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Late Quaternary fluctuation in upper range
limit of trees shapes endemic flora diversity
on the Tibetan Plateau

Jinfeng Xu 1,2,3, Tao Wang 1 , Xiaoyi Wang1, Christian Körner 4,
Xianyong Cao1, Eryuan Liang 1, Yongping Yang5 & Shilong Piao 1,6

The influence of paleoclimate in shaping current biodiversity pattern is widely
acknowledged.However, it remains unclear how theupperpaleo-range limit of
trees, which dictated the habitat of endemic alpine species, affects the varia-
bility in endemic alpine species composition across space over the Tibetan
Plateau. We integrated satellite-derived upper range limit of trees, den-
drochronological data, and fossil pollen records with a paleoclimate dataset in
a climate-driven predictive model to reconstruct the spatio-temporal upper
range limit of trees at 100-year intervals since the Last Glacial Maximum. Our
results show that trees distributed at the lowest elevations during the Last
GlacialMaximum (~3426m), and ascended to the highest elevations during the
Holocene Climatic Optimum (~4187m), a level ~180mhigher than the present-
day (~4009m). The temporal fluctuations in paleo-range limits of trees play a
more important role than paleoclimate in shaping the current spatial pattern
of beta-diversity of endemic flora, with regions witnessing higher fluctuations
having lower beta-diversity. We therefore suggest that anthropogenic-caused
climate change on decadal-to-centennial timescales could lead to higher
fluctuations in range limits than orbitally-forced climate variability on
centennial-to-millennium timescales, which consequently could cause spatial
homogenization of endemic alpine species composition, threatening Tibetan
endemic species pool.

The high mountain ranges of the Tibetan Plateau are global biodi-
versity hotspots with a rich endemic diversity in alpine flora1–3, which
constitute a high proportion of regional diversity4,5. It is known that
local endemic alpine species richness (alpha diversity), which typically
have small effective population sizes and limited dispersal capacities6,7,
is threatened by climate change8,9 and the upward movement of
trees10–13. The upward migration of tree species threatens alpine eco-
systems through habitat loss and fragmentation, as well as alterations

in microclimate (e.g., increased sheltering effect). To understand how
best to conserve endemic alpine species diversity across spatial scales,
it is imperative tounderstand thedrivingmechanismsof beta-diversity,
as it is the component of regional gamma-diversity that accumulates as
a result of compositional differences between alpha diversity14–18.

The pattern of contemporary beta-diversity, which quantified the
variation in species composition within a region, is generally inter-
preted frompast climate regimes and their oscillations19,20, but the role
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of past changes in the upper range limit of trees remains unknown.
Specifically, in areas with stable climate conditions, low fluctuation in
the position of the upper range limit of trees would result in reduced
habitat loss and fragmentation, thereby creating stable environmental
conditions that are more conducive to the survival of endemic alpine
species, compared to areas where the position of upper range limit of
trees fluctuates more significantly. We should therefore expand our
analysis of the drivers behind the current spatial patterns of beta-
diversity, shifting focus from climate change to include a more
immediate factor—range limit dynamics. This broader understanding
could offer valuable insights for more accurately predicting future
shifts in alpine endemism diversity under a rapidly warming world.

Here the upper range limit of trees, which is defined as a connection
between the uppermost group of upright trees of a certain height12,21,
could theoretically reach their physiological limits set by temperature
(referred to as the treeline position)21,22 but it is often confined to lower
elevations due to environmental stresses and stochastic effects such as
human disturbance12,21–24. Our previous understandings of paleo changes
in the upper range limit of trees aremostly derived fromanalysis of fossil
plant data including pollen, macrofossils, and charcoal. For example,
classical paleoecological records and ancient DNA in lake sediments
indicate that, the upper range limit of trees at some locations may have
reached 3500m elevation during the LGM25, and 400–600m higher
than today in the Holocene Climate Maximum26,27. While, relying solely
on fossil data at the site level to reconstruct the spatiotemporal evolu-
tion of the upper range limits of trees remains highly uncertain, espe-
cially on the Tibetan plateau where a handful of sites were available for a
few time periods since the Last Glacial Maximum (LGM, ~22 kyr BP).

Evidence from paleoecological records show that modern trees
survived the extremely harsh climatic conditions during the most
recent glacial period25. This knowledge opens up the possibility of
reconstructing the upper paleo-range limit of trees from paleoclimate
data based on the modern climatic responses of the upper-range limit
of trees. Notably, the existence of cryptic forest refugia, which provide
long-term shelters for trees, could facilitate the application of a
climate-driven modeling approach for paleo reconstruction28. These
refugia, found in heterogeneous topographies within high mountain
areas and intersecting valleys of large rivers on the Tibetan Plateau25,29,
could result in high dispersal rates and enable tree species to respond
within decades to deglacial climate change30.

Herewederivedpastdynamics in upper range limits of trees using
paleoclimate data at a spatial resolution of ~1 km at 100-year intervals
since LGM, using the modern relationship between the satellite-
derived upper range limit of trees and climate. The period since the
LGM was used because its significant paleoclimatic changes led to
notable vegetation and floristic shifts, as evidenced by fossil records
preserved in sediments19,31–33, potentially driving legacies in modern
diversity patterns. In addition, our paleo-reconstruction of the upper
range limit of trees was based on the assumption that the relationship
between the upper range limit of trees and climate, extracted from
modern observations, has remained constant through time since
LGM21,22,34. This assumption, which is well known as the uniformitarian
principle, has been widely used in previous pollen-based paleoclimate
reconstructions35,36. We further estimated how paleo fluctuation in the
upper range limit of trees affects the current spatial pattern of beta-
diversity in alpine endemic flora over the Tibetan Plateau.

Results and discussions
Spatial patternof currentupper range limit of treesand itsdrivers
Wedelineated the spatial distributionof the current upper range limit of
treesusing satellite-derived forest extentdata at ahigh spatial resolution
of 30m12 (see Methods). To validate the robustness of this satellite-
derived upper range limit of trees, we generated 602,879 manually
interpreted samples using Google Earth high-resolution (<5m) images
as an independent validation dataset, with 5.1% (N= 30,746), 84.6%

(N= 510,035), and 10.3% (N =62,098) located in the northern, southern
and inner Tibetan Plateau, respectively12,37. Across all samples, the
satellite-derived upper range limit of trees showed a highly accurate
alignment with manual interpretations of Google Earth high-resolution
images (R2 = 0.98, Slope = 0.98, ME= 17m, N=602,879) (Fig. 1b).

