
Optimization of soil hydraulic parameters within a constrained
sampling space

Meijun Li a , Wei Shao a,b,* , Wenjun Yu a, Ye Su c,d , Qinghai Song e, Yiping Zhang e,
Hongkai Gao f , Yonggen Zhang g , Jianzhi Dong g

a Key Laboratory of Hydrometeorological Disaster Mechanism and Warning, Ministry of Water Resources, School of Hydrology and Water Resources, Nanjing University
of Information Science and Technology, Nanjing 210044, China
b Qinghai Provincial Meteorological Disaster Prevention and Defense Technology Center, Sining Qinghai 810001, China
c Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
d Department of Physical Geography, and the Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden
e Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
f School of Geographical Sciences, East China Normal University, Shanghai, China
g Institute of Surface-Earth System Science, Tianjin University, Tianjin, China

A R T I C L E I N F O

Keywords:
Soil hydraulic parameters
Particle Swarm Optimization (PSO)
Markov Chain Monte Carlo (MCMC)
Sequential Monte Carlo (SMC)
Rosetta 3 pedotransfer function

A B S T R A C T

The direct optimization of soil hydraulic parameters (SHP) in unconstrained parameter space introduces sig-
nificant uncertainties in ecohydrological modeling, particularly when addressing the complex model structure of
Richards’ equation combined with Penman-Monteith equation. Pedotransfer functions (e.g., the latest version of
Rosetta 3), which have been extensively trained using abundant soil hydraulic data, could potentially provide a
physical constraint for sampling SHP. This study integrates optimization algorithms (Particle Swarm Optimi-
zation, PSO; Markov Chain Monte Carlo, MCMC; Sequential Monte Carlo, SMC; Generalized Likelihood Uncer-
tainty Estimation, GLUE) with two sampling strategies − direct optimization of SHP and indirect optimization of
SHP derived from soil particle composition (SPC) using Rosetta 3 − to evaluate their performance in ecohy-
drological modeling under predefined soil conditions. The results demonstrated that indirect optimization of SHP
significantly enhances the accuracy in recovering predefined true parameters and states, and reduces the un-
certainty of ecohydrological modeling compared to direct optimization of SHP. Specifically, the mean quartile
deviation of biases in soil water content and evaporation were reduced from 0.0347 m3/m3 and 0.0027 m/h to
0.0061 m3/m3 and 0.0010 m/h, respectively. Furthermore, integration of the Rosetta 3 diminished the dimen-
sionality of inverse modeling, thereby significantly enhancing algorithm convergence speed and precision. It is
recommended to integrate Rosetta 3 with various optimization algorithms to enhance the accuracy of ecohy-
drological modeling.

1. Introduction

In the field of unsaturated hydrology, modeling soil moisture content
(θ) and soil water potential (h) through Richards’ equation is essential to
support various applications, including agriculture management,
geotechnical engineering, and earth system modeling (Cho, 2014; Liu
and Wang, 2021; Xu et al., 2022). Soil hydraulic parameters (SHP), the
description of the storage and transport properties of water within the
soil profile (e.g. the soil water characteristic curve SWCC and the un-
saturated hydraulic conductivity functions UHCF), are fundamental for

comprehending and analyzing the soil hydrological processes
(Vereecken et al., 2022). Various types of parametric equations have
been employed for modeling soil hydrological processes. Notably, the
parametric equation proposed by van Genuchten (VG) has been exten-
sively utilized due to its simplicity and wide applicability across diverse
soil types (Ippisch et al., 2006; Luo et al., 2019). A significant advantage
of the VG model lies in its sharing of the same fitting parameters (α and
n) between SWCC and UHCF, reducing the dimensionality in SHP to five
parameters (α, n, residual water content θr, saturated water content θs
and saturated conductivity Ks).
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Despite the utilization of numerous field and laboratory measure-
ment techniques for the identification of SHP with advantage of preci-
sion (Bordoni et al., 2017), an obstacle persists owing to the challenge of
measuring SHP with adequate spatial and temporal coverage
(Vereecken et al., 2022). Furthermore, the measured SHP may exhibit
only statistical significance rather than precise values that are suitable
for soil hydrological modeling (Scharnagl et al., 2011). Inverse estima-
tion of SHP through auto-calibration (using optimization algorithms)
were commonly used in practical application (Scharnagl et al., 2011;
Vereecken et al., 2022). The inversely estimated SHP, based on θ, is
widely favored for its simplicity and the extensive availability of θ ob-
tained from in-situ measurements and remote sensor technologies.
However, the equifinality phenomenon, prevalent in highly nonlinear
modeling systems, poses a threat to the reliability of SHP optimization
and soil hydrological modeling (Shao et al., 2023a; Shao et al., 2023b).

The equifinality phenomenon predominantly arise from the
compensation effects of implicit linked parameters and certain non-
physical parameters that distort the physical relationship between
SWCC and UHCF (Eberhart and Kennedy, 1995). In principle, the
equifinality phenomenon can be alleviated by reducing the dimension-
ality of the parameter sampling space (Pollacco et al., 2008). Prior
knowledge of soil properties can effectively constrain the parameter
sampling space (Vereecken et al., 2022). In the realm of soil physics, the
soil particle composition (SPC) is commonly utilized to estimate SHP
(Chirico et al., 2007; Vereecken et al., 2010). For natural soils at shallow
depths, their compressibility is likely to be similar, thereby rendering it
reasonable to estimate SHP with SPC under comparable bulk density.
Given that Rosetta 3, an artificial neural network-based pedotransfer
function, incorporates extensive prior information on SHP for undis-
turbed soil samples (encompassing 2134 soil samples with water
retention data and 1306 soil samples with measurements of saturated
hydraulic conductivities), it could serve as a valuable instrument to
constrain the parameter space of SHP (Zhang and Schaap, 2017).
However, to the best of our knowledge, no comprehensive study has
been conducted to investigate the statistical implication of optimized
SHP within a constrained sampling space using Rosetta 3 pedotransfer
function.

To evaluate the enhancement of Rosetta 3 in parameter optimization,
this study conducted a systematic numerical experiment with two
sampling strategies: direct optimization of SHP (Direct sampling strat-
egy) and indirect optimization of SHP derived from soil particle
composition (SPC) based on Rosetta 3 (Indirect sampling strategy).
Specifically, three representative soil types (silty, loam, and sandy soil)
were selected as study objects. Predefined true values for soil moisture
state variables and evaporation rate were obtained under actual vege-
tation and meteorological conditions. Four prevalent parameter opti-
mization algorithms, namely Particle Swarm Optimization (PSO),
Markov Chain Monte Carlo (MCMC), Sequential Monte Carlo (SMC),
and General Likelihood Uncertainty Estimation (GLUE), were employed
to inversely estimate the optimal SHP for the unsaturated flow model.
The study compared the results obtained using these four algorithms
under two sampling strategies (Direct sampling strategy and Indirect
sampling strategy) focusing on three key aspects: (1) whether the opti-
mization algorithms could encompass the predefined true parameter
values or manifest equifinality phenomena; (2) whether the posterior
SWCC exhibited well-constrained results with a narrow uncertainty
band under Indirect sampling strategy; and (3) the evaluation of the
impact of parameter uncertainty on soil moisture and evaporation
simulations.

