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A B S T R A C T

Hevea brasiliensis, a species native to evergreen broadleaf forest in Amazon tropical regions, exhibits a 
concentrated period of defoliation and refoliation after introduced to the northern edge of Asian tropics. How-
ever, up to date, spatiotemporal patterns of rubber phenology and the underlying mechanism remain unclear. In 
this study, we first investigated the optimal vegetation indices in monitoring four key rubber phenology metrics 
(i.e., Start of Defoliation (SOD), End of Defoliation (EOD), Start of Refoliation (SOR), and End of Refoliation 
(EOR)). Then the trends of the four phenology metrics from 2003 to 2022 in the northern edge of Asian tropics 
were explored. Finally, the phenological responses to climatic and topographical factors were also investigated. 
Results indicated that the kernel normalized difference vegetation index performed best in extracting SOD and 
EOD while the near-infrared reflectance of vegetation performed best for SOR and EOR. SOD exhibited an annual 
delay of 0.14 days, whereas EOD, SOR, and EOR showed significantly advance by 0.11, 0.27, and 0.52 days, 
respectively. The four phenological metrics generally delayed with increasing elevation and slope, with 0.13 
days/50 m and 0.21 days/◦ for SOD, 0.43 days/50 m and 0.24 days/◦ for EOD, 1.10 days/50 m and 0.31 days/◦

for SOR, and 0.94 days/50 m and 0.36 days/◦ for EOR. Temperature and humidity were found to jointly regulate 
SOD and SOR, while humidity predominantly influenced EOD and EOR. This study contributes to a deeper 
understanding of the mechanism underlying rubber phenology and its response to future climate change.

1. Introduction

Hevea brasiliensis, commonly known as the rubber tree, is an ever-
green broadleaf species in native Amazon tropical regions (Ahrends 
et al., 2015; Azizan et al., 2023; Chen et al., 2022; George et al., 2009; 
Priyadarshan, 2011; Wang et al., 2023a). However, after being intro-
duced to Asia, rubber trees exhibit deciduous behavior (within 2 weeks) 
during the dry season and leaf-flushing (not exceed 4 weeks) before the 
arrival of the rainy season (Chen et al., 2015; Liyanage et al., 2019; Chen 
et al., 2022). Mapping the spatiotemporal variations of rubber 
phenology and exploring its controlling mechanisms in introduced re-
gions can enhance our understanding of the interactions between rubber 

plantations and climate (Piao et al., 2006; Melaas et al., 2013; Liu et al., 
2016). Nevertheless, our current understanding of rubber phenology 
and its driving mechanisms remains insufficient.

Currently, research on rubber plantation phenology primarily relies 
on ground-based data to understand basic phenological patterns. For 
instances, Zhai et al. (2019) found that rubber leaf flushing primarily 
occurred from February to March based on 22 observational sites. 
Gutiérrez-Vanegas et al. (2020) found that defoliation started in the final 
weeks of current year and refoliation started during February to March 
in three rubber tree clones in Colombia. Lai et al. (2023) found that 
defoliation was delayed by 0.38 days/year, while refoliation was 
advanced by 0.94 days/year from 2001 to 2020 based on 32 
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observational sites in Yunnan Province, China. However, these 
site-specific research findings are difficult to extrapolate to larger region 
due to their scale limitations. The temporal patterns of rubber plantation 
phenology still remain unclear at large spatial scale. In addition, though 
quite a lot studies have investigated the main drivers of rubber 
phenology, there is still debate on the reason for rubber leaf defoliation. 
Guerra-Hincapié et al. (2020) found that rainfall was the most critical 
factor triggering leaf defoliation, while Lin et al. (2018), Azizan et al. 
(2023) and Lai et al. (2023) found that temperature was more strongly 
associated with leaf defoliation. Meanwhile, Guardiola-Claramonte 
et al. (2010) suggested that temperature, vapor pressure deficit and day 
length jointly influenced rubber defoliation. A significant reason for the 
inconsistency in these findings is that most studies are limited to 
site-specific scales or short-term study periods. Therefore, it is urgently 
needed to investigate the relationship between rubber plantation 
phenology and meteorological factors at larger spatial scales and 
long-term periods to identify the primary drivers of rubber plantation 
phenology.

Remote sensing provides obvious advantages over traditional 
ground-based inventories for monitoring phenology across large spatial 
and long temporal scales (Jeong et al., 2017; Piao et al., 2019). Vege-
tation indices (VIs) were extensively used in remote sensing to retrieve 
surface phenology. Among them, the Normalized Difference Vegetation 
Index (NDVI) (Tucker, 1979) and the Enhanced Vegetation Index (EVI) 
have been the two most commonly employed indices over the past few 
decades (Zhang et al., 2003; Fu et al., 2015; Berra et al., 2021). Recently, 
the near-infrared reflectance of vegetation (NIRv) (Badgley et al., 2017) 
and the kernel NDVI (kNDVI) (Camps-Valls et al., 2021) have emerged 
as new VIs. NIRv is widely used due to its ability to mitigate the influ-
ence of soil effects and background brightness (Badgley et al., 2017). 
kNDVI, with its higher sensitivity to plant physiological and physical 
parameters compared to NDVI, shows great potential for phenology 
studies (Camps-Valls et al., 2021). Due to the varying spectral responses 
of canopy biochemistry to different bands, VIs composed of different 
spectral bands often result in variations in the derived phenology dates 
(Zeng et al., 2020). For example, Peng et al. (2017) found that EVI 
performed better than NDVI in extracting spring phenology. Zhang et al. 
(2022) compared NIRv, NDVI, and EVI across six types of plantations 
and found that NIRv performed best in phenology monitoring. However, 
the performance of NDVI, EVI, NIRv, and kNDVI in extracting rubber 
phenology remains unassessed. Thus, it is unclear which of these four 
indices performs best for extracting rubber phenology.