Our analysis of the satellite-derived upper range limit of trees
reveals that almost 94.0% (N= 11,284,982 pixels at a 30-m resolution) of
pixels depicting the upper range limit of trees are distributed in the
northeastern and southeastern margins of the Tibetan Plateau, includ-
ing the southern Qilian (3294±314m, mean elevation ± SD), eastern
Himalaya (4206±342m) and southern Hengduan (3995± 355m)
mountain ranges. The remaining 6.0% (N= 721,452) of pixels depicting
the upper range limit of trees are scattered throughout the headwater
region of the three rivers (Yangtze, Yellow, and Lancang River)
(3971 ± 353m) and Tanggula mountain range (4211 ± 222m) (Fig. 1a).
The upper range limit of tree elevation displays a latitudinal gradient,
with elevation in the southern region (4039± 359m) higher than that in
the northern (3295 ± 315m) and inner Tibetan Plateau (3859± 387m).
The mean elevation of the upper range limit of trees over the Tibetan
Plateau has reached 4009±383m, which is much higher than that of
the Himalayas12 (3633± 475m), and 17 locations in four counties (e.g.,
Bayi, Gongbu Jiangda, Milin and Lang) have higher elevations than
highest records according to field observations38 (4900m).

Furthermore, we explored the drivers of spatial changes in the
current upper range limit elevation over the Tibetan Plateau. Trees do
not always reach their thermal treeline positions approximated by an
isotherm of mean growing-season temperature18,21,22,24 (see Methods),
and they often remain confined to lower elevations due to human
activities12,21,39 (such as grazing, logging and/or burning) or other dis-
turbances, or critical water shortage. Our results show that nearly
85.2% of pixels have agreement between the upper range limit of the
tree and the thermal treeline21,37 positions over the Tibetan Plateau,
suggesting a predominant role of temperature in determining upper
range limits of trees. In the southern and inner Tibetan Plateau, nearly
87.5% and 51.8% of pixels have their upper range limit of trees reaching
thermal treeline positions, respectively, while only 27.9% of pixels in
the northern Tibetan Plateau reached their thermal positions.We then
exploredwhich factors could explain the remaining 14.8%of pixels that
fall below the thermal treeline, especially in the northern Tibetan Pla-
teau (Supplementary Fig. 1 and Supplementary Table 1). To do so, we
calculated the elevational difference between the satellite-derived
upper range limit of trees and thermal treeline12,21,22, denoted as
DTreeline, and used a random-forest algorithm40 to rank the importance
of several variables (N = 19) belonging to categories of environmental
stresses and disturbances on DTreeline (see Methods). Our results
showed that DTreeline has a low value in the southern (54± 162m) and
inner Tibetan Plateau (186 ± 223m), but a high one in the northern
Tibetan Plateau (271 ± 217m). Both cumulative climatic water deficit
(CWD) during spring (March to May) and vapor pressure deficit (VPD)
were the most important variables driving the high DTreeline values in
the northern Tibetan Plateau, suggesting a regional drought-induced
absence of trees from the thermal treeline position12,41 (Supplementary
Fig. 1). Furthermore, we assessed how spatial changes of the leading
factors (CWD and VPD) modulated the spatial distribution of DTreeline.
For example, the abrupt DTreeline transition occurring at the CWD
threshold of ~100mmyr−1 (Supplementary Fig. 1b) separated the
southern Tibetan Plateau, with low CWD and DTreeline values, from
northern Tibetan Plateau with high ones at ~35°N (Fig. 1a). The transi-
tion of DTreeline along the VPD gradient further sharpens the observed
south–north contrast, with DTreeline exhibiting a pronounced increase
when the VPD exceeded 0.4hPa (Supplementary Fig. 1c).

Developing a predictive model of the upper range limit of trees
We developed a predictive model to reconstruct and project changes
in the upper range limit of trees. As there are time lags in seeddispersal
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and tree establishment, the shift in the upper range limit of trees may
not occur in synchrony with climate change21,34,42–44. We included both
climate change and migration lag in our predictive model. We used
growing season temperature along with climatic stressors (especially
spring CWD and VPD) to parameterize the effect of climate change on
temporal shifts in the upper range limit of trees, and developed a
climate-based predictive model using a training dataset (N = 116,337)
(see Methods). Our climate-driven predictive model could explain
nearly 84%of spatial variation of the upper range limit of trees using an
independent validation dataset (N = 11,634) (Supplementary Fig. 2).

We then incorporated the impact of migration lag on shifts in the
upper range limit of trees into the climate-driven predictive model. To
determine the optimal lag, we tested time lags from 10 years to 100
years in our climate-driven predictive model, by minimizing the dif-
ference between simulated and in situ shifts in the upper range limit of
trees over thepast century across20sites of theTibetanPlateau. These
range limit elevation dynamics were reconstructed from tree ring data
using the dendrochronological method39,45–52 (Supplementary Fig. 3
and Supplementary Table 2). Among all-time lags tested, incorporating
a 50-year time lag into the climate-driven predictive model maximizes
its explanatory power in representing in situ shifts in the upper range
limit of trees over the last century. Specifically, the predictive model
explains nearly 70% of the spatial variation in range limit shifts across
20 sites on the Tibetan Plateau (R2 = 0.68, P <0.01) (Supplementary
Fig. 4). Furthermore, after including the time lag, the trees across all
sites are predicted to shift upward at a rate of 20 ± 21mdecade−1,
which becomes closer to in situ shifts (18 ± 23m decades−1). This
confirms the robustness of our constructedmodel in the prediction of
the upper range limit of trees at the century timescale (Supplemen-
tary Fig. 3b).

Predictionofupper range limit of trees changes fromtheLGMto
the end of this century
Weused this predictivemodel to reconstruct spatial-temporal changes
in the upper range limit of trees at a temporal resolution of 100 years

from the LGM to the present, based on a paleoclimate dataset53. We
then projected changes to the end of this century (2080–2099) under
the three emissions scenarios (see Methods). This model mapped
upper range limit of trees at a spatial resolution of ~1 km over time.