2. Theory

In the soil hydrology model, the Mualem-van Genuchten (VG) model
always used to characterized SWCC and UHCF (van Genuchten, 1980):

Θ =
θ − θr

θs − θr
=

⎧
⎪⎨

⎪⎩

1
(1+ |αh|n )m, h < 0

1, h ≥ 0
(1)

K =

{
KsΘl

[
1 −

(
1 − Θ1/m)m

]2
, h < 0

Ks, h ≥ 0
(2)

where θ (m3m− 3) is the soil moisture, the subscripts s and r represent the
saturated and residual water content; α (m− 1) is the scaling parameter,
its reciprocal is positively related to air entry pressure; n and m are the
dimensionless parameter related to curve shape, wherem = 1 − 1/n;Θ is
the effective saturation; Ks (m s− 1) is the saturated hydraulic conduc-
tivity; l is an empirical parameter with typical default value of 0.5.

In the conventional sampling strategy, parameter samples within the
optimization algorithm are both initialized and subsequently updated
through random process confined to the same parameter space as for-
ward models (e.g. direct sampling of SHP). This strategy is referred to as
the Direct sampling strategy:

xSHPi,τ = [α, n, θr, θs,Ks] (3)

Here, xSHPi,τ represents the ith sample in τth iteration under Direct sam-
pling strategy, where i ∈ {1,2,⋯,Ns} and τ ∈ {1,2,⋯,Nτ}; Ns signifies
the total number of samples, while the Nτ denotes the total number of

iterations. The samples set at τth iteration of xSHPi,τ is named XSHP
τ =

[
xSHPi,τ

]
, i ∈ {1,2,⋯,Ns}. The last iteration of XSHP

τ=Nτ
is denoted as the

posterior parameters (XSHP
post) for statistical analysis of their probabilistic

distribution. The entire possible range and probabilistic distributions of
values for xSHPi,τ are denotes as ΩSHP = {α,n,θr,θs,Ks}, which represents 5-
deminsional SHP space under Direct sampling strategy.

An innovative sampling strategy, termed the Indirect sampling
strategy, is employed to sample SHP within a constrained parameter
sampling space using the Rosetta 3 pedotransfer function. Under this
strategy, the optimization algorithm initializes and updates samples in a
constrained sampling space (SPC space):

xSPC*i,τ = [fsand%, fsilt%, fclay%] (4)

where xSPC*i,τ signifies the ith sample in τth iteration; the superscript *
denotes Indirect sampling strategy; the samples set at τth iteration of

xSPC*i,τ was names XSPC*
τ =

[
xSPC*i,τ

]
, i ∈ {1,2,⋯,Ns}. The last iteration of

XSPC*
τ=Nτ

was the denotes as the posterior parameters (XSPC*
post ). The terms

fsand%, fsilt% and fclay% denote the fraction of sand, silt and clay particles,
where fclay% + fsilt% + fsand% = 100%; The entire possible range and
probabilistic distributions of values for xSPC*i,τ are denotes as
ΩSPC= {fsand%, fsilt%, fclay%}, which represents the SPC sampling space
under Indirect sampling strategy. Considering the summation of all
three groups of particle equals 1 as a necessary constrain, the dimen-
sionality of ΩSPC is 2.

Rosetta 3, developed using the Python 3 programming language,
conveniently supports the integration of newly developed numerical
models (Zhang and Schaap, 2017). Detailed information about Rosetta 3
is available at https://github.com/usda-ars-ussl/rosetta-soil. Rosetta 3
incorporates five hierarchical models to estimate SHP. The first model
(H1w) is a simple lookup table for 12 typical soil textures under USDA
classifications. The second (H2w) through fifth models (H5w) are arti-
ficial neural networks, trained using bootstrap resampling of soil hy-
draulic data. Models H2w to H5w support detailed inputs of SPC,
allowing for more accurate SHP predictions across the entire soil texture
triangle. Specifically, H2w use SPC as its sole input, while other models
(H3w, H4w, H5w) requiring additional information of bulk density (ρBD)
and soil water content at 33 kPa (θ33) and 1500 kPa (θ1500) for models
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H4w and H5w. This enables the description of SHP in soils with more
distinct pore structures and provide a more accurate description for soil
under special condition.

Commonly, the H2w model in Rosetta 3 suffices for describing the
soil properties of the topsoil layer. Therefore, in this study, the H2w
model was adopted to constrain the sampling space of SHP. As illus-
trated in Fig. 1, when using the Rosetta 3 H2w model to transfer the SPC
randomly sampling within the soil texture triangle into SHP, the dis-
tribution of SHP exhibited bimodal characteristic (α and Ks) and skewed
distribution (n, θr, and θs), rather than normal distribution or uniform
distribution. This highlights the capability of Rosetta 3 to provide
effective prior information for constraining the SHP parameter space.

Using Rosetta 3 pedotransfer function, xSPC*i,τ can be transferred from
SPC into SHP, denoted as xSHP*i,τ = [α,n,θr,θs,Ks]:

xSHP*i,τ = R (xSPC*i,τ ) (5)

whereR represent the Rosetta 3 function. The transformed sample xSHP*i,τ

can be used in forward model. The samples set at τth iteration of xSHP*i,τ is

named as XSHP*
τ =

[
xSHP*i,τ

]
, i ∈ {1,2,⋯,Ns}. The last iteration of XSHP*

τ=Nτ
is

denoted as the posterior parameters (XSHP*
post ).

The dimensionality of the constrained sampling space under Indirect
sampling strategy diverges from conventional sampling space under the
Direct sampling strategy. Specifically, ΩSHP is 5-dimensional, as it

simultaneously optimizes all five VG parameters. Conversely, ΩSPC, used
in this study, derives the five VG parameters from the sampling in a 2-
dimensional SPC parameter space via Rosetta 3, thereby significantly
reducing dimensionality of parameter space.

In this study, both sampling strategies are integrated into four al-
gorithms, namely PSO, MCMC, SMC and GLUE. For the sake of clarity in
the subsequent discussion of the update and resampling rules in Section
3, the parameters of both sampling strategies (denotes as xSHPi,τ , xSPC*i,τ ,

andxSHP*i,τ ) are simplified to xi
τ. Similarly, the parameter sets (denotes as

XSHP
τ ,XSPC*

τ ,andXSHP*
τ ) are collectively referred to as Xτ.

3. Algorithm for optimizing soil hydraulic parameters

Within the framework of inverse modeling, each iteration of pa-
rameters is employed to advance forward model, thereby predicting the
model’s state:

yi
τ = F

(

xi
τ, Ũforcing,ψ initial

)

(6)

ỹtrue = yi
τ + ε (7)

where ỹtrue represents the observation vector as times series (t = [1,2,⋯,

NT]), while yi
τ denotes the simulation vector estimated with parameter

xi
τ; The function F (⋅) represents the simulator; xi

τ is the model param-

Fig. 1. The frequency histogram and probability distribution function (PDF) of the soil particle composition (SPC) and soil hydraulic parameters (SHP). The SPC
were randomly sampled within the soil texture triangle, and the SHP were transferred from the SPC using the Rosetta 3 pedotransfer function.
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eters with dimensionality of d; Ũforcing is the forcing variables (also
called input data or boundary conditions); ψinitial is the initial states, ε is
the error including the observation error as well as modeling error.

The main model optimization process was shown in Fig. 2. In this
study, the observation include soil moisture θ̃true, soil water potential
h̃true and evaporation Ẽtrue. F (⋅) represents the forward model (the
numerical model with details given in Section 3.1) for predicting
simulated state variables yi

τ including soil moisture θi
τ, soil water po-

tential hi
τ and evaporation Ei

τ; ŨForcing stands for the meteorological
forcing variables (detailed in Section 4.2), ψinitial denotes the initial
states including the initial soil moisture θ̃1 and soil water potential h̃1, ε
reflects the error between the observed and simulated state variables; xi

τ
was parameters of VG model. Under Direct sampling strategy, xi

τ is
denoted as xSHPi,τ , while under Indirect sampling strategy it is denoted as

xSHP*i,τ . The true value of SHP was denoted as x̃SHPtrue = [α̃,ñ, θ̃s,θ̃r,K̃s]. Given

the challenge of accurately measuring the x̃SHPtrue for natural soil, the true
values of x̃SHPtrue for three synthetic soils were pre-defined in synthetic
numerical experiment (Section 4.1).