In recent decades, climate change has significantly altered global 
spatiotemporal patterns and trends in vegetation phenology, including 
the widely reported advancement of spring phenology and the delay of 
autumn phenology (Guyon et al., 2011; Melaas et al., 2013; Piao et al., 
2019; Berra and Gaulton, 2021). However, phenology studies are 
limited for tropical tree species, especially for rubber trees (Richardson 
et al., 2010). In introduced rubber plantation areas, such as south-
western China and Southeast Asia, rubber phenology is characterized by 
early occurrences and short cycles. For example, leaf shedding and leaf 
flushing phases typically occur within 2 weeks, while the leafless period 
usually does not exceed 4 weeks. This makes it challenging to accurately 
extract rubber phenology in tropical regions with frequent cloud cover 
and rainfall. Therefore, this study aims to accurately map four rubber 
phenological metrics (i.e., Start of Defoliation (SOD), End of Defoliation 
(EOD), Start of Refoliation (SOR), End of Refoliation (EOR)) and 
investigate their temporal-spatial patterns and driving mechanisms. 
Specifically, this study seeks to answer the following questions:

(1) Which is the best vegetation index among NDVI, EVI, NIRv, and 
kNDVI in monitoring rubber phenology? And what is the optimal 
threshold?

(2) What are the spatial patterns and temporal trends of the four 
rubber phenological dates?

(3) What are the primary topographic and climatic factors affecting 
each rubber phenological event? And how do they influence these 
events?

2. Study area and methods

2.1. Study region

Xishuangbanna is China’s largest city-level region for natural rubber 
plantations (Fig. 1). Since rubber plantations were introduced in the 
1950s, their area has reached approximately 300,821 ha by 2022 
(National Bureau of Statistics of China, 2023). Influenced by the 
southeast trade winds from the Pacific Ocean and the southwest 
monsoon from the Indian Ocean, the study area has distinct rainy (May 
to October) and dry seasons (November to April) (Lin et al., 2018). 
During the dry season, rubber trees undergo a rapid leaf-exchange 
process (leaf shedding and regrowth) to better facilitate growth and 
rubber production in rainy season (Wang et al., 2023a; Xiao et al., 
2019).

2.2. Data and preprocessing

2.2.1. Vegetation indices
Two MODIS reflectance products, MOD09GA and MOD09QA, 

derived from the NASA USGS Data Center, were used to generate the 
four VIs (NDVI, EVI, NIRv, and kNDVI, calculated according to Eqs. (1) - 
(5)) from 2003 to 2022. Daily red and near-infrared surface reflectance 
with a spatial resolution of 250 m were obtained from the MOD09GQ 
product. Additionally, blue surface reflectance with a 500 m resolution 
and the state_1km_1 band (QA flag information) with a 1 km resolution 
were obtained from the MOD09GA product. Note that the blue and 
state_1km_1 bands were resampled to 250 m. Subsequently, poor- 
quality pixels were masked to reconstruct the complete VI time series, 
using the state_1km_1 band, which provides information about the at-
mospheric conditions (Vermote et al., 2015). 

NDVI =
NIR − R
NIR + R

(1) 

EVI = 2.5 ×
NIR − R

NIR + 6 × R − 7.5 × Blue + 1
(2) 

NIRv =

(
NIR − R
NIR + R

− 0.08
)

× NIR (3) 

kNDVI =
k(NIR,NIR) − k(NIR,R)
k(NIR,NIR) + k(NIR,R)

(4) 

k(a,b) = exp
(
− (a − b)2

÷
(
2σ2)

)
(5) 

where R is the reflectance of the red band, NIR is the reflectance of the 
near-infrared band, Blue is the reflectance of the blue band, and σ is a 
length-scale parameter.

2.2.2. Annual rubber plantation maps
The annual rubber maps (2003–2022) with a spatial resolution of 

30 m were derived from Xu et al. (unpublished data, 2025). In Google 
Earth Engine, Xu et al. introduced a new framework for mapping time 
series rubber distribution using a random forest classifier, integrating 
spectral data, topography, dynamic phenological VIs, dynamic texture 
features, and change detection features. The average overall accuracy 
from 1987 to 2022 is 90.82 %, and the kappa coefficient is 0.89. To align 
with the spatial resolution of MODIS, all rubber maps were resampled to 
250 m. Specifically, the resampled 250-meter pixel containing over 
90 % of 30-meter rubber pixels was reclassified as rubber plantation.
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2.2.3. Phenological observation data
Ground-based phenological observation data from 2012 to 2022 

were obtained from a phenology camera installed at the top of Xish-
uangbanna flux tower, which recorded the defoliation, sprouting, 
growth, and leaf spreading of rubber trees (Zhou et al., 2019). The 
camera was mounted on a tower 30 m above the ground, with the lens 
facing southwest at an inclination of 57◦. Images disturbed by rain or fog 
were then excluded. Finally, the highest-quality images were selected 
for subsequent phenological metrics determination. Within each image, 
we visually determined the date of four phenological metrics by 
observing the state changes in a fixed region of interest.

2.2.4. Climatic data
The Xishuangbanna Ecological Research Station provided the daily 

climatic data from 2002 to 2018, including maximum temperature 
(Tmax, unit: ◦C), minimum temperature (Tmin, unit: ◦C), photoperiod 
(unit: hours), relative humidity (RH, unit: %), and vapor pressure deficit 
(VPD, unit: kPa). The station is located within the Xishuangbanna 
Tropical Botanical Garden of Chinese Academy of Sciences (101◦16′E, 
21◦55′N) (Fig. 1). Considering the uniform environment within a small 
area, this study selected rubber pixels within 500 m of the station to 
analyze the main driving climate factors on rubber phenology. Previous 
studies have demonstrated that climate variations over a three-month 
advance significantly impact the phenological metrics (Menzel et al., 
2006). Therefore, we investigated the driving mechanism of meteoro-
logical factors at nine time periods, from 10 to 90 days before the 
phenological dates with 10-day intervals.