According to the predictive model, the reconstruction of upper
range limit elevation spanning the past 22 kyr BP to the end of the
century varied by more than 850m, which is around one-fifth of
the present-day range limit elevation (4009 ± 383m) (Fig. 2). Across
the past 22 kyr BP, the elevation of the upper range limit of trees
reached the lowest position during the LGM (22–19 kyr BP), gradually
peaking in the warmest period of the Holocene (HCO, roughly
10–6.5 kyr BP), and then gradually decreasing towards the present day
(4009 ± 383m). By the end of this century, trees are predicted to
migrate to values comparable to those during HCO (4185 ± 362m)
under the SSP2–4.5 scenario, while under the SSP5–8.5 scenario, they
are expected to reach elevations ~240m higher than the present day.

Our model predicted that elevational changes in the upper range
limit of trees reveal a distinct four-phase pattern, generally corre-
sponding to changes in growing-season temperature. The first phase
covers the LGM period (22–19 kyr BP), when themean growing-season
temperature was 2.7 °C lower than the present (Supplementary Fig. 5).
The upper range limit of trees then reached the lowest elevation
(3426 ± 347m), which is ~583m lower than the present day (4009m).
During the second phase from the Last Deglaciation period (19–12 kyr
BP) to themiddle Holocene (9–5 kyr BP), the climate transitioned from
aglacial cold to aHolocenewarmperiod, and the upper trees gradually
increased towards the highest predicted elevations (4187 ± 377m),
which is 178mhigher than thepresent (4009m).Note that this gradual
increase in the upper range limit of trees was interrupted by the two
millennial-scale events, the Bølling-Allerød warm event
(14.7–12.9 kyr BP) and Younger Dryas cold event (12.9–11.7 kyr BP),
which caused a marked increase and decline in elevations,
respectively.

Throughout the third phase fromLateHolocene (5–0 kyr BP) until
the preindustrial era, the climate underwent a period of steady cooling

35°N

30°N

95°E 100°E
Longitude

La
tit

ud
e

ba

3000 4000
Elevation (m)

Treeline
Upper range limit of trees3000

4000

El
ev

at
io

n 
(m

)

Upper range limit of trees (m)

>4800440040003600<3200

3000 4000 5000
Manually interpreted

upper range limit elevation (m)

3000

4000

5000

R2 = 0.98
ME = 17

Slope = 0.98

0 0.2 0.4 0.6 0.8 1.0

Frequency

M
ul

ti-
sa

te
llit

e 
de

riv
ed

 u
pp

er
 ra

ng
e 

lim
it 

el
ev

at
io

n 
(m

)

Fig. 1 | Elevation distribution of themulti-satellite-derived upper range limit of
trees across the Tibetan Plateau. a Spatial distribution of the upper range limit of
trees at 1 km2 resolution (left), and longitudinal/latitudinal distribution of treeline
elevation and upper range limit of trees elevation (top/right). The solid lines
represent the median values for each elevational category, calculated at 1 km
intervals longitudinally. The curves have been smoothed using aGaussian function,

with the shaded regions indicating one standard deviation, and the background
terrain obtained from ArcGIS basemap dataset. b The relationships between the
multi-satellite-derived upper range limit of trees and visual interpretation from
Google Earth images, with the 1:1 line (dashed) and the regression line (continuous).
R2 and ME indicate the coefficient of determination and the mean error,
respectively.
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and fluctuating warm and cold phases, resulting in a gradual decrease
of the upper range limit of trees that eventually stabilized at a value
~61m lower than the present (4009m). The fourth phase, referred to
the anthropogenic warming period from the pre-industrial era to the
end of this century, has and will continue to experience a steady
upslope of the upper range limit of trees. Relative to the present, the
mean elevational increase in the range limit over the Tibetan Plateau
are 102m, 176m, 243m for SSP1–2.6, SSP2–4.5, and SSP5–8.5,
respectively (Fig. 2 and SupplementaryTable 3).We also calculated the
alpine land area above themean reconstruction of upper range limit of
trees (seeMethods). Our results show that the alpine land area reached
a minimum extent of 503,035 km2 during HCO and a maximum extent
of 849,574 km2 during LGM, 75% and 150% of the present-day area of
alpine habitat (597,788 km2), respectively (Supplementary Fig. 6).

To verify the reliability of our model in reconstructing historical
changes in the upper range limit of trees, we used fossil pollen abun-
dance records from lake sediments to determine the presence and
absence of trees at sampling sites throughout the Holocene. By inte-
grating data from six lakes situated below, at and above the present
upper range limit of trees26,35,54–57 (Supplementary Fig. 7 and Supple-
mentary Table 4), this elevational transect of fossil pollen records
provides observational evidence of changes in the upper range limit of
trees over the Holocene. Specifically, for a given paleo time period, we
obtained the elevational range of the upper range limit of trees by
identifying the presence and absence of trees from fossil pollen
records in lake sediments at different elevations. For example, during
the early to middle Holocene (~10–4 kyr BP), trees were detected in
Wuxu Lake (3710m), Muge Co Lake (3780m), and Yidun Lake
(4470m), but were absent in Koucha Lake (4540m) and Saiyong Co
Lake (4545m) (Supplementary Fig. 7b). We then obtained that the
elevation of paleo-upper range limit was situated between 4470m
(Yidun Lake) and 4540m (Koucha Lake) during ~10–4 kyr BP. By fur-
ther comparing elevational changes between different paleo time
periods, we could obtain paleochanges in upper range limit of trees
using fossil pollen records. To compare such pollen-derived data with
our model reconstruction, the same grid cells covered by the pollen-

derived data are selected from our high-spatial-resolution recon-
structed data (Supplementary Fig. 7). The pollen-derived data are
consistent with our model reconstruction showing that the elevation
of upper range limit of trees increased in the early Holocene, held a
consistent elevation between ~10 kry BP and ~4 kry BP during the
middle Holocene and then decreased in the late Holocene (Supple-
mentary Fig. 7b). The pollen-derived data further reveals a descent of
upper range limits of trees by nearly 270m between the early Holo-
cene and the present over the Tibetan Plateau, which is also consistent
with our model results (239m). Interestingly, this range shift is also
consistent with that of the European Alps during the Holocene
(200–250m)usingmacrofossil data24,58. However, determining precise
elevational shifts in the upper range limit of trees remains a challenge
due to the relatively coarse elevational resolution of fossil pollen
records along our constructed elevation transect. Thus, it becomes
necessary to either increase the elevational and temporal resolution of
fossil pollen records or include analysis of terrestrial plant macrofossil
and macroscopic charcoal data at and above the upper range limit
of trees.