The implementation of any optimization algorithm is contingent
upon forward modeling for the prediction of simulation time series.
Upon executing the forward model F (⋅), the simulation dataset Yτ =
[
yi

τ
]
, where i ∈ {1,2,⋯,Ns} was generated. Subsequently, the objective

function (Table 1) was utilized to assess the similarity between the
simulation and observation. This estimation was then followed by an
iterative procedure where the parameters were automatically updated/
resampled from Xτ to Xτ+1 through the application of optimization al-
gorithms. The forward model is executed repeatedly until the simulated
values closely approximate to the observed values. The final iteration
(τ = Nτ) of the simulation represents the posterior parameters and
results.

3.1. Forward modeling of unsaturated flow

In the context of a vertical coordinate system (positive in downward
direction), the movement of unsaturated flow within soils can be
mathematically represented by the one-dimensional Richards’ equation
(Richards, 1931):

C
∂h
∂t

=
∂
∂z

[

K
(

∂h
∂z

− 1
)

− S(z, t)
]

(8)

where C (m− 1) is the differential water capacity (= dθ/dh); h (m) is the
soil water potential; z (m) is the vertical distance from soil surface; K (m
s− 1) is the unsaturated hydraulic conductivity; S(z, t) (m s− 1) is the sink
term here accounting for root water uptake (see detail in supplemental
material); and t (s) is the time.

3.2. Particle Swarm Optimization (PSO)

PSO algorithm is an adaptive optimization method inspired by
social-psychological dynamics, where individuals (particles) interact
within a social framework to collaboratively search for optimal solutions
(Gholami et al., 2018). PSO conceptualizes the optimization process as
particles navigating through the parameter space, with each particle
adjusting its position based on both its own experience and the perfor-
mance of the swarm as a whole.

In PSO, particles maintain two key records during the search process:
their personal best position within the current generation (xp,best

τ ) and
the global best position achieved by any particle across all generations
(xg,best

τ ). These records guide the particles in updating their positions
iteratively. Specifically, the position of a particle position xi

τ is updated
based on its current velocity vi

τ and the influence of both personal and
global best positions:

vi
τ+1 = wvi

τ + cprp
τ
(
xp,best

τ − xi
τ
)
+ cgrg

τ
(
xg,best

τ − xi
τ
)

(9)

xi
τ+1 = xi

τ + v
i
τ+1 (10)

where i ∈ {1,2,⋯,Ns} represent the index of a parameter sample, τ ∈ {

1, 2,⋯,Nτ} represent the iteration step; rp
τ and rg

τ are randomly draw
from uniform distribution U [0,1]. cp and cg are the constants known as
the cognitive and social parameters, respectively. In this study, the value
of cp and cg was set to 2. w is the inertia weigh parameter, specifying to
be 0.6 in this study.

3.3. Differential Evolution Markov Chain Monte Carlo (DE-MCMC)

The basis of MCMC algorithm operates by constructing a Markov
chain that performs a random walk through the parameter space. This
chain sequentially visits solutions with frequencies determined by a
stationary distribution, enabling the algorithm to approximate the target
posterior distribution effectively. DE-MCMC algorithm builds upon
MCMC by integrating differential evolution, a genetic algorithm-
inspired approach, to evolve a population of solutions. DE-MCMC in-
corporates the Metropolis selection rule to decide whether proposed
candidate points should replace their respective parent solutions.
Typically, the initial population is drawn from the prior distribution,
and DE-MCMC efficiently transforms these prior samples into posterior
samples through iterative updates (Braak, 2006).

In DE-MCMC, observations are combined with prior knowledge of
parameters to define the joint posterior probability distribution over a
d-dimensional parameter space. The algorithm employs N independent
Markov chains that run concurrently, proposing updates in parallel. The
use of parallel chains and adaptive proposal generation makes DE-
MCMC particularly effective for sampling from complex, high-
dimensional parameter spaces, offering improved efficiency and
convergence compared to traditional MCMC approaches. The multi-
variate proposals xi

p are dynamically generated using the differential
evolution strategy, leveraging the diversity of the ensemble of chains:

xi
p = γ

(
xa

τ − x
b
τ
)
+ ζ, a ∕= b ∕= i (11)

where γ = 2.38/
̅̅̅̅̅̅
2d

√
denotes jump rate, d is the dimension of x (ter

Braak and Vrugt, 2008), a and b are integer values drawn without
replacement from {1,⋯, i − 1, i + 1,⋯,Ns}, and ζ N d(0, c*) is randomly
disturbed from a normal distribution with small standard deviation, i.e.,
c* = 10− 6(ter Braak and Vrugt, 2008). By accepting each proposal with
Metropol probability:

pacc(xi→xi
p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min

⎛

⎝ p(xi)

p
(
xi

p

),1

⎞

⎠, p
(
xi) > 0

1, p
(
xi) = 0

(12)

theMarkov chains are obtained, the stationary or limiting distribution of
which is the posterior distribution. If pacc(xi→xi

p) is larger than some
uniform label drawn from U(0,1), then the candidate point is accepted
and the ith chain moves to the new position, that is xi

τ+1 = xi
p, otherwise

xi
τ+1 = xi

τ.

3.4. Sequential Monte Carlo (SMC)

SMC algorithm produces a population of weighted samples (or par-
ticles) from the targeted posterior distribution. The samplers are con-
structed through a sequence of sampling, disturbing, and resampling
strategies (Del Moral et al., 2006). The SMC algorithm is initialized by
sampling a population of Ns particles (i.e., model parameter vectors xi

τ).
Each particle is associated with a weight, W. At iterative step τ, assume
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Fig. 2. The flow diagram illustrates the model optimization process, encompassing the following key components: (1) forward model F (⋅), where the Ũforcing

signifies the forcing variables, commonly referred to as input data to derive boundary conditions; ψ̃initial indicates initial states, while xi
τ symbolizes the model’s

parameters. (2) the model’s output, also known as the simulation of state variable, yi
τ, contains soil moisture θi

τ, soil water potential h
i
τ and evaporation Ei

τ . (3) the
observation state or the true value, ỹture, which incorporates the observation of soil moisture θ̃true, soil water potential h̃true, and evaporation Ẽtrue. (4) the objective
function, which is computed by comparing θi

τ and θ̃true, thus guiding the optimization process. (5) the optimization algorithm serves to optimize the
model parameters.
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that a set of weighted particles
{
Wi

τ,xi
τ
}
, i ∈ {1,2,⋯,Ns} approximating

probability distribution is available,

pN
τ (dx1:τ) =

∑N

i=1
Wi

τδxi
1:τ
(dx1:τ) (13)

Wi
τ =

wi
τ

∑N
i=1wi

τ
(14)

where the pN
τ (dx1:τ) is the approximating probability density pN

τ (x1:τ)
with respect to a finite dominating measure denoted dx1:τ, the Wi

τ is the
normalized weight coefficient, the wi

τ is the importance weight, and δ is
Dirac delta function (Del Moral et al., 2006). According to the sequential
importance sampling method, the wi

τ can be updated as:

wi
τ+1∝wi

τp
(
yi

τ|x
i
τ
)

(15)

where wi
τ is the unnormalized particle weight coefficient; p

(
yi

τ|xi
τ
)
is

Likelihood function (Table 1).