2.2.5. Topographic data
The AW3D30DEM Version 4.0 product was provided by the Japan 

Aerospace Exploration Agency (JAXA) with a horizontal resolution of 
30 m (1 arc second) and an elevation accuracy of 5 m (Takaku et al., 
2020). Compared to SRTM and GDEM2, AW3D30DEM has been proven 
to have better vertical accuracy (Li et al., 2018). To match the MODIS 
data, we resampled it to 250 m using the bilinear interpolation method. 
The altitude, slope, and aspect values were then extracted to explore 
their influence on rubber plantation phenological metrics. Table 1.

Fig. 1. Rubber phenology development and the location of study region.

Table 1 
Data used in the study.

Data Type
Spatiotemporal 
Resolution Time Span Data Source

MOD09GQ, 
MOD09GA 250 m, daily 2002–2022 http://www.nasa.gov/

Annual rubber 
plantation maps

30 m, yearly 2002–2022
Xu et al. (unpublished 
data, 2025)

Phenological 
observation 
data

daily 2012–2022 Zhou et al. (2019)

Climatic data daily 2002–2018
http://www.nesdc.org. 
cn/

AW3D30DEM 30 m 2006–2011
https://www.eorc.jaxa. 
jp/ALOS/en/dataset/ 
aw3d30/
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2.3. Methods

Fig. 2 showed the detailed research process, including the following 
4 steps: (1) reconstructing daily time series of four vegetation indices; 
(2) extracting the spatiotemporal distribution of the four rubber 
phenological metrics; (3) analyzing the spatiotemporal patterns of the 
four rubber phenological metrics; and (4) exploring the impact mecha-
nism of climate on the four rubber phenological metrics.

2.3.1. Reconstructing vegetation indices time-series
Due to the frequent cloud cover and rainy weather in the study area, 

anomalies and missing values often occur in time series imagery 
(Atkinson et al., 2012), which can significantly interface with the ac-
curate extraction of phenological dates. Therefore, it is necessary to 
remove noise and interpolate missing values to ensure a complete and 
smooth time series that can accurately capture phenological changes 
(Cui et al., 2021). This study proposed a step-by-step processing flow for 
identifying and filling noise values based on temporal and spatial 
neighboring pixels (Fig. 3). Firstly, the VIs time series were preprocessed 
by removing pixels contaminated by clouds and shadows (Step 1 in 
Fig. 3). Only pixels with QA flags indicating no contamination were 
considered. Next, missing values were gap-filled using a temporal 
interpolation algorithm. Specifically, each missing pixel was filled using 
the mean value of adjacent dates: one from the front and another from 
the behind the missing value day in the time series (Step 2 in Fig. 3). 
Third, if gaps remained, the remaining missing values were further filled 
using the average value from all high-quality rubber pixels within the 
interaction region of 50 m elevation buffer zone of the target pixel with 
initial searching distance starting from 2.5 km (Step 3 in Fig. 3). The 
search distance would be expanded from 2.5 km to the maximum with 
2.5 km interval until the replacing values (at least 2 values) were found.

2.3.2. Extracting phenology metrics
We defined four key phenological metrics as follows: 

(1) Start of Defoliation (SOD): The date when the rubber plantation 
transitions from a stable growth phase to defoliation, marked by a 
slight decrease in vegetation index (VI) curve.

(2) End of Defoliation (EOD): The earliest date when the VI curve 
drops to a relatively stable low level.

(3) Start of Refoliation (SOR): After a short leafless period, the date 
when the VI curve begins to increase significantly from a stable 
low level.

(4) End of Refoliation (EOR): The date when the VI curve reaches a 
stable level after SOR.

To obtain a smooth curve for extracting phenological metrics, it is 
necessary to eliminate fluctuations in the VI time series caused by pro-
cessing uncertainties and to apply filtering and fitting algorithms. First, 
the annual VI time series was reconstructed for each rubber plantation 
target pixel using the maximum of sliding window of size 5. Then, the 
reconstructed VI time series was further smoothed using Savitzky-Golay 
(SG) filtering (Savitzky et al., 1964). Additionally, since these four 
phenological dates primarily occur from the previous December to the 
current April, we applied mean smoothing to the VI data outside this 
phenological period (specifically, the previous October and November 
and the current May, as the period from June to September was not 
used). This step helps mitigate the influence of large fluctuations in 
non-phenological periods on the subsequent phenological curve fitting 
and metrics extraction. The specific implementation is detailed in Eq. 
(6): 

Rubber_TSi = mean
(

RubberTSdayDec.∼Apr.

)
(6) 

where Rubber_TSi refers to the VI value on day i in the non- 
phenological period (i.e., the previous October and November and the 
current May). Rubber_TSdayDec.∼Apr.

refers to the daily VI values during the 
phenological period (i.e., from the previous December to the current 
April).

Fig. 2. The flowchart of this study.
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Subsequently, curve fitting was performed using the Asymmetric 
Gaussian (AG) fitting algorithm (Jonsson et al., 2002), as detailed in Eq. 
(7). RubberTS i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp
[

−

(
i − a1

a2

)a3]

if i > a1,

exp
[

−

(
a1 − i

a4

)a5]

if i < a1

(7) 

Fig. 3. Step by step flow of spatiotemporal interpolation for the missing values.
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where a1 refers to the position of the maximum or minimum relative 
to the time variable i. a2 and a3 refer the width and steepness of the right 
side of the function. a4 and a5 refer the width and steepness of the left 
side.