Impact of paleo-range limit fluctuation on current spatial pat-
tern of beta-diversity
Next, we assessed the legacies of paleochanges in theupper range limit
of trees on the spatial pattern of beta diversity over the Tibetan Pla-
teau. For this purpose, we collated elevational and spatial distributions
for 2111 endemic alpine species in around 100 counties over the
TibetanPlateau (SupplementaryData 1),with the upper limit of species
distributions extending past the current upper range limit of trees (see
“Methods”). We used Sørensen-based multiple-county dissimilarity59

to calculate the beta-diversity (β-diversity) of alpine endemic flora
within a region that is defined to consist of a target county and its
surrounding counties (see “Methods”) (Supplementary Fig. 8). To
understand mechanisms underlying the spatial pattern of β-diversity,
we obtained the regional-mean value of potential drivers (e.g., paleo-
range limit fluctuation and paleoclimatic fluctuation), by averaging
them across the target county and its surrounding ones. The paleo-
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range limit fluctuation, represented by the standard deviation of the
high-frequency component of time series of the upper range limit of
trees (see Methods), was negatively correlated with β-diversity
(P < 0.01), with a lower β-diversity found in regions with greater tem-
poral variability in paleo range limits. Paleo-range limit fluctuation
(R = −0.53, P < 0.01) is more important than both paleo-growing-
season temperature (R = −0.33, P <0.01) and precipitation (R = −0.09,
P >0.1) fluctuation in explaining the current spatial pattern of β-
diversity (Fig. 3a–c). By contrast, β-diversity did not vary significantly
across gradients in mean climate and seasonality (Supplementary
Fig. 9). Our results suggest the important role of both paleo-range limit
and paleo-temperature fluctuations in determining the current spatial
pattern of β-diversity of alpine endemic flora across regions. Specifi-
cally, both increased paleo-range limit and paleo-temperature fluc-
tuations lead to spatial homogenization of endemic species
composition.

To understand why β-diversity reduced as paleo fluctuations
intensified, we partitioned β-diversity into two components: dissim-
ilarity due to species replacement (species present at one county are
absent at another, but are replaced by other species absent from the

first) and dissimilarity due to nestedness (species present at one
country are absent at another, but are not replaced by additional
species) (Supplementary Fig. 8) (see Methods). The species replace-
ment component predominated in regions with low paleo-range limit
fluctuations, while the nestedness component predominated in those
with higher fluctuations (Supplementary Fig. 8 and Supplementary
Fig. 10). Consistent with β-diversity patterns, the species replacement
component decreased with increasing fluctuation, while the nested-
ness component showed the opposite trend (Fig. 3d, g).

This pattern is expected because gradients in paleo-range limit
fluctuation could not only drive species replacement but also species
loss and gain. Specifically, decreasing paleo-range limit fluctuations
suggest increasingly stable alpine environmental conditions. This
increased stability could enhance the capacity of alpine environments
to promote niche differentiation and allow diverse assemblages with
more specialized habitat preferences19,60–64, thereby increasing β-
diversity through species replacement. In contrast, increasing paleo-
range limit fluctuation could lead to increased fragmentation (e.g.,
reduced fragment area and increased isolation) and the contraction of
suitable habitats for the survival of endemic alpine species. Increased

Fig. 3 | Relationships of spatial dissimilarity of endemic alpine species with
paleo fluctuation in upper range limit of trees, paleotemperature, and paleo
precipitation since the Last Glacial Period (LGM) across all regions over the
Tibetan Plateau. The relationships of (a–c) beta-diversity (β-diversity), (d–f) spe-
cies replacement and (g–i) nestedness to paleo fluctuation in upper range limit of
trees (gray circles), growing-season temperature (red circles), and precipitation

(blue circles) since LGM across all regions over the Tibetan Plateau. Here the region
is defined to be consisted of a target county and its surrounding counties. The σ

represents the paleo fluctuation for each variable and is calculated as the standard
deviation of its high-frequency component based on the Empirical Mode Decom-
position method. The black lines were fitted with linear regressions. The asterisks
indicate statistical significance by two-tailed Student’s t-test (P <0.01).
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fragmentation leaves narrowly-ranged endemic alpine species, which
typically have small effective population sizes and limited dispersal
capacities1,4–7, particularly vulnerable to extirpation and recoloniza-
tions, thereby increasing β-diversity through nestedness65–67. There-
fore, as paleo fluctuation intensified, the decline in β-diversity resulted
from a larger decrease in the species replacement component off-
setting an increase in the nestedness component.

In addition, we observed a stronger response of β-diversity to
paleo-range limit fluctuation than paleo-temperature fluctuation
across regions (Fig. 3a, b). This result is expected because shifts in the
upper range limits of trees could induce fragmentation and expansion
of suitable habitats for alpine endemism to a larger extent than tem-
perature changes alone. Tree expansion into alpine areas could
directly lead to the loss of suitable habitats, and also cause habitat
displacement by altering microclimate conditions through increased
sheltering effects12,13. Although warming could potentially reduce the
availability of suitable habitats for endemic alpine species, topo-
graphically diverse environments in alpine areas may provide suitable
microhabitats68. These microhabitats allow endemic alpine species to
track suitable habitats over short distances69. The presence of these
microhabitats could then potentially buffer large-scale atmospheric
warming impacts on the survival of alpine endemism. In the coming
few decades, projected rates of the upper range limit of trees are
several orders of magnitude larger than those occurring over the last
millennia. In addition to drastic warming, accelerated tree expansion70

would exacerbate alpine habitat fragmentation and spatial isolation of
remaining microhabitats12. Consequently, alpine endemics are not
equipped to respond to the dual force from both accelerated tree
expansion and drastic warming. This likely would accelerate spatial
homogenization of endemic alpine species diversity, threatening the
total endemic species pool on the Tibetan Plateau.