3.5. General Likelihood Uncertainty Estimation (GLUE)

Beven and Binley (1992) proposed a Generalized Likelihood Uncer-
tainty Estimation (GLUE) approach based on the Bayesian framework,
demonstrating its applicability in identifying the equifinality phenom-
enon in hydrological modeling. GLUE is based on a Monte Carlo analysis
using a Latin Hypercube sampling method. The central idea behind
GLUE entails the rejection of a model or a model parameter set as a
possible simulator of the hydrological process if it fails to replicate the
observed state within an acceptable threshold of measurement errors
(Shao et al., 2023b). In this study, the Nash-Sutcliffe Efficiency (NSE)
was used as an approximation of the likelihood to evaluate the model
performance for all sampled parameter sets. The posterior parameter
sets obtained from GLUE algorithm are selected based on an acceptable
threshold of 0.85 (e.g., NSE > 0.85). The objective function and evalu-
ation criteria of other algorithms are shown in the Table 1.

4. Design of the numerical experiment

4.1. Predefined soil particle composition (SPC) and soil hydraulic
parameters (SHP)

In this study, synthetic numerical experiments are conducted to
simulate predefined time series of θ̃true, h̃true, and Ẽtrue using identical
forward model and meteorological forcing data of parameter inverse
process. In situ measured meteorological forcing variables and vegeta-
tion information are integrated with predefined true SHP (i.e., x̃SHPtrue =

{α̃, ñ, θ̃r, θ̃s, K̃s}). In this way, the numerical experiments conducted

facilitate the exclusion of uncertainties stemming from model concep-
tualization and observation errors in input rainfall and soil moisture
output, thereby facilitating a focused assessment of the impact of
parameterization.

The numerical experiments encompass three representative soil
textures, namely sandy, loam, and silty soils, as classified by the USDA

(Fig. 3). The x̃SHPtrue is derived from SPC (i.e., x̃SPCtrue =

{

f̃ sand%, f̃ silt%, f̃clay%

}

,

where f̃clay% + f̃ silt% + f̃ sand% = 100%) using Rosetta 3 pedotransfer
function. The value of x̃SHPtrue and x̃

SPC
true have shown in Table 2.

4.2. Meteorological forcing

The meteorological forcing data ŨForcing are taken from a national
ecosystem monitoring station situated within a tropical monsoon forest
in Xishuangbanna, Yunnan, China. This station is characterized by a
year-round tropical monsoon climate, exhibiting distinct wet and dry
seasons. The study period spans from March 2004 to March 2005. Soil
moisture exhibits a comprehensive wetting and drying cycle throughout
designated period, indicative of a typical ecohydrological regime. The
monitoring of net radiation Rn, air temperature Ta, wind speed uw, vapor
pressure deficit VPD and precipitation P are measured for 42 m, as
illustrated in Fig. 4.

The daily mean meteorological forcing variable ŨForcing = {Rn,Ta,

uw,VPD,P} demonstrate distinct seasonal pattens. The daily mean Rn
ranged from 80.16 to 482.5 MJ m− 2 d-1 with a small value during
October to January in next year. Due to the smaller Rn, the air tem-
perature decreased from 20.08 ◦C in October to 12.82 ◦C in January. The
Ta in other months fluctuated stably with an average value of 22.13 ◦C.
The uw fluctuated with a high average value of 0.3814 m s− 1 during
March and April, and with a low average value of 0.2198 m s− 1 at other
periods. The VPD demonstrated a similar patten of uw, with a high
average value of 0.9182 kPa during March and April, and a low average
value of 0.3553 kPa at other periods. The total annual of P was 1409.1
mm. Most of P was concentrated between May and October with cu-
mulative total of 1177 mm.

4.3. Numerical implementation

The Darcy-Richards equation (Eq.8) is solved using the finite dif-
ference method and the Picard iteration format within Python 3.8 pro-
gramming environment (Shao et al., 2023b; Shao et al., 2018). The
boundary condition is capable of transitioning between a flux boundary
(net rainfall) and a pressure head boundary (ponding depth) following
the method proposed by van Dam and Feddes （2000). The lower
boundary is specified as gravitational drainage. The thickness of soil is
established at the upper 2 m. The domain is partitioned into 32 regions
by non-uniform grid. The spatial step size escalates in accordance with

Table 1
The definition of objective function and evaluation criteria.

Name Definition Range Objective function Evaluation criterion

NSE
NSE(yi

τ) = 1 −
∑NT

j=1(yj − ỹj)
2

∑m
j=1(ỹj − y)2

( − ∞,1] NSE(θi
τ) in GLUE NSE(θi

Nτ
)

RMSE
RMSE(yi

τ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
NT

∑NT

j=1

(

yj − ỹj

)2
√
√
√
√

[0, + ∞) RMSE
(
θi

τ
)
in PSO and MCMC RMSE(θi

Nτ
)

Likelihood p
(
yi

τ|xi
τ
)

p
(
yi

τ |xi
τ
)
=
∏m

j=1
1

(2π)1/2det(R)1/2
e

[

− 0.5

(

yj − ỹj

)T

R− 1

(

yj − ỹj

)]
[0,1] p

(
θi

τ|xi
τ
)
in SMC −

Bias Bias (yi
τ)=
∑NT

j=1
(yj − ỹj)/NT

( − ∞, + ∞) − Bias(θi
Nτ
), Bias(hi

Nτ
) and Bias(Ei

Nτ
)

Notes: R is the observed error covariance, det(R) is the determinate of R, the y is the average value of the observation data. NSE denotes Nash-Sutcliffe Efficiency.
RMSE signifies root mean square error.
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the augmentation of soil depth, ranging from 0.01 m to 0.2 m. During
the simulation, the tolerable error of θ is set as 0.00001 m3 m-3, and the
time step is dynamically adjusted within the range of 0.234 to 60 min,
ensuring both numerical precision and computational efficiency.

The water transport within the soil-vegetation system is governed by
a dynamic coupling mechanism, as detailed in the supplementary ma-
terial: (1) The presence of a vegetation canopy serves to intercept
rainfall, thereby allowing only a fraction of net rainfall to infiltrate into
the soil surface; (2) The actual transpiration occurring at leaf surface of
the canopy is quantified using a single-layer Penman-Monteith equation
under big-leaf conceptualization, with the rate being controlled by
canopy conductance, subject to constraints of multiple environmental
stresses, including solar radiation, VPD, Ta and h; (3) The E is partitioned
into transpiration and evaporation from canopy interception; (4) The
root uptake induced by transpiration exhibits an exponential distribu-
tion along the soil depth, while also incorporating a compensation

mechanism.
In this study, the model describes water transport within a single-

layer isotropic soil medium. The inverse model is specifically designed
to encompass five SHP (α, n, θr, θs and Ks) of VG model. More
comprehensive specifications pertaining to the model (e.g., dual-
permeability model) and parameterization (e.g., hysteresis in the
SWCC, anisotropic, layered soil structures) have been deliberately
excluded. This exclusion is grounded in the rationale that the incorpo-
ration of these supplementary parameters could potentially exacerbate
the dimensionality of parameter optimization problem.

4.4. Modeling strategy

This study employed four algorithms, namely PSO, MCMC, SMC and
GLUE, to optimize SHP for the simulation of θ̃ under two sampling
strategies: Direct sampling strategy and Indirect sampling strategy.

Fig. 3. The position of pre-defined true soil particle composition (SPC) x̃SPCtrue in soil texture triangle, where the black hollow “○”, “△”, “□” are the pre-defined true
SPC of silty soil, loam soil and sandy soil, respectively.