Finally, four rubber phenological metrics were extracted annually 
using the seasonal amplitude method, implemented with TIMESAT 
software package (Jönsson and Eklundh, 2004). Previous studies have 
faced controversy over the determination of thresholds for extracting 
defoliation and refoliation phenology (Shen et al., 2024). Therefore, this 
study tested four different thresholds of 5 %, 10 %, 15 %, and 20 % to 
determine the optimal threshold for SOR and SOD. Similarly, thresholds 
of 80 %, 85 %, 90 %, and 95 % were explored to identify the optimal 
threshold for EOR and EOD.

2.3.3. Trend analysis
Trends of the four phenological metrics were examined using the 

Theil-Sen estimator and the Mann-Kendall significance test for each 
rubber pixel. The Theil-Sen slope is a robust nonparametric method for 
trend analysis that is resistant to outliers (Sen, 1968). The Mann-Kendall 
test (Mann, 1945) has been widely applied in recent years to assess the 
significance of trends in vegetation and climate variables.

2.3.4. Driving force analysis
(1) Partial correlation
To compare the phenological response to climatic factors, partial 

correlation analysis was separately calculated for the 10–90 days pre-
ceding each phenological date.

(2) Structural equation model
In this study, we used Partial Least Squares Path Modeling (PLS-PM) 

to analyze the linear statistical relationships among multiple variables. 
PLS-PM is one kind of Structural Equation Modeling estimation 
methods, especially suitable for small samples sizes and data with non- 
normal distribution (McIntosh et al., 2014). The path model was 

constructed by two categories of latent variables: temperature latent 
variables (i.e., Tmax and Tmin) and humidity latent variables (i.e., VPD 
and RH), clarifying the influence mechanism of rubber phenology.

3. Result

3.1. Evaluation of four vegetation indices on extracting rubber phenology

Evaluation of the four vegetation indices and different thresholds for 
extracting phenological metrics revealed the following findings (Fig. 4
and Table 2): (1) kNDVI performed best on extracting SOD (RMSE=6.80 
days) with the optimal threshold of decreasing 20 %, followed by NDVI 
with RMSE of 10.70 days by using its optimal threshold of decreasing 
10 % (Fig. 4a and Table 2). (2) Both kNDVI and NDVI showed good 
performance on extracting EOD with no significant difference on RMSE 
(5.90 and 5.80 days, respectively) (Fig. 4b). The optimal threshold of 
kNDVI and NDVI was same with 95 % decreasing for extracting EOD. (3) 
NIRv performed best on extracting SOR (RMSE=2.50 days) with the 
optimal threshold of increasing 10 %, followed by EVI with RMSE of 
3.10 days by using its optimal threshold of increasing 5 % (Fig. 4c and 
Table 2). (4) Both NIRv and NDVI showed good performance on 
extracting EOR with no significant difference on RMSE (5.00 and 5.30 
days, respectively) (Fig. 4d). The optimal threshold of NIRv and NDVI 
was same with 90 % increasing for extracting EOR (Table 2).

3.2. Spatiotemporal patterns of the four rubber phenological dates

3.2.1. Temporal variation of rubber phenological dates
Fig. 5 showed the temporal variation of four rubber phenological 

dates based on their optimal VIs (i.e., kNDVI for SOD and EOD, and NIRv 
for SOR and EOR). The SOD was mainly concentrated in January, with 
over 70 % of occurred rubber pixels. The EOD mainly occurred at the 
period between the latter half of January and the first half of February 

Fig. 4. Evaluation of four vegetation indices (NDVI, EVI, NIRv, and kNDVI) on extracting rubber phenology: (a) SOD, (b) EOD, (c) SOR, (d) EOR, (e) predicted 
(colored cycles) and observed (vertical dash line) phenology dates on the time series of the four VIs.
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(over 80 % of rubber pixels). The SOR primarily occurred in February 
(over 70 % of rubber pixels), while the EOR mainly occurred in March 
(over 80 % of rubber pixels). It is worth noting that NDVI generally 
estimated SOD with 4.86 days earlier than other three VIs while NIRv 
estimated EOD with 3.66 days earlier than other three VIs. There are no 
significant differences in the temporal variation of SOR estimated by the 
four VIs. However, NIRv tended to estimate EOR earlier than other three 
VIs with 3.65 days.

3.2.2. Spatiotemporal patterns of rubber phenological dates
Trend analysis was conducted on three scales: the entire study area, 

low-altitude regions (600–800 m), and high-altitude regions 
(800–1000 m). Results of these three scales indicated that EOD, SOR, 
and EOR showed consistent advanced trends regardless of which VI was 
used and advanced trends of the latter two refoliation dates were sig-
nificant at α= 0.05 level (Fig. 6d-l). The average advancement trends of 
all VIs for EOD, SOR, and EOR were 0.13, 0.34, and 0.66 days per year, 
respectively, across the entire study area (Fig. 6d, g, and j). The 
advancement trends of the optimal VI for EOD, SOR, and EOR were 0.11, 
0.27, and 0.52 days per year, respectively, across the entire study area 
(Fig. 6d, g, and j). Although EOD showed advanced trend on all the VIs, 
there was basically no significant (Fig. 6d-f). The maximum advanced 

rate gap of EOD was only 0.18, 0.26 and 0.36 days per year for the four 
VIs at the three scales respectively (Fig. 6d-f). In contrast, considerable 
advanced rate gaps can be found on SOR and EOR at all the three scales.