Summary
In summary, we used satellite-derived upper range limits of trees to
reconstruct a spatio-temporal distribution of range limits since the
LGM from a paleoclimate dataset. Our results suggest an important
role of paleo fluctuations in the upper range limit of trees in shaping
the spatial pattern of β-diversity across alpine regions. Our findings
emphasize the need to include both past climate change and paleo
fluctuations in upper range limit of trees to understand the current
spatial patterns of β-diversity of alpine flora11. These fluctuations are
expected to intensify in a warmer world, potentially leading to the
homogenization of endemic alpine species diversity across regions,
thereby threatening Tibetan endemic species pool. Thus, in regions
with high paleo fluctuations, we should design corridors with optimal
locations and orientations to enhance alpine habitat connectivity and
facilitate the mixing of endemic species among regions. These corri-
dors may initially reduce β-diversity in these regions; however, they
would decrease the likelihood of endemic species extinctions and help
maintain the Tibetan endemic species pool in the long term.

However, paleoreconstruction is still subject to uncertainties. The
implicit assumption of paleoreconstruction is that vegetation and cli-
mate are in dynamic equilibrium, with a relatively fast response of
vegetation to deglacial climate change. Although previously identified
refugia in gorges suggest the possibility of high dispersal rates and
rapid tree migration, further paleoecological data, in particular
paleogenomic data (such as sedimentary ancient DNA), is needed to
pinpoint actual refuge locations and assess the degree to which
vegetation lags behind climate changes. By deploying a plateau net-
work of collecting paleoecological data to infer vegetation response to
past climate change, similar studies are likely to provide further value
to this area of research.

Furthermore, the robustness of our paleoreconstruction model
relies upon the accuracy of the paleoclimatic forcing inputs. For
example, annual temperature changes during the Holocene are

currently the subject of a broad debate, with proxy-based recon-
structions indicating a cooling trend71–73 while climate models suggest
warming74. Thus, reconstructing particular climate variables from
paleoecological data is challenging over the Tibetan Plateau, due to
difficulties in distinguishing moisture from thermal signals36. The
tracking ability of upper treeswith rising temperatures hasgivenus the
confidence to use paleoecological data located near their current
upper range limits for reconstructing warm-season temperatures.
After developing a robust seasonal temperature reconstruction, we
could then separate the moisture signal from the temperature one in
paleoecological data. This approach allows us to overcome the lim-
itations of traditional paleoecological proxies and climate transfer
functions that are notoriously complicated or distorted by the
potential high collinearity between moisture and temperature75.

Methods
Application of multi-source satellite data in mapping upper
range limit of trees
To map the spatial distribution of the upper range limit of trees over
the Tibetan Plateau, we first developed a fusion method to map
forested extent for the year 2020 (30m spatial resolution) by inte-
gratingmultiple-data sources including optical,microwave, and LiDAR
data. Forested regions were defined as regions with tree canopy cover
larger than 10% because the extracted upper range limit of trees using
this value had the highest correlation with in situ observations12.

Generating the spatial distribution of forest extent over the Tibetan
Plateau. Existing publicly-accessible datasets on forest extent sys-
tematically underestimate the presence of sparse tree cover76, leading
to a direct underestimation of the upper range limit of trees. As such,
we have constructed a tripartite upscaling method that integrates
in situ identification of landcover types, visual interpretations from
Google Earth’s high-resolution (<5m) images, and data from Landsat
multi-spectral images, Sentinel-1A microwave data, and GEDI-derived
canopy height. These data sources were integrated using a Convolu-
tional Neural Networks (CNN)77 classification algorithm to produce a
high-precision map of forest extent for the year 2020 at a 30m
resolution.

We used space-borne LiDARmeasurements of canopy height over
39,675,123 valid laser shots covering a resolution of 25m on the
Tibetan Plateau, collected by the GEDI instrument aboard the Inter-
national Space Station78. We first randomly selected 47,658 sites and
visually interpreted their corresponding vegetation classes using high-
resolution (<5m) Google Earth images produced between May and
September 2020 andfinally identified a total of 26,541 forested sites. In
addition, we also surveyed 346 forested sites in the field during the
autumn of 2020 and measured their tree heights.

We then built a CNN classification model linking the landcover
types (presence of forest) to structural (GEDI-derived tree height),
texture79 (Sentinel-1A microwave-derived co-polarization and cross-
polarization data), and spectral attributes80 (Normalized Difference
Vegetation Index, and seven spectral reflectance bands from Landsat
images) during the period from June to September across GEDI sites.
We retained 10% of the data (4765 sites) for independent validation of
our constructed CNN model (R2 = 0.89, P < 0.01). We then use the
remote sensing data (except GEDI data) as predictors in the CNN
classification model to generate a high-resolution (30m) map of for-
ests for the year 2020.

Generating spatial distributionof upper range limit of treesover the
Tibetan Plateau. We then used the developed forest extentmap as the
input for forest edge detection based on the Canny algorithm81, which
extracted the forest boundary by finding abrupt changes in the forest
image. We removed the lower forest boundary and only maintained
theupper forest edges bydefining a local adaptive elevation threshold,
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below which pixels were removed following Wang et al.12. Specifically,
the process begins with constructing a histogram of forest edge ele-
vation within a specified window size centered on a geographic point.
The choice of window size is based on empirical analysis (ranges from
0.1 to 1°), balancing the inclusivity of upper and lower edges. We then
assessed the unimodality of the distribution within the window size by
smoothing the histogramusing a Savitzky-Golay filter and determining
the number of Gaussian functions in the data. If the number of Gaus-
sian functions exceeds one, we found a threshold to separate the
upper and lower ones, based on the position that contains a 99% signal
in a Gaussian distribution. Subsequently, we eliminated the lower
forest edge and iterated through these steps until a unimodal dis-
tribution was achieved (i.e., the number of Gaussian functions
equals one).

Validating satellite-derived upper range limit of trees. We validate
the satellite-derived upper range limit elevation of trees using manu-
ally interpreted samples from high-resolution (HR) (<5m) satellite
imagery provided by the Google Earth platform. To create an equal
probability sample, the number of sample points is directly related to
the number of pixels that have their upper range limit tree observedby
the satellite. We generated a geographical 1 km grid over the Tibetan
Plateau, and then randomly selected ten validation samples at a 30m
resolution for each 1 km grid to ensure even coverage across the
region. Six well-trained workers visually interpreted and cross-
validated all samples using Google Earth and the ArcGIS platform.
Furthermore, a single quality controller checked all the results. We
therefore obtained 602,879 validation samples evenly distributed
across the Tibetan Plateau, with 30,746 (5.1%), 510,035 (84.6%), and
62,098 (10.3%) distributed in the northern, southern, and inner
regions, respectively. Validation shows that the satellite-derived range
limit has a high degree of consistency with manual interpretations
from Google Earth images (R2 = 0.98, Slope = 0.98, ME= 17m; Fig. 1b).