Table 2
Pre-defined true soil particle composition (x̃SPCtrue) and soil hydraulic parameters (..x̃SHPtrue)

Soil texture Soil particle composition (SPC)
x̃SPCtrue = {f̃sand%, f̃silt%, f̃clay%}

Soil hydraulic parameters (SHP)
x̃SHPtrue={α̃, ñ, θ̃r, θ̃s, K̃s}

f̃sand%(%) f̃silt%(%) f̃clay%(%) α̃(m− 1) ñ(− ) θ̃r(m3 m− 3) θ̃s(m3 m− 3) K̃s(m h− 1)

Silty 5 90 5 0.4066 1.6436 0.0661 0.4585 0.0176
Loam 40 40 20 0.6674 1.4187 0.0887 0.4040 0.0051
Sandy 90 5 5 2.9057 2.3023 0.0550 0.3674 0.1332

Notes: .̃f clay% + f̃ silt% + f̃ sand% = 100%
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Within the Indirect sampling strategy, the algorithms initiate and sub-
sequently update parameters within SPC sampling space ΩSPC (refer to
Section 2 for comprehensive details). Thereafter, the SPC samples xSPC*i,τ

are transformed into SHP samples xSHP*i,τ using the Rosetta 3 pedotransfer
function (Eq. 5). In the Direct sampling strategy, the algorithms directly
initiate and update parameters within SHP sampling space ΩSHP, where
the samples are denotes as xSHPi,τ . The delineation of two sampling space
(ΩSHP and ΩSPC) is provided in Table 3. The combinations of the four
optimization algorithms with the two parameter sampling spaces yields
a total of eight inverse modeling strategies, which symbolized as PSO-
Indirect, PSO-Direct, MCMC-Indirect, MCMC-Direct, SMC-Indirect,
SMC-Direct, GLUE-Indirect and GLUE-Direct.

The number of samples for the PSO and SMC algorithms is set as 50,
with maximum iteration steps are 200. The MCMC algorithm employs a

Markov chain to sample the stationary distribution, allowing the chain
to thoroughly explore the model parameter space via continuous up-
dates of sample data. To ensure a thorough exploration of the parameter
space, MCMC algorithm requires a larger number of iteration steps to
achieve convergence to a relative stationary distribution. Consequently,
the number of samples and maximum iteration steps of MCMC are set as
20 and 500, respectively. The number of samples under GLUE algorithm
is set as 10,000.

The critical variables and terminologies used in synthetic numerical
experiment are delineated in Table 4. The synthetic numerical experi-
ment was conducted with Python 3.8 and the resulting figure was
generated via MATLAB 2022a. The results of inverse modeling were
organized as follows: Section 5.1 provides a comparative analysis of
posterior probability distribution function (PDF) of SHP and SPC, which
were optimized by four algorithms (PSO, MCMC, SMC and GLUE) under

Fig. 4. The daily mean meteorological forcing variable: (a) net radiation Rn, (b) air temperature Ta, (c) wind speed uw, (d) vapor pressure deficit, VPD, (e)
precipitation..P

Table 3
The range of SHP space ΩSHP and SPC space..ΩSPC

Soil particle composition space,
SPC space:
ΩSPC= {fsand%, fsilt%, fclay%}

Soil hydraulic parameters space,
SHP space:
ΩSHP = {α,n,θr,θs,Ks}

fsand%(%) fsilt%(%) fclay%(%) α(m− 1) n(− ) θr(m3 m− 3) θs(m3 m− 3) Ks(m h− 1)

Lower bound 0 0 0 1 1.1 0.01 0.32 0
Upper bound 100 100 100 10 3.0 0.09 0.48 1

Notes:.fclay% + fsilt% + fsand% = 100%
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the Direct and Indirect sampling strategies, respectively; In Section 5.2,
the uncertainty bands of the posterior SWCC were compared, contingent
upon the posterior SHP. In Section 5.3, the uncertainty bands of poste-
rior soil moisture θ, soil water potential h, and evaporation E were
compared under Direct and Indirect sampling strategies. The Bias of
posterior results was show in Section 5.4. Given that infrequent utili-
zation of the GLUE algorithm in parameter optimization, Sections 5.3
and 5.4 only adopt PSO, MCMC, and SMC algorithms, which is sufficient
to elucidate the improvement of the Indirect sampling strategy over
Direct sampling strategy.

5. Result

5.1. The posterior distribution of samples

The uncertainty of SHP (soil hydraulic parameter: α, n, θr, θs, Ks),
which optimized utilizing PSO, MCMC, SMC and GLUE algorithms, were
compared under Direct and Indirect sampling strategy, respectively.
Under the Indirect sampling strategy, SHP was transferred form SPC
(soil particle composition: fsand%, fsilt%, fclay%), whereas under the Direct
sampling strategy, the SHP was sampled directly. To assess the uncer-
tainty and accuracy of optimal parameter sets, the posterior SPC under
Indirect sampling strategies were compared with predefined true SPC
(x̃SPCtrue) in a soil textural triangle, as depicted in Fig. 5. The posterior
probability distribution function (PDF) of SHP sampled under Direct and
Indirect sampling strategies were compared with predefined true SHP
(x̃SHPtrue) in Fig. 6.

The posterior SPC under Indirect sampling strategies, as scatter dots
in Fig. 5 shown, indicated varying degree of uncertainties across three
different soil types. The GLUE algorithms using large samples covered
almost all the possible SHP and SPC samples. Therefore, it can

comprehensively manifest the uncertainty of sampling SHP. The poste-
rior SPC and SHP associated with GLUE have been selected based on an
acceptable threshold (NSE> 0.85), as illustrated in Fig. 5 d and Fig. 6 iv.
The more comprehensive distribution of SHP and SPC samples, as
associated with the GLUE algorithm, has been illustrated as scatter plots
of NSE versus SHP and NSE versus SPC in supplementary material
(Fig. S2). In Fig. 5 d, the posterior SPC optimized by GLUE-Indirect
across all soil types was presented in a strip-shaped form, encompass-
ing x̃SPCtrue. For sandy soil, the uncertainty of posterior SPC was minimal,
with a strip concentrated in range of sandy soil. For the loam and silty
soil, a strip of posterior SPC optimized by GLUE-Indirect spanned
various soil types rather than concentrating on the predefined soil type.

Similar to the result of GLUE-Indirect, the uncertainties in the SPC of
sandy soil, as optimized by PSO-Indirect, MCMC-Indirect, and SMC-
Indirect, were minimal; conversely, larger uncertainties were found in
the SPC for silty soil. Excluding SMC-Indirect, posterior SPC accurately
encompassed x̃SPCtrue (Fig. 5 a ~ c). SMC-Indirect exhibited the most sig-
nificant deviation from x̃SPCtrue for loam soil and silty soil. Nevertheless, all
three algorithms yielded closer and more convergent approximations to
x̃SPCtrue in comparison to GLUE (Fig. 5 c). This discrepancy arises from
GLUE’s inclination to encompass all potential parameters, whereas
other optimization algorithms prioritize the exploration of parameter
spaces with higher probability densities.

As the PDF of posterior SHP given in Fig. 6, the parameter un-
certainties under Indirect sampling strategies were significantly reduced
when compared to those under Direct sampling strategies, especially for
the MCMC and GLUE algorithm. Consistent with the finding illustrated
in Fig. 5 a, b, the posterior SHP optimized by PSO-Indirect and MCMC-
Indirect precisely matched to x̃SHPtrue . Although posterior SPC optimized by
the SMC-Indirect and GLUE-Indirect did not converge to x̃SPCtrue as shown
in Fig. 5 c, the posterior SHP optimized by SMC-Indirect and GLUE-
Indirect closely approximated the x̃SHPtrue with substantial agreement
(Fig. 6). Conversely, when integrating Direct sampling strategy with
parameter optimizations, all posterior SHP failed to match the truth
x̃SHPtrue . Overall, the Direct strategy resulted in an overestimation of the
parameter values for α and Ks, and an underestimation of the parameter
value for n, which exhibited a compensation effect.