The VI with minimum and maximum advanced trends differed on 
each phenological date. For EOD, NDVI had minimum advanced rate 
while EVI owned the maximum at all three scales (Fig. 6d-f). For SOR, 
NIRv had the minimum advanced rate while EVI dominated the 
maximum (Fig. 6g-i). For EOR, NIRv also had the minimum advanced 
rate while kNDVI had the maximum at all three scales (Fig. 6j-l). It can 
also be obviously observed that the advanced rate of refoliation 
phenology (SOR and EOR) was much larger than that of defoliation 
phenology (EOD) at all three scales. In contrast to the consistent 
advanced trend of EOD, SOR and EOR, SOD exhibited opposite trends 
among different VIs. For example, across the entire study area, EVI- and 
NIRv-based SOD showed advancement trends of 0.40 and 0.42 days per 
year, respectively, whereas NDVI and kNDVI exhibited opposite trends 
with delays of 0.04 and 0.14 days per year, respectively (Fig. 6a). 
However, only EVI-based SOD showed a significant trend (α=0.05) 
among the four VIs (Fig. 6a-c).

Fig. 7 showed the spatial pattern of temporal trends of the four 
phenological dates based on their corresponding optimal index and 
threshold. Dominated delayed trend can be observed in SOD while 

Table 2 
Root mean square error of different thresholds for each vegetation index.

RMSE 
(Days)

NDVI NIRv

5 % 10 % 15 % 20 % 5 % 10 % 15 % 20 %

SOD 13.67 10.74 11.45 12.09 32.13 25.75 22.40 20.21
EOD 5.81 7.41 8.30 9.39 14.88 17.31 19.05 20.51
SOR 4.36 4.81 5.66 6.12 2.56 2.49 3.06 3.64
EOR 6.45 5.26 5.68 6.02 12.70 4.98 5.60 6.16

RMSE 
(Days)

EVI kNDVI

5 % 10 % 15 % 20 % 5 % 10 % 15 % 20 %

SOD 24.17 15.55 13.51 13.11 29.85 9.21 6.91 6.80
EOD 10.23 11.36 11.99 12.92 5.85 6.15 6.64 7.48
SOR 3.07 4.10 4.95 5.85 6.79 7.93 8.76 9.50
EOR 26.56 11.85 9.56 8.62 15.79 12.53 11.42 10.57

Fig. 5. Percentage distribution of the four rubber phenology dates derived by different vegetation index: (a) SOD; (b) EOD; (c) SOR; (d) EOR.
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dominated advanced trend can be observed in EOD, SOR and EOR. 
Specifically, 65.09 % of rubber pixels showed delayed trend in SOD, in 
which 7.19 % of pixels were significant. Over 74.01 % of rubber pixels 
exhibited advanced trends in EOD, with 18.54 % of pixels being sig-
nificant. Over 74.61 % of rubber pixels exhibited advanced trends in 
SOR (22.44 % significantly). The spatial pattern of advanced trends in 
EOR was the most pronounced, with approximately 85.91 % pixels 
exhibiting advanced trends (35.52 % significantly).

3.3. Relationship between topographical factors and rubber phenology

The four phenological dates generally showed delayed trend with 
arising elevation (Fig. 8 and Table 3). Taking the optimal index based 
phenology as example, 60 %, 85 %, 100 % and 75 % of years showed 
delayed trend with arising elevation in kNDVI-based SOD and EOD, and 
NIRv-based SOR and EOR, respectively (Table 3). Among all the delayed 
years, around 67 %, 76 %, 95 % and 80 % of years were significant at 
α= 0.05 (Table 3). The SOD, EOD, SOR, and EOR based on the four VIs 
were averagely delayed by 0.27 days/50 m, 0.44 days/50 m, 0.72 days/ 
50 m, and 0.91 days/50 m, respectively. The SOD, EOD, SOR, and EOR 
based on the optimal VI (namely kNDVI-based SOD and EOD, and NIRv- 
based SOR and EOR) were averagely delayed by 0.13 days/50 m, 0.43 
days/50 m, 1.10 days/50 m, and 0.94 days/50 m, respectively. Notably, 
the delayed rates of refoliation phenological dates were generally larger 
than that of defoliation phenological dates. For example, the average 
delayed rate of EOR based on four VIs was 0.64 and 0.47 days larger 
than that of SOD and EOD, respectively (Fig. 8a, b, and d). The delayed 
rate gaps among different VIs were not consistent on the four pheno-
logical dates (Table 4). Multi-comparison results indicated that the 
delayed rate differences between NIRv and the other three VIs were 
significant on SOD and EOD (Table 4), as also be reflected in their large 
gaps shown in Fig. 6. Interestingly, the delayed rate gaps between kNDVI 

and NDVI were relatively small in all four phenological dates (Fig. 8). 
Multi-comparison results also confirmed that their differences were no 
significant (Table 4).

The four phenological dates generally showed delayed trend with 
arising slope regardless of the type of VI used (Fig. 9 and Table 3). 
Taking the optimal index based phenology as example, 90 %, 95 %, 
90 % and 90 % of years showed delayed trend with arising slopes in SOR 
and EOR, respectively (Table 3). Among all the delayed years, around 
89 %, 84 %, 94 % and 89 % of years were significant at α= 0.05 
(Table 3). On average, SOD, EOD, SOR, and EOR based on the four VIs 
were delayed by 0.19 days/◦, 0.22 days/◦, 0.32 days/◦, and 0.50 days/◦, 
respectively. The SOD, EOD, SOR, and EOR based on the optimal 
vegetation index were averagely delayed by 0.21 days/◦, 0.24 days/◦, 
0.31 days/◦, and 0.36 days/◦, respectively. Unlike the results of eleva-
tion, the delayed rate gaps among different VIs were generally small 
(Table 4). Multi-comparison results indicated that the delayed rate dif-
ferences between most VIs were not significant (Table 4). The only 
significant delayed rate gaps were found between EVI and other VIs for 
SOD and EOD (Table 4).