Identification of drivers of current spatial patterns in the upper
range limit of trees
Not all upper range limits of trees reached the thermal treelineposition
determined by temperature12,21,22. In reality, the upper range limit of
trees is often lower than the thermal treeline position due to envir-
onmental stresses12,41 (e.g., critical water shortage) and disturbances12

(e.g., human activities). We first compared the satellite-derived upper
range limit of trees to the thermal treeline position, and then evaluated
which factors were responsible for the deviation of satellite-derived
range limit from thermal treeline positions.

To do so, we first calculated the thermal treeline elevation using
growing-season temperature at a spatial resolution of 1 km. The ther-
mal treeline is the cold edge of the fundamental niche of trees21, and
was calculated as the isotherm of the mean growing-season air tem-
perature at 2m above the ground (Tair) of 6.4 ± 0.7 °C37 using the
WorldClim dataset and the mean growing-season land surface tem-
perature (Tsurface; the radiative temperature of the land derived from
infrared radiation emitted from the surface) of 7.6 ± 1.0 °C12 using the
Terra Moderate Resolution Imaging Spectroradiometer (MODIS). A
global meta-analysis of more than 30 thermal treeline sites from dif-
ferent climate zones showed that thermal treeline positions generally
occur at amean growing-season ground temperatureof 6.7 °Cat 10 cm
depth, with a narrow amplitude of 2.2 °C23,37. Since there was a strong
correlation12 between growing-season mean Tsurface and ground tem-
perature at a 10 cm depth across these global treeline sites21, the
treeline was then estimated to occur at the growing-season mean
Tsurface of 7.6 ± 1.0 °C. In addition, a meta-analysis of thermal treeline
sites at the global scale also showed that the start and end of growing
season was defined as date when the ground temperature at 10 cm
depth exceeds 3.2 °C23. Such ground-temperature threshold corre-
sponds to MODIS-derived land surface temperature threshold of

0.7 °C. Therefore, the start and end of the growing season were
determined as the date when daily Tair rises above 0.9 °C, the date at
which it falls below 0.9 °C, and the daily Tsurface passes 0.7 °C, respec-
tively. Furthermore, the growing season length must be longer than
94 days37.

We then calculated the deviation of satellite-derived upper range
limit of tree elevation from thermal treeline elevation as DTreeline (the
difference between the edges of the realized and the fundamental
niche)12,22. Before calculating DTreeline, we aggregated satellite-derived
upper range limit of trees elevation from the original 30m to 1 km
resolution by calculating the mean value in each 1 km grid cell. To
understand the drivers of DTreeline, we compiled several variables
(N = 19) belonging to the four different categories (climate limitation,
disturbance, soil, and topography factors) (Supplementary Table 1),
and then used a random forest model to rank the importance of these
variables and calculate the partial contribution of each variable on
DTreeline. The entire dataset, including cases where DTreeline ≥0
(N = 116,337), was used in our analysis. We generated the partial-
contribution plot using the “forestFloor” package in R statistical soft-
ware (http://cran.r-project.org/), to visualize how each independent
variable impacts the prediction while controlling changes in all other
variables (Supplementary Fig. 1b to t).

Constructing a climate-based predictive model of upper range
limit of trees
In constructing themodel, wefirst used a growing-season temperature
threshold to represent the thermal treelineposition, and then included
several variables including environmental stresses and disturbances,
to account for the observed deviation of the satellite-derived upper
range limit from the treeline position (DTreeline). Thus, the modeled
upper range limit of trees is the sum of the thermal treeline position
and DTreeline due to environmental stresses and stochastic effects. We
separated temperature from other climatic variables when modeling
DTreeline, as there was significant covariation between temperature and
other climatic variables, such as indicators of critical water shortages
(e.g., vapor pressure deficit and cumulative water deficit), both of
which are influenced by temperature.

InmodelingDTreeline, we employed a recursive feature elimination
method to identify the most relevant variables12. The error decreased
when using the sixmost important variables in determining the spatial
variation ofDTreeline (Supplementary Fig. 11) but decreased by less than
1% when additional variables were included. We then constructed a
parsimonious climate-DTreeline model by selecting the following six
variables: spring cumulative climatic water deficit (CWD), spring vapor
pressure deficit (VPD), cloud cover, minimum temperature of the
coldest month, summer dehydration, and surface curvature (Supple-
mentary Fig. 1 and Supplementary Table 1). The mechanisms for the
potential impact of these variables on tree growth and establishment
at thermal treeline positions were formulated as follows. For example,
the water availability (represented by CWD and VPD) could constrain
tree growth andbecomedecisive for seedling establishment, therefore
affecting the tree establishment at the thermal treeline position. The
CWD, which is calculated as potential evapotranspiration minus pre-
cipitation, indicates the quantity of water needed to meet evaporative
demand and measures the drought stress on plants, and VPD, as a
function of relative humidity and temperature, represents an inde-
pendent moisture stress on plant photosynthesis. Furthermore, sum-
mer dehydration, which is calculated as a product of wind speed,
temperature, and relative humidity82, generally occurs during daylight
hours under conditions characterized by high temperatures, low
relative humidity and strong winds, thereby leading to trees transpir-
ing moisture at a faster rate than their roots take it up from the soil.
Such summer dehydration could further aggravate themoisture stress
(CWD and VPD) on tree growth and tree establishment at thermal
treeline positions. The relationship between cloud cover and tree
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growth at thermal treeline position is complex. The high cloud cover
could reduce the solar radiation, and potentially undermine the plant
photosynthesis and tree growth at thermal treeline positions. While
the cloudy days are generally associated with the relatively high-water
availability and reduced transpiration during the growing season; and
this could reduce the radiative cooling and trap heat during the night,
potentially allowing trees to survive extreme cold temperatures at the
relatively high elevation24. The minimum temperature of the coldest
month is used as the freezing stressor that could directly control the
absence of trees from the thermal treeline position21. In addition to
these macroclimatic drivers, we also include local topographical fac-
tors (e.g., surface curvature) as a surrogate ofmicroclimate conditions,
because of the potential deviation ofmicroclimate frommacroclimate
at the high elevation. After including these variables, the parsimonious
model achieved a high prediction power (R2 =0.84, P <0.01; Supple-
mentary Fig. 2), and is less susceptible to errors inmodel extrapolation
than full models considering all potential drivers. We then applied our
parsimonious climate-DTreelinemodel to predict changes inDTreeline at a
spatial resolution of ~1 km at 100-year intervals from LGM to the end of
this century (mean over the period 2080–2099). All of these pre-
dicators from LGM to the end of this century were derived from
CHELSA-TraCE21k, WorldClim, and CMIP6 model projections (see
“Assembling climate variables”).