5.2. Posterior SWCC

The posterior SWCC (Fig. 7) described with SHP under both Direct
and Indirect sampling strategies was shown as uncertainty bands to
express the h vs. θ relations ranging from residual to saturated water
content. Consistence with the smaller errors and uncertainty bands of
inversely estimated SHP in Fig. 6, the Indirect sampling strategy mark-
edly reduced the uncertainty of SWCC. This was evident in two key
aspects: the alignment with predefined true values, and the magnitude
of the uncertainty bands of posterior SWCC.

Firstly, all posterior SWCC bands under Indirect sampling strategies
accurately align with the predefined true SWCC. Conversely, posterior
SWCC bands under Direct sampling strategies only partially overlap the
predefined true SWCC. Especially for the silt soil, the posterior SWCC
under Direct sampling strategy exhibited substantial deviations from the
predefined SWCC. For sandy and loam soil, the posterior SWCC under
Direct sampling strategies closely approximated the predefined SWCC
within the soil moisture range of 0.1 m3 m− 3 to 0.3 m3 m− 3. However,
when soil moisture approaching θs and θr, the posterior SWCC exhibited
significant discrepancies from predefined true SWCC of sandy and loam
soil under Direct sampling strategies.

The magnitude of the uncertainty bands of posterior SWCC under
Indirect sampling strategies is notably narrower than those under Direct
sampling strategies. Under the Indirect sampling strategy, nearly all
posterior SWCC converged into a single curve, closely approximating the
predefined true SWCC. Conversely, under Direct sampling strategy,

Table 4
Explication of critical variables and terminologies in synthetic numerical
experiments.

Variable/
Term

Explication

SWCC Soil water characteristic curve, h vs θ relationship
UHCF Unsaturated hydraulic conductivity functions, Ks vs θ relationship
SHP Soil hydraulic parameters, it represents VG parameters in this study
VG Mualem-van Genuchten model, including five parameters (α, n, θr, θs

and Ks)
SPC Soil particle composition (the fraction of sand fsand%, silt fsilt%, and

clay fclay% particles, where fclay% + fsilt% + fsand% = 100%)
PSO Particle Swarm Optimization (Section 3.2)
MCMC Markov Chain Monte Carlo (Section 3.3)
SMC Sequential Monte Carlo (Section 3.4)
GLUE General Likelihood Uncertainty Estimation (Section 3.5)
ΩSHP Conventional sampling space or the sampling space of Direct

sampling strategy (SHP space): ΩSHP = {α, n, θr, θs,Ks}

ΩSPC Constrained sampling space or the sampling space of Indirect
sampling strategy (SPC space):ΩSPC= {fsand%, fsilt%, fclay%}

x̃SHPtrue The predefined true SHP,x̃SHPtrue = [α̃, ñ, θ̃s, θ̃r, K̃s]

x̃SPCtrue The predefined true SPC,x̃SPCtrue= {f̃ sand%, f̃silt%, f̃clay%}
xSHPi,τ ,XSHP

τ The i th SHP samples and the SHP set sampled in ΩSHP at τ th iteration
(Direct sampling strategy). If τ = Nτ (i.e., final iteration), the SHP set
represents the posterior SHP of Direct sampling strategy (i.e., XSHP

post).
xSPC*i,τ ,XSPC*

τ The i th SPC samples and the SPC set sampled in ΩSPC at τ th iteration
(Indirect sampling strategy). If τ = Nτ (i.e., final iteration), the SPC
set represents the posterior SPC of Indirect sampling strategy (i.e.,
XSPC*
post ).

xSHP*i,τ ,XSHP*
τ The i th SHP samples and the SHP set sampled in ΩSPC at τ th iteration

(Indirect sampling strategy). If τ = Nτ (i.e., final iteration), the SHP
set represents the posterior SHP of Indirect sampling strategy (i.e.,
XSHP*
post ).

θ̃true, h̃true,
Ẽtrue

The predefined true value of soil moisture, soil water potential and
evaporation

θ,h,E The simulation of soil moisture, soil water potential and evaporation
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posterior SWCC exhibited a broader uncertainty band, especially for the
GLUE and MCMC algorithms.

5.3. Posterior simulated state variables

By using the optimization algorithms including PSO, MCMC and
SMC, the posterior SHP of three soil types (silty, loam and sandy soil)
were optimized under Direct and Indirect strategy, respectively (Fig. 6).
The results of posterior soil moisture θ, soil water potential h and
evaporation E, simulated via the forward model (Fig. 8 ~Fig. 10), were
compared against the predefined true value of θ̃true, h̃true and Ẽtrue.

Consistent with the finding of posterior parameters depicted in
Fig. 6, the uncertainty bands of θ under Indirect sampling strategy
exhibited a significantly narrower range compared to those under Direct
sampling strategy, particularly evident in the MCMC algorithm (Fig. 8).
Especially, the ensemble means of θ under Indirect sampling strategy
accurately simulated θ̃true (Fig. 8 a ~ c). However, under Direct sampling
strategy, nearly all ensemble means of θ failed to accurately recover the
θ̃true Fig. 8 d ~ f). The PSO-Direct and SMC-Direct algorithms exhibited
superior accuracy in simulating θ than MCMC-Direct. The MCMC-Direct
overestimated θ for sandy soil (Fig. 8 f) and underestimated θ for silty
and loam soils (Fig. 8 d and e).

The uncertainty bands of h under Indirect sampling strategy is nar-
rower than those under Direct sampling strategy. Under Indirect sam-
pling strategy, the ensemble means of h accurately simulated h̃true (as
shown in Fig. 9 a ~ c), which is consistent with the result shown in
Fig. 7. Under Direct sampling strategy, posterior h significantly over-
estimated h̃true (Fig. 9 d ~ f), despite the ensemble means of θ under
Direct sampling strategy being close to the θ̃true (Fig. 8 d ~ f). The larger
uncertainty of h under the Direct sampling strategy may be attributed by
the SWCC sampled failing to accurately recover the predefined true
SWCC in Fig. 7.

The posterior evaporation E of silty, loam, and sandy soils is depicted
in Fig. 10, exhibiting clear diurnal variations. The predefined true value
of Ẽtrue increased from 0 mm h− 1 at 8 o’clock, peaked at 15 o’clock, and
decreased to 0 mm h− 1 by 20 o’clock. The average peak Ẽtrue for sandy
soil (0.23 mm h− 1) surpassed those of loam soil (0.20 mm h− 1) and silty
soil (0.22 mm h− 1). The discrepancy in Ẽtrue across different soil texture
types under identical meteorological conditions primarily arises from
variations in soil hydrological processes regulated by SHP. Under con-
dition of sufficient water, Ẽtrue is solely controlled by energy limitation,
whereas as θ̃true decreases, the water limitation on Ẽtrue intensifies pro-
gressively. In this unsaturated flow model, the water limitation of Ẽtrue

Fig. 5. The comparison between posterior SPC under Indirect sampling strategy XSPC*
post and the predefined true SPC x̃SPCtrue: (a) posterior SPC optimized by PSO-Indirect;

(b) posterior SPC optimized by MCMC-Indirect; (c) posterior SPC optimized by SMC-Indirect; (d) posterior SPC optimized by GLUE-Indirect. The red solid circle “●”,
green solid triangle “▴” and blue solid square “■” are the posterior SPC of silty soil, loam soil and sandy soil, respectively. The black hollow circle “○”, triangle “△”,
square “□” are the predefined true SPC of silty soil, loam soil and sandy soil, respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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was positively correlative of h̃true, as detailed in the supplementary
material. A steeper SWCC indicates a more pronounced decrease in h̃true
with an equivalent volume of water loss. And a more pronounced
decrease of h̃true result in a more significant limitation of Ẽtrue. Conse-
quently, sandy soil exhibits the flattest SWCC, leading to least decrease

of the h̃true, thereby achieving the highest Ẽtrue among the soil types.
Conversely, loam soil exhibits the steepest variation in SWCC, resulting
in the lowest Ẽtrue among the soil types.