Examination of the relationship between phenological metrics and 
different aspects (Fig. 10) revealed that aspect had minimal impact on 
rubber plantation phenology. It is evident that the phenological dates on 
sunny slopes were very close to those on shaded slopes, regardless of the 
type of phenology metrics and VIs. A comparison test at a 95 % confi-
dence level (Table 4) also confirmed that there were no significant dif-
ferences among phenological dates on sunny and shaded aspects.

3.4. Influence of climate change on rubber phenology

3.4.1. Correlation between phenology and climatic factors
Tmax, Tmin, RH, and VPD exhibited higher and significant correla-

tions with the four rubber phenological metrics, whereas photoperiod 

Fig. 6. Rubber phenology dates trend derived by each vegetation index at three scales.
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showed lower or non-significant correlations (Fig. 11). Tmax, Tmin, and 
RH showed positive partial correlations with SOD while negative partial 
correlations with EOD, SOR, and EOR. Tmin and Tmax demonstrated 
higher partial correlations with SOD compared to RH and VPD, whereas 
RH and VPD showed larger and more stable partial coefficients with 
EOD, SOR, and EOR. It should be noted that the climatic correlations 
with EOD were generally low, with the maximum correlation being less 
than 0.4, suggesting that the drivers of EOD were complex. We also 
found that the main climate influencing periods of the four phenological 
dates differed. The main climate influencing periods of SOD and EOD 
were from 60 to 90 days and 20–50 days before their occurrence 
respectively. The main climate influencing periods of SOR and EOR were 
from 20 to 60 days and 40–70 days before their occurrence respectively. 
During these main influencing period, VPD showed the largest partial 
correlation with SOD (mean PCCs = − 0.57), followed by Tmax. VPD 
showed the largest partial correlation with EOD (mean PCCs = − 0.31), 
followed by Tmin. RH exhibited the largest partial correlation with SOR 
(mean PCCs = − 0.53), followed by VPD. VPD showed the largest partial 
correlation with EOR (mean PCCs = 0.67), followed by RH. The above 
results implied that both temperature latent variables (Tmax and Tmin) 
and humidity latent variables (RH and VPD) may co-control SOD, while 
humidity latent variables may primarily affect SOR and EOR.

3.4.2. Drivers of each rubber phenological metric
Path analysis also revealed that temperature latent variables (Tmax 

and Tmin) and humidity latent variables (RH and VPD) had compre-
hensive influences on SOD and SOR, while humidity latent variables 

primarily affected EOD and EOR (Table 5). Specifically, the path co-
efficients of humidity latent variables outweighed those of temperature 
latent variables during 70–90 days preceding SOD occurrence and the 
loading values of VPD were much higher than RH, highlighting VPD as 
the primary climatic factor influencing SOD. In other words, higher VPD 
promoted earlier SOD occurrence. Conversely, the path coefficients of 
temperature latent variables exceeded those of humidity latent variables 
during 10–60 days preceding SOD occurrence, with Tmax having much 
higher loading values than Tmin. This highlighted Tmax as the primary 
climatic factor influencing SOD, where lower Tmax promoted earlier 
SOD occurrence. Path coefficients of humidity latent variables consis-
tently outweighed those of temperature latent variables during 
10–90 days preceding EOD occurrence, with RH generally having higher 
loading values than VPD. This suggested that RH was the primary cli-
matic factor influencing EOD, although its role may not be decisive due 
to its relatively small path coefficient.

For SOR, path coefficients of humidity latent variables exceeded 
those of temperature latent variables during 50–90 days preceding 
occurrence and the loading values of RH were much higher than VPD, 
highlighting RH as the primary climatic factor influencing SOR. Namely, 
higher RH promoted earlier SOR occurrence. However, during the 
10–40 days preceding SOR occurrence, path coefficients of temperature 
latent variables outweighed those of humidity latent variables, with 
Tmin having much higher loading values than Tmax. This highlighted 
Tmin as the primary climatic factor influencing SOR, where lower Tmin 
promoted earlier SOR occurrence. Lastly, path coefficients of humidity 
latent variables consistently outweighed those of temperature latent 

Fig. 7. Spatial distribution of rubber phenology trend (a) SOD, (b) EOD, (c) SOR, and (d) EOR from 2003 to 2022. The bar chart shows the percentage of advanced 
and delayed trends of all rubber pixels. ‘Adv’ represents the advancing trend, ‘Delay’ represents the delayed trend, and ‘* ’ represents the significant level at α= 0.1.
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variables during 10–70 days preceding EOR occurrence and the loading 
values of VPD were generally higher than RH, highlighting VPD as the 
primary climatic factor influencing EOR. Namely, lower VPD promoted 
earlier EOR occurrence.

4. Discussion

4.1. Comparison of rubber phenology with previous studies

In this study, the RMSE of extracted SOD, EOD, SOR and EOR are 6.8, 
5.9, 2.5, and 5.0 days respectively. This accuracy is higher than most 
satellite-based phenology studies. This is reasonable as rubber planta-
tions, typically large-scale monocultures, generate more consistent and 
detectable spectral signals than nature forest with multiple tree species 

and complex phenological patterns during the occurrence of defoliation 
or refoliation. The accuracy of our extracted rubber phenology is also 
higher than other reported rubber phenology studies. For example, our 
reported RMSE on SOR is around 4 days lower than that (mean differ-
ence from comparison with Sentinel-2 observation) reported by Azizan 
et al. (2021), who utilized the MODIS 8-day time series data whereas this 
study used daily time series data. Previous studies have also shown that 
extraction errors for autumn phenology are often larger than those for 
spring phenology (Zeng et al., 2020; Azizan et al., 2021). For instance, 
Hmimina et al. (2013) found that the RMSE of spring phenology ranged 
from 3 to 10 days while that of autumn phenology was much larger, 
reaching 6–22 days. Similarly, our study also indicates that the extrac-
tion accuracy of rubber autumn phenology (SOD and EOD) are lower 
than that of spring phenology (SOR and EOR). This discrepancy can be 

Fig. 8. Rubber phenology trend at different elevations from 2003 to 2022.