Reconstruction and prediction of changes in the upper range
limit of trees
We reconstructed spatiotemporal dynamicsof the upper range limit of
trees spanning from 22 kyr BP to the end of this century at a spatial
resolution of 1 km for every 100 years. Specifically, we determined the
thermal treeline elevation using the Tair of 6.4 ± 0.7 °C37 and the
Tsurface of 7.6 ± 1.0 °C12, with the growing season length longer than
94 days37, and then predicted changes in DTreeline due to regional
environmental stresses using the parsimonious DTreeline model.

Assembling climate variables. Climate data from 22 kyr BP to 2100
CEwascompiled from threedifferent data sources: (1)monthly climate
data from CHELSA-TraCE21k (Climatologies at High resolution for the
Earth’s Land Surface Areas) at a temporal and spatial resolution of 100
years and 1 km, respectively, for the last 22,000 years53; (2) current
climatology (2020 CE) from the WorldClim dataset83; and (3) future
projections from 9 Earth system models at the end of this century
(mean over 2080–2099) participating in CMIP6 under low (SSP1–2.6),
intermediate (SSP2–4.5) and high emission scenarios (SSP5–8.5)
(Supplementary Table 3). Here, SSPx–y represents an integrated sce-
nario of future climate and societal change, with a peak in radiative
forcing at y Wm−2 before 2100.

We used monthly CHELSA-TraCE21k at a spatial resolution of
~1 km and a temporal resolution of 100 years. This CHELSA-TraCE21k
dataset was downscaled from the transient climate simulations
(CCSM3 TraCE-21k) from the LGM to present day using the CHELSA
V1.2 algorithm53. CHELSA is a high-resolution climate data set for the
time period 1979–201384, which uses statistical downscaling of the
ERA-interim reanalysis with a bias correction of monthly precipitation
from Global Precipitation Climatology Centre. The downscaled
paleoclimate data have included the impact of paleo-orography on
temperature andprecipitation fields given that topography could have
changed drastically due to the ice retreat along poles and high
mountain areas through time85. The CHELSA TraCE21k was shown to
produce a reasonable representation of high-spatial-resolution tem-
perature and precipitation through time, and simulations using this
dataset could be capable of detecting effective LGM species refugia53.
Additionally, we analyzed changes in orography since LGM and found
that a decrease in elevation is mainly located in the river valleys of the
southeast Tibetan Plateau and over Hengduan mountain ranges
(Supplementary Fig. 12). By contrast, orography changes within the

1 km buffer around the current range limit of trees are almost
negligible.

Note that we used WorldClim data to map the present-day upper
range limit of trees, and estimated the paleo-range limit by combining
the current climatology from WorldClim with paleo-climatic changes
derived fromCHELSA. Furthermore,we generated future climate data at
a spatial resolution of ~1 km by downscaling and bias-correcting CMIP6
model simulations using WorldClim data. Therefore, discrepancies
among different data sources to estimate dynamics in the upper range
limit of trees could be well resolved through bias correction.

Validating changes in the upper range limit of trees using fossil
pollen data analysis at the millennium scale. We then used fossil
pollen assemblages preserved in lake sediments over the Tibetan Pla-
teau to determine if the trees were present in the vicinity of the sam-
pling site throughout the Holocene. By incorporating data from an
elevational transect, this approach can be used to delineate the upper
range limit of trees and their elevational changes over time. We com-
piled a list of taxonomically harmonized and temporally standardized
fossil pollen data from lake sediments over the Tibetan Plateau86

(Supplementary Fig. 7). We only included fossil pollen abundance data
that falls within a 500 km radius of the present forest communities, to
minimize the risk of misinterpreting the occurrence of trees due to
long-distance transport of exogenous arboreal pollen into lake
sediments87. This filtering resulted in a total of six lakes distributed
across a range of elevation from 3700 to 4500m26,35,54–57 that had data
for at least 500 years (Supplementary Table 4).

We concentrated on the four most common high-elevational
arboreal tree taxa—Betula, Abies, Picea, and Pinus. These tree species
have different production anddispersal strategies,which could greatly
affect the representation and abundance of tree taxa in fossil pollen
records88–90. For example, Betula and Pinus have high pollen produc-
tion rates, good wind transportability and good preservation
characteristics88,91–93. Therefore, even a relatively high percentage at a
given elevation might report a false presence. Since there were no
available estimates of pollen production for the main tree taxa on the
eastern Tibetan Plateau, we then used the reliable threshold of pollen
abundance to determine if one of the tree taxa was present in the
vicinity of the sampling site. Specifically, the pollen abundance
thresholdswith different probabilitieswere determined byperforming
a logistic regression using pollen abundance (0–100%) as the predictor
and taxon classification (0 and 1 represent negative and positive clas-
ses, respectively) as the response variable using 2434 modern pollen
samples of the 14 key arboreal taxa from China and satellite-based
observation and the Vegetation Atlas of China of modern trees taxa
distribution89. We used the pollen abundance threshold at a prob-
ability of 0.9 to determine the presence and absence of trees. The
thresholds for Betula, Abies, Picea, and Pinus are 16%, 5%, 9%, and 37%,
respectively89. Upon identifying any one of the four tree taxa, we
assumed that the treeswere present in the vicinity of the sampling site.
Not all pollen grainswill be equally well preserved throughout the time
due to their differing sensitivities to environmental changes94,95, and
thus, some tree taxawith very lowpollen production rates and/or poor
preservation could be missed. However, the probability of such
underrepresentation is unlikely in this study. For example, common
tree species including Corylus, Nitraria, Tamarix, Cyperaceae, Poaceae,
and Fabaceae, which were widely reported to be greatly under-
represented in China based on 898 modern pollen sampling sites and
2115 pollen data96, were not found at the current realized range limit of
trees over the Tibetan Plateau.