The uncertainty in SHP also propagated to the simulation of E,
mainly due to the effects of low water potential h, which reducing root
uptake and transpiration (see detail in supplementary material). The

Fig. 6. The posterior probability distribution function (PDF) of optimized soil hydraulic parameters (SHP) under Direct sampling strategy XSHP
Nτ

and Indirect sampling

strategy XSHP*
Nτ

. x̃SHPtrue is predefined true soil hydraulic parameters, which is shown as black solid star “★”.
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Indirect sampling strategy, characterized by lower parameter uncer-
tainty, more precisely simulated E compared with the Direct sampling
strategy. The MCMC-Direct algorithm yielded the highest uncertainty in
posterior E. Furthermore, as the increasing E, the width of the uncer-
tainty bands associated with posterior E also augmented. As E values
grew larger, the pattern of E underwent a transition from energy limi-
tation to water limitation. Subsequently, the propagation from SHP to E
exhibited an increasingly pronounced significant.

5.4. Propagation of error from parameters to simulated state variables

The Bias, representing the discrepancy between simulated and truth
values of θ, − log10(− h) and E, is illustrated as a boxplot in Fig. 11.
Additional evaluation criteria, including NSE and RMSE, are presented
in supplemental material (Fig. S3). In alignment with the findings from
Section 5.3, the broader fluctuation range of Bias in posterior soil
moisture θ correlates with an equivalently enlarged range of Bias in
posterior soil water potential h and evaporation E. Generally, the pos-
terior results exhibited a reduced fluctuation range of Bias under the
Indirect sampling strategy, particularly when utilizing the MCMC al-
gorithm. The optimization algorithms were designed to align with θ̃true,
and both Indirect and Direct sampling strategies successfully simulate θ,
resulting in nearly zero median Bias values (Fig. 11. a ~ c). However,
due to the parameter uncertainty illustrated in Fig. 6, a large Bias was
apparent for h (Fig. 11. d ~ f). Under the Indirect strategy, the median
Bias of h consistently oscillated around zero. Conversely, under the
Direct strategy, the majority of median Bias values for h exceeded zero,

signifying an overestimation of h̃true.
The uncertainty inherent in h also propagated to the uncertainty in E.

Under the Indirect sampling strategy, the median Bias of E oscillated
around zero, reflecting the performance of h, with the exception of
posterior E optimized by SMC-Indirect. In contrast, under the Direct
sampling strategy, the median Bias of posterior E exhibited a more
pronounced deviation from zero. For instance, under PSO-Direct, the
median posterior E for silt soil oscillated around zero, whereas the
median Bias of − log10(− h) for silt soil was 0.341m, and the median Bias
of E for silt soil was − 0.0039 mm h− 1.

Due to the positive correlation between h and E, an overestimation of
h was anticipated to result in an overestimation of E. However, in the
estimation of the soil hydrological process of silty soil using PSO-Direct,
the overestimation of h, characterized by a median value greater than
zero, led to an underestimation of E. This phenomenon was consistent
across MCMC-Direct for three soil types, SMC-Indirect for loam soil, and
SMC-Direct for silt soil. These discrepancies may stem from inaccurate
parameter estimations that influence the soil hydrology dynamics,
leading to varied performance in estimating h across different season.
For instance, in the case of silty soil optimized by PSO-Direct, the h
underestimated h̃true within the lower saturate range, yet overestimated
it with the higher saturate range (Fig. 11 g). Due to the longer duration
of the rainy season, characterized by a higher saturate range of h, as
compared to the dry season, featuring a lower saturate range of h, the
Bias of h for silt soil under PSO-Direct was larger than zero. According to
the positive correlation between h and E, E was underestimated during
the dry season and overestimated during the rainy season. However, the

Fig. 7. The posterior SWCC calculated with optimized SHP (α, n, θr , θs and Ks of VG model) under Direct sampling strategy and Indirect strategy. The black hollow
circle “○” represent predefined true h vs.θ relations to express SWCC under predefined true SHP.
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Fig. 8. The uncertainty bands of posterior soil moisture θ under Direct strategy and indirect strategy optimized by PSO (blue band), MCMC (green band) and SMC
(red band). The black hollow circle “○” represent the predefined soil water content θ̃true. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 9. The uncertainty bands of posterior soil water potential h under Indirect sampling strategy and soil water potential under Direct sampling strategy optimized
by PSO (blue band), MCMC (green band) and SMC (red band). The black “○” is the predefined soil water potential h̃true. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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limitation of h on E was more significant during the dry season, thereby
mitigating the overestimation of E during the rainy season. Therefore,
the Bias of E for silt soil under PSO-Direct was less than zero.

6. Discussion

6.1. The characteristic of different optimization algorithms

Various algorithms for parameter optimization can be roughly clas-
sified into two categories (Zhou et al., 2014). The first category of in-
verse methods focuses on minimizing or maximizing an objective
function that quantifies the discrepancy between simulated and
observed values, exemplified by algorithms like PSO. This category
generally employs a global optimization technique, yielding a single
optimal parameter set. The second group of inverse methods are typi-
cally used for assessing parameter uncertainty by generating multiple
sets of parameters based on probabilistic or sampling techniques, thus
providing a range of possible solutions or parameter estimates rather
than a single optimal set. Representative examples with this category
include traditional rejection sampling (e.g., GLUE), importance resam-
pling (e.g., SMC), and MCMC methods. Various algorithms exhibit
distinct convergence characteristic. The iteration required for conver-
gency and the corresponding computation times of these algorithms are
display in the supplementary material as Fig. S4, Fig. S5 and Table 5.

PSO, as a representative optimization method, is known for its rapid
convergence towards acceptable solutions. Regardless of whether Indi-
rect or Direct sampling strategies are employed, PSO achieves a stable
solution within approximately 20 iterations (Fig. S4 and Fig. S5).
However, in scenarios with high-dimensional parameters, the rapid
convergence provided by the PSO algorithm may encounter difficulties
in accurately recovering the true parameter value due to equifinality
phenomenon. Consequently, PSO converge to a local optimum in inverse
modeling characterized by a high degree of parameter uncertainty.

MCMC, based on Bayesian theory, effectively explores parameter

space through the stochastic traversal of Markov chain and converges
towards high probability density regions. In Fig. 5, MCMC distinguishes
itself as the sole algorithm that accurately converges to the predefined
SPC of silty soil. However, MCMC is susceptible to the outlying chain,
which can influence the jumping probability of the stationary distribu-
tion and make it impossible to reach convergence to a limiting distri-
bution (Vrugt et al., 2008). Especially when confronted with high
equifinality-related parameter uncertainty under Direct sampling strat-
egy, MCMC trapped in a low probability region of parameter space.
Using the Indirect sampling strategy, MCMC can accurately converging
to the predefined true parameters (Fig. 5 and Fig. 6). Moreover, MCMC
characterized by a slow mixing speed of chains, requires a considerable
number of iterations to achieve convergence to a stationary distribution
(Table 5, Fig. S4 and S5).