Table 3 
Percentage of delayed and advanced years for each vegetation index and phenological date.

Phenology metrics Percentage（（%））
NDVI EVI NIRv kNDVI

Delayed Advanced Delayed Advanced Delayed Advanced Delayed Advanced

Elevation

SOD ALL 60 % 40 % 50 % 50 % 90 % 10 % 60 % 40 %
P < 0.05 50 % 75 % 20 % 70 % 94 % 50 % 67 % 50 %

EOD ALL 85 % 15 % 55 % 45 % 95 % 5 % 85 % 15 %
P < 0.05 65 % 67 % 55 % 44 % 95 % 0 % 76 % 100 %

SOR
ALL 100 % 0 % 85 % 15 % 100 % 0 % 100 % 0 %

P < 0.05 70 % 0 % 47 % 0 % 95 % 0 % 65 % 0 %

EOR
ALL 90 % 10 % 85 % 15 % 75 % 25 % 95 % 5 %

P < 0.05 72 % 0 % 35 % 0 % 80 % 40 % 79 % 0 %

Slope

SOD
ALL 80 % 20 % 65 % 35 % 100 % 0 % 90 % 10 %

P < 0.05 88 % 75 % 77 % 71 % 85 % 0 % 89 % 100 %

EOD ALL 95 % 5 % 80 % 20 % 100 % 0 % 95 % 5 %
P < 0.05 89 % 100 % 88 % 100 % 95 % 0 % 84 % 100 %

SOR
ALL 95 % 5 % 100 % 0 % 90 % 10 % 100 % 0 %

P < 0.05 100 % 0 % 90 % 0 % 94 % 100 % 95 % 0 %

EOR
ALL 95 % 5 % 100 % 0 % 90 % 10 % 100 % 0 %

P < 0.05 100 % 0 % 100 % 0 % 89 % 100 % 100 % 0 %
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attributed to the gradual process of chlorophyll degradation during 
defoliation—encompassing leaf nutrient relocation, chlorophyll break-
down, leaf coloration, and shedding (Mariën et al., 2019). These pro-
cesses are highly influenced by climate fluctuations, resulting in weaker 
and slower spectral signal changes. In contrast, spring leaf flushing, 
occurring after a leafless period, is characterized by rapid leaf greening, 
leading to more distinct spectral changes.

Our findings indicated that kNDVI demonstrated higher accuracy in 
extracting rubber leaf fall phenology compared to NDVI, EVI and NIRv 
(Fig. 4). Wang et al. (2023c) demonstrated that kNDVI exhibited the 

strongest correlation with biophysical parameters and GPP, followed by 
NIRv and NDVI. The kNDVI outweighs NDVI and NIRv by addressing 
saturation issues in regions with high vegetation cover, which improves 
the accuracy of defoliation phenology extraction. Furthermore, NIRv 
exhibits low RMSE in extracting rubber refoliation phenology in this 
study. This finding aligns with the results of Zhang et al. (2022) and Ersi 
et al. (2022), who found that SIF and NIRv are more effective at 
capturing detailed vegetation dynamics than NDVI and EVI. During leaf 
flushing, new rubber leaves exhibit strong photosynthetic activity, 
leading to rapidly increased chlorophyll absorption of red light (R) and a 
significant rise in NIR reflectance. This makes NIRv, the product of NDVI 
and NIR, more sensitive and more effective in capturing the phenolog-
ical status of refoliation in rubber plantations (Zeng et al., 2020). In the 
future, kNDVI and NIRv indices should be further explored for pheno-
logical extraction in rubber plantations or other types of tropical vege-
tation across different regions.

This study found that the SOD of rubber plantations in Xishuang-
banna primarily occurred in January, with the leaf fall period typically 
ending between January 16 and mid-February (Fig. 5). These findings 
are consistent with previous studies conducted in Yunnan Province, 
China (Liyanage et al., 2019; Zhai et al., 2019), which reported that the 
SOD mainly occurred from late December to January. We also found a 
significant delayed trend of SOD from 2003 to 2022 (Fig. 7 and Table 3), 
which aligns with the majority of studies reporting delayed trends in 
temperate forests (Menzel et al., 2006; Liu et al., 2016). The delayed 
trend in rubber plantations (0.14 days/year) was comparable to the 
observed delay in most temperate deciduous forests (0.16 ± 0.01 
days/year). The delay was primarily attributed to the increased tem-
peratures due to global warming (Piao et al., 2019; Azizan et al., 2023). 
For instance, Shi et al. (2014) proposed that the primary mechanism 
behind delayed leaf fall was the increased activity of photosynthetic 
enzymes and slower chlorophyll degradation during leaf senescence, 
caused by the rising temperature. Globally, extensive studies have re-
ported the advanced SOR with both in-situ observations and satellites 
across North America, Europe, and Easten Asia (Chmielewski et al., 
2001; Wolfe et al., 2005; Richardson et al., 2013; Ge et al., 2014). 
However, the amplitude of this advancement varied due to differences in 

Table 4 
Multiple comparisons of vegetation index based on phenological dates at 
different topographic elements.