Quantifying beta-diversity of endemic alpine species and its
drivers
We aimed to estimate the role of paleo fluctuations in the upper range
limit of trees on the spatial pattern of beta-diversity. We initially

Article https://doi.org/10.1038/s41467-025-57036-w

Nature Communications |         (2025) 16:1819 8

www.nature.com/naturecommunications


obtained geographical coordinates and elevational ranges for endemic
alpine species at the county level, using the data from the Flora of
China97 and the Flora of Tibet (Supplementary Data 1). The selection of
endemic species is based on the Chinese Endemic Species list, and our
focus was primarily on alpine species whose uppermost distribution
surpassed the current upper range limit of trees. In this way, we have
identified 2111 endemic alpine species in over 100 counties of the
Tibetan Plateau.

First, wecalculated theβ-diversity of endemic alpine species using
indices from the Sørensen-based multiple-county dissimilarity
measures59 (Supplementary Fig. 8a). The Sørensen-based multiple-
county dissimilarity indices were calculated using the following Eq. (1),

β� diversity=
a+b

2× ½PiSi � ST �+a+b
ð1Þ

a=
X

i<j

minðbij ,bjiÞand b=
X

i<j

maxðbij ,bjiÞ

For a given focal county i with N neighbors, Si is defined as the
total number of endemic alpine species in i (alpha diversity from
endemic species) and ST is the total number of endemic alpine species
in all neighbors (gamma diversity). bij ,bji are the number of endemic
alpine species only present in the county i and j, respectively. We
calculated β-diversity for all 100 counties selected.

We further partitioned β-diversity into two separate and antithetic
components: dissimilarity due to species replacement and dissim-
ilarity due to nestedness using Eqs. 2 and 359. The species replacement
component refers to the replacement of some species with others
among counties98, and there is no difference in species richness among
counties. On the other hand, the nestedness component reflects dif-
ferences in species richness, when species-poor assemblages are nes-
ted in species-rich assemblages. Different counties would then have
different species compositions in the absence of species replacement.

species replacement =
a

½PiSi � ST �+a ð2Þ

nestedness =
b� a

2× ½PiSi � ST �+a+b
×

P
iSi � ST

½PiSi � ST �+a
ð3Þ

The accuracy of the Sørensen index to estimate beta-diversity was
recently suggested to be heavily dependent on species prevalence,
with high species prevalence generally yielding misleading inferences
about species associations99. We then quantified the extent to which
species prevalence affected the Sørensen index in estimating β-diver-
sity on the Tibetan Plateau, using a statistical mathematical metric
generally used for evaluating pairwise similarities instead of assessing
similarities among multiple (>2) species/sites. The prevalence of pair-
wise species is estimated by calculating the log odds ratio of the
conditional occurrence probability (the occurrence rate of pair-wise
species in total counties)99. The endemic alpine species on the Tibetan
Plateauhave a generally lowprevalence of0.04 ±0.05 (Supplementary
Fig. 13a), and thus, it is unlikely that pairwise species would invalidate
the interpretations of the traditional Sørensen-based metrics of spe-
cies co-occurrence. This is confirmed by our analysis showing that
there is a good correspondence (positive correlation) between the
affinity metric of co-occurrence (Alpha MLE) that is not affected by
species prevalence99 and themostpopular co-occurrencemetrics such
as those due to Jaccard (R =0.75, P < 0.01), Sørensen-Dice (R =0.75,
P <0.01), and Simpson (R =0.83, P < 0.01) (Supplementary Fig. 13b–d).
We thus confirmed the robustness of using Sørensen-based multiple-
county dissimilarity measures to estimate β-diversity.

Second, in terms of paleo-temporal fluctuations in the upper
range limit of trees and climate drivers, we only retained the high-

frequency component of the paleo time series. Specifically, we
decomposed the original time series into a finite set of oscillatory
components called Intrinsic Mode Functions (IMFs) and a residual
trend component, using Empirical Mode Decomposition method100.
IMF1 stands for the first IMF obtained during the decomposition pro-
cess, which is the dominant oscillatory component extracted from the
original time series of each variable. The standarddeviation of the IMF1
for each county was used to represent paleo temporal fluctuations in
the upper range limit of trees and climatic drivers (growing-season
temperature and precipitation). In addition, to assess whether
warming-induced upslope tree expansion would potentially lead to
habitat loss, we also calculated the alpine land area by summing the
surface area above the mean elevation of the reconstructed upper
range limit of trees in each county, using a 30-m spatial resolution
digital elevation model101. For each mountain defined in the GMBA
mountain inventory v2.0 dataset102, we created a 100 km radius buffer
around a target upper range limit pixel, and then summed up the
surface area of all 30m resolution pixels with elevations higher than
that of the target pixel.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Landsat multi-spectral images, Sentinel-1A microwave data, and
GEDI-derived canopy height can be accessed at https://developers.
google.cn/earth-engine/datasets. The climatological land surface
temperature from theMODISMOD11A1 product can be downloaded at
https://search.earthdata.nasa.gov/. The current climate dataset from
WorldClim and TerraClimate are freely available at https://worldclim.
org/ and https://www.climatologylab.org/terraclimate.html, respec-
tively. The monthly paleo-climate dataset from CHELSA-TraCE21k and
projected future climate data from the CMIP6 can be accessed at
https://chelsa-climate.org/ and https://esgf-node.llnl.gov/search/
cmip6/, respectively. The elevation data from SRTM can be accessed
at https://www.earthdata.nasa.gov/data/instruments/srtm. Other
datasets supporting the findings of this manuscript are available in the
main text, Supplementary Information, and Supplementary Data. The
processed data generated in this study and sourcedata are provided in
the Source Data file. Source data are provided with this paper.

Code availability
The climate-driven predictive random forest model used in this study
has been deposited in the “Figshare” at https://figshare.com/articles/
software/Climate-driven_predictive_random_forest_model_for_paleo-
upper_range_limit_of_trees_changes/28348190?file=52140245. All other
codes andexamples used in this studyare available on request fromthe
corresponding author.
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