the model in real-world scenarios and building 
low-cost efficient prototypes for implementation in conflict-prone areas. 
Ultimately, the development and effective implementation of such sys-
tems will require close collaboration between researchers, government 
agencies, and the impacted people alike, and we encourage all stake-
holders to collaborate to ensure positive outcomes from the develop-
ment of the model and future systems.

N.R. Avicena et al.                                                                                                                                                                                                                             Biological Conservation 309 (2025) 111272 

7 

http://www.rfcx.org
http://www.rainforestlistening.com
http://www.amma.org


The use of AI in wildlife conservation has the potential to improve or 
add new dimensions to ecological studies and assist in processing a large 
amount of data. Technologies using AI are now rapidly influencing and 
changing human societies in various fields, from mass communication, 
entertainment, writing, art, autonomous vehicles to medical diagnosis. 
Advances in AI have the potential to support conservation of endangered 
species.

CRediT authorship contribution statement

Naufal Rahman Avicena: Visualization, Validation, Methodology, 
Investigation, Formal analysis, Data curation, Conceptualization, 
Writing – review & editing, Writing – original draft. Yen Yi Loo: Visu-
alization, Validation, Methodology, Investigation, Formal analysis, Data 
curation, Writing – review & editing, Writing – original draft. Tomas 
Maul: Validation, Supervision, Resources, Methodology, Investigation, 
Funding acquisition, Conceptualization, Writing – review & editing. 
Noah Thong: Project administration, Methodology, Investigation, 
Formal analysis, Data curation, Writing – review & editing. Christopher 
Chai Thiam Wong: Supervision, Resources, Investigation, Data cura-
tion, Writing – review & editing. Shermin de Silva: Resources, Inves-
tigation, Data curation, Writing – review & editing, Writing – original 
draft. Salman Saaban: Supervision, Resources, Project administration, 
Investigation, Writing – review & editing. Ee Phin Wong: Visualization, 
Validation, Supervision, Resources, Project administration, Methodol-
ogy, Investigation, Funding acquisition, Formal analysis, Data curation, 
Conceptualization, Writing – review & editing, Writing – original draft.

Funding information

This work was supported by Sime Darby Foundation [NVHH0007 & 
NVLO0001]; and Microsoft AI for Earth.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:

Noah Thong, Yen Yi Loo reports financial support was provided by 
Sime Darby Foundation. Ee Phin Wong reports a relationship with Sime 
Darby Foundation that includes: funding grants. Tomas Maul reports a 
relationship with Microsoft AI for Earth that includes: funding grants. 
We do not receive any commercial benefit from the publication of this 
paper, not the authors nor the organizations they are affiliated, or the 
funders involved. There is no conflict of interest as there are no con-
sultancies nor commercialization involved at this moment. We have 
tried our best to present our research as neutral and as fair as possible to 
both elephants and communities involved. We are not editors for any 
journals linked to Biological Conservation. If there are other authors, 
they declare that they have no known competing financial interests or 
personal relationships that could have appeared to influence the work 
reported in this paper.

Acknowledgments

The authors are grateful for the support given by Sime Darby 
Foundation and Microsoft AI for Earth. We thank the Department of 
Wildlife and National Parks Peninsular Malaysia (PERHILITAN), 
Forestry Department of Peninsular Malaysia (Perhutanan), and Forestry 
Department of Perak (Perhutanan Perak) for their support in our study 
and for granting us research permits. We are also thankful for the 
immense help from our interns for sound annotation: Ashraft Yusni and 
Rehannah Zelda, field assistants: Param bin Pura, Sudin A/L Din, and 
Muhammad Tauhid bin Tunil, and colleagues especially Lim Jia Cherng, 
Praveena Chackrapani, Chan Yik Khan, Muhammad Amin Rusli, Cedric 
Tan Kai Wei, and Amir Aminuddin for their thorough support 
throughout the studies.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.biocon.2025.111272.

Data availability

Data will be made available on request.

References

Aggarwal, C.C., 2018. Neural networks and deep learning: a textbook. Springer 
International Publishing, Cham. https://doi.org/10.1007/978-3-319-94463-0. 

Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., 
Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L., 2021. Review of deep 
learning: concepts, CNN architectures, challenges, applications, future directions. 
J. Big Data 8, 53. https://doi.org/10.1186/s40537-021-00444-8.

Avicena, N.R., 2020. CNN-based bioacoustics classification of elephant and non-elephant 
sounds. [online] URL: available on GitHub. https://github.com/aalavicena/Deep-L 
earning-Elephant-Bioacoustics.

Barua, M., 2010. Whose issue? Representations of human-elephant conflict in Indian and 
international media. Sci. Commun. 32, 55–75. https://doi.org/10.1177/ 
1075547009353177.

Bjorck, J., Rappazzo, B., Chen, D., Bernstein, R., Wrege, P., Gomes, C., 2019. Automatic 
detection and compression for passive acoustic monitoring of the African Forest 
elephant. Proc. AAAI Conf. Artif. Intell. 33, 476–484. https://doi.org/10.1609/aaai. 
v33i01.3301476.

Browning, E., Gibb, R., Glover-Kapfer, P., Jones, K.E., 2017. Passive acoustic monitoring 
in ecology and conservation. (Report). WWF-UK. https://doi.org/10.25607/OBP- 
876.

Calabrese, A., Calabrese, J.M., Songer, M., Wegmann, M., Hedges, S., Rose, R., 
Leimgruber, P., 2017. Conservation status of Asian elephants: the influence of 
habitat and governance. Biodivers. Conserv. 26, 2067–2081. https://doi.org/ 
10.1007/S10531-017-1345-5/METRICS.
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