SMC, employing the importance sampling-resampling method, pri-
marily relies on the posterior distribution rather than the exploration of
parameter space. This approach enables the simultaneous computation
of multiple particle states, facilitating rapid convergence (Fig. S4 and
S5). Due to its swift convergence, SMC exhibits significant potential for
adaptation to dynamically evolving systems, including alterations in the
state transition function or observation function of the system. However,
the rapid convergence may result in the substantial loss of particle in-
formation, reducing the accuracy of model simulations. In Fig. 6, the
posterior SPC optimized by SMC is the only algorithm that doesn’t
encompass the predefined SPC of silty and loam soil.

Nearly all algorithms encounter challenges in parameter optimiza-
tion in high-dimensional spaces, particularly when confronted with
parameters that exhibit significant equifinality phenomena. Relying
solely on soil texture information can further reduce the degrees of
freedom in the parameter space, thereby potentially reducing the un-
certainties inherent in estimated SHP. Consequently, this leads to a
notable improvement in both the convergence speed (Table 5) and
precision of the algorithm.

Fig. 10. The posterior uncertainty bands of diurnal variation of simulated evaporation using Direct sampling strategy and Indirect sampling strategy. The black “●”
is the predefined soil water content Ẽtrue.
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6.2. The adaptation of Indirect sampling strategy in different climate
condition

With the development of computational power, the emergence of
accurate and robust numerical solution schemes for the unsaturated
flow equations, and the development of effective and efficient parameter
optimization algorithms, the application of inverse modelling for
determination of SHP has become increasingly popular over the last few
decades(Scharnagl et al., 2011). However, due to the limited variability
that yields a narrow spectrum of soil moisture under natural boundary
conditions, the soil moisture observations lack the requisite information
to support an accurate and precise estimation of all parameters (Bordoni
et al., 2017). The findings of this study indicate that using the Rosetta 3
pedotransfer function to constrain the parameter sampling space can
effectively improve parameter estimation. The meteorological forcing
data used in this study covered the entire hydrological cycle, encom-
passing both wet and dry condition, thereby providing a sufficient in-
formation of soil moisture dynamics. However, in humid region and arid
region, soil moisture may be insufficient to encapsulate comprehensive
information on soil hydraulic properties. Consequently, it always dis-
plays significant uncertainty under converse conditions. Rosetta 3

incorporates abundant prior information on SHP correlations across a
relatively comprehensive soil moisture range to effectively reduce the
parameter uncertainty.

Taking the sandy soil as an example, a systematic numerical exper-
iment was conducted to optimize SHP under wet and dry climatic con-
dition. Under the dry condition, there were only five precipitation
events, with a total precipitation of less than 33.7 mm. Conversely,
under the wet condition, the precipitation events were more frequent,
resulting in an accumulated precipitation of 609.8 mm. The GLUE al-
gorithm was employed to assess the parameter uncertainty under Direct
and Indirect sampling strategy, with an acceptance threshold specified
to be 0.95. The posterior SWCC and θ were shown in Fig. 12. The results
indicate that the simulated SWCC using the Direct sampling strategy
under dry conditions exhibits reduced uncertainty in the low saturation
region but exhibits larger uncertainty in the high saturation region.
Adoption of the Indirect sampling strategy can notably reduce param-
eter uncertainties, thereby enhancing the accuracy of SWCC and θ
simulations, regardless of dry or wet conditions.

6.3. Recommendation of optimizing soil hydraulic parameter using
Rosetta 3

The Direct strategy revealed a significant equifinality phenomenon.
As shown in Section 5.1, the results indicated that SHP sampled by
Direct sampling strategy exhibited irregular posterior PDF and flat
response surfaces (Fig. 6). The relatively wide parameter ranges implied
a significant equifinality phenomenon, especially in the context of the
MCMC algorithm. The uncertainty analysis underscores the challenges

Fig. 11. The Bias of posterior soil moisture (θ), soil water potential (h) and evaporation (E) of silt (red box), loam (green box) and sand soil (blue box), when using
three different algorithms (PSO, MCMC and SMC) and two different sampling strategies (Direct and Indirect). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 5
Computation times under single thread of Intel(R) Xeon(R) W-2145 CPU.

PSO MCMC SMC GLUE

Direct Sampling strategy 174.15 h 219.10 h 182.16 h 156 h
Indirect Sampling strategy 160.8 h 157.08 h 174.33 h 134 h
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in parameter optimization, particularly when using random sampling of
the VG parameter (e.g., Direct sampling strategy) without utilizing any
prior information. Without a predefined constrained range for sensitive
SHP (i.e., Ks, θr ,θs, n, and α), randomly generated parameter sets could
potentially yield a number of extreme combinations. It is plausible that a
compensation effect may exist in SHP in the VG model. For instance, an
overestimation of n combined with an underestimation of α may result
in similar SWCC if the parameters θr and θs were also included in random
sampling. If a parameter set comprised extreme values for each SHP, it
may only describe an extreme condition.

Our results indicate that the Direct sampling strategy fails to provide
a constrained description of hydraulic properties in natural soils, and the
associated uncertainty is certainly inappropriate for ecosystem hydro-
logical simulation. When taking the θ as the optimization objective, the
significant equifinality phenomenon of parameters caused large uncer-
tainty of estimation in h and E (Fig. 11). Considering the Rosetta 3
pedotransfer function incorporated prior information of more than 2000
groups of experimental data of undisturbed soils, SHP transferred
through Rosetta 3 can significantly avoid the arbitrary combinations
estimated through random parameter space (Fig. 1). Most importantly,
employing the Rosetta 3 pedotransfer function to incorporate soil
texture information reduced the dimensionality of parameter space,
leading to a marked improvement in algorithm convergence speed and
precision. Therefore, it is recommended to integrate various optimiza-
tion algorithms and tools with the well-developed Rosetta 3 pedo-
transfer function for inverse modeling of ecohydrological processes.

7. Conclusion

The study conducted a systematic numerical experiment to optimize
the SHP of three representative soils: silty, loam, and sandy soil. This
optimization process was based on simulating the predefined true soil
moisture dynamics under natural meteorological conditions. Four
parameter optimization algorithms (PSO, MCMC, SMC, and GLUE) were
employed to estimate the optimal SHP (α, n, θr, θs and Ks) for the un-

saturated flow model. Two parameter sampling strategies were imple-
mented in the optimization algorithms: the Indirect sampling strategy,
which integrated soil texture information inherent in Rosetta 3, and the
Direct sampling strategy, which randomly generated SHP values.

Upon evaluating the results derived from the Direct and Indirect
sampling strategies across the three optimization algorithms, the
following conclusions were formulated:

(1) Under the Indirect strategy, all four algorithms accurately esti-
mated the predefined true SHP (Fig. 6). Conversely, when employing the
Direct strategy, the posterior SHP exhibited deviation from the pre-
defined true values. In comparison to Direct sampling strategy, the
posterior PDF of SHP and the uncertainty bands of the SWCC demon-
strated less uncertainty under the Indirect sampling strategy.

(2) The uncertainty in SHP propagated to soil moisture dynamics and
evaporation (Fig. 8 ~Fig. 10 ). Under the Indirect strategy, all three
algorithms accurately simulated θ̃true, h̃true, and Ẽtrue. However, under
the Direct strategy, MCMC demonstrated significant uncertainty in θ, h,
and E. PSO and SMC accurately captured the variation in θ but over-
estimated h, consequently affecting the estimation of E.

(3) The incorporation of soil texture information using Rosetta 3
reduced the degrees of freedom in the parameter space. This led to a
significant improvement in the convergence speed and precision of the
algorithm.
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