Elevation

Index1 Index2 SOD EOD SOR EOR

NDVI EVI 0.450 0.013 0.012 1.000
NDVI NIRv 0.003 0.000 0.006 1.000
NDVI kNDVI 1.000 1.000 1.000 0.948
EVI NIRv 0.000 0.000 0.000 1.000
EVI kNDVI 0.450 0.000 0.001 0.050
NIRv kNDVI 0.003 0.029 0.082 1.000

Slope

Index1 Index2 SOD EOD SOR EOR

NDVI EVI 0.726 0.005 1.000 0.086
NDVI NIRv 0.000 0.433 1.000 1.000
NDVI kNDVI 0.210 1.000 1.000 0.224
EVI NIRv 0.000 0.000 1.000 0.002
EVI kNDVI 0.002 0.000 0.559 1.000
NIRv kNDVI 0.131 1.000 1.000 0.009

Aspect

Aspect1 Aspect2 SOD EOD SOR EOR

NDVI-Sunny NDVI-Shade 0.000 0.000 0.655 1.000
EVI-Sunny EVI-Shade 1.000 0.180 0.655 0.180
NIRv-Sunny NIRv-Shade 0.000 0.000 0.000 0.180
kNDVI-Sunny kNDVI-Shade 0.655 0.025 0.655 0.371

Fig. 9. Rubber phenology trend at different slope.
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the studied regions, periods, and tree species. (Piao et al., 2019). Simi-
larly, in this study, the SOR and EOR of rubber plantations also exhibited 
significant advanced trends from 2003 to 2022, with rates of 0.34 
days/year, and 0.66 days/year, respectively.

Existing previous studies have revealed significant regional differ-
ences of rubber phenology (Liu et al., 2013; Yang et al., 2019). Dong 
et al. (2013) found that the SOD and EOD primarily occurred from late 
February to late March, while the SOR and EOR mainly occurred from 

Fig. 10. Comparison of rubber phenology metrics at different aspects.

Fig. 11. Partial correlation coefficients between four phenology dates ((a) SOD, (b) EOD, (c) SOR and (d) EOR) and climate factors. * represents significance 
at α= 0.05.
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late March to April in Danzhou, Hainan Province, China. This indicates 
that the four rubber phenologies in Hainan Province occurred later than 
those in Xishuangbanna reported by this study. Chen et al. (2022) also 
found large variation of defoliation durations among different latitudes 
(An increase of one degree in latitude decreases the defoliation duration 
by 2.9 days, R²=0.96) and suggested that the possible reason for these 
regional differences was the reaching time variation of low-temperature 
threshold during the dry season across different locations. Besides, other 
factors, such as water availability and management practices, may also 
contribute the regional differences. For example, Chen et al. (2010) and 
Liu et al. (2014) suggested that drought stress was the main cause of 
rubber defoliation phenology. The control effectiveness of rubber leaf 
powdery mildew affects the growth of new leaves, thereby influencing 
leaf flushing phenology (Liyanage et al., 2019; Zhai et al., 2023).

Our study found topography significantly affects the rubber 
phenology. The four phenological dates generally showed delayed trend 
with both increasing elevation and slope. The SOD, EOD, SOR, and EOR 
based on the four VIs were averagely delayed by 0.27 days/50 m, 0.44 
days/50 m, 0.72 days/50 m, and 0.91 days/50 m, respectively. Guyon 
et al. (2011) reported that the SOR of deciduous broad-leaved forests in 
France was delayed by an average of 2.3 days for every 100-meter in-
crease in elevation. The possible reasons for the delayed phenology vary. 
Lower temperature due to increased elevation may be the major reason 
leading to delayed SOR and EOR (Liyanage et al., 2019; Azizan et al., 
2021). For the delayed SOD, the most possible reason may be the 
increased humidity due to increased elevation (Carr, 2012; 
Guerra-Hincapié et al., 2020). Our results show that the SOD, EOD, SOR, 
and EOR based on the four VIs were averagely delayed by 0.19 days/◦, 

0.22 days/◦, 0.32 days/◦, and 0.50 days/◦, respectively. Few studies 
have examined the impact of slope on phenology. This is probably due to 
the complex effects of slope on microclimate. We suggested the delayed 
rubber phenology of increased slope is a comprehensive result of 
changed temperature and humidity.

4.2. Response of rubber phenology to meteorology

Causes of rubber leaf fall have been a topic of debate over the past 
several decades. For instance, Lin et al. (2018) and Chen et al. (2022)
found that cold stress correlated more closely with defoliation metrics 
than drought stress in Xishuangbanna, suggesting that low-temperature 
stress might be the driving factor. Conversely, Liu et al. (2014) and Chen 
et al. (2010) addressed drought dress and suggested that leaves began to 
senesce due to the low water conductivity in the xylem vessels (the plant 
structures responsible for water transport). Guerra-Hincapié et al. 
(2020) argued that in rubber plantations, rainfall was the most critical 
climatic factor inducing leaf fall.Guardiola-Claramonte et al. (2010)
found that rubber defoliation was caused by a combination of factors 
rather than a single one, including water availability, temperature, and 
daylength. Our analysis also revealed that both temperature and hu-
midity jointly determined the timing of SOD, with temperature being 
more influential than humidity. Our findings may be more reasonable as 
the following reasons: low temperatures can cause cell damage and 
metabolic disorders in leavesthrough mechanisms such as enzyme ac-
tivity, membrane integrity, and oxidative stress, stimulating rubber trees 
to reallocate nutrients from mature leaves to the trunk as an adaptive 
response during the leaf senescence period (Waraich et al., 2012; 

Table 5 
Quantified influences of driving factors on rubber phenological using the PLS-PM model.

Phenology 
metrics Pre-days

Path coefficients Temperature loading Humidity loading

Temp Humidity Tmin Tmax VPD RH

SOD

90 0.52 ¡0.86 0.81 0.62 0.99 0.26
80 0.43 ¡0.60 0.46 0.91 0.95 0.02
70 0.13 ¡0.20 0.97 − 0.14 0.68 − 0.59
60 0.52 − 0.45 0.64 0.80 0.46 ¡0.85
50 0.54 − 0.30 0.66 0.86 1.00 − 0.03
40 0.69 − 0.27 0.61 0.92 0.98 − 0.17
30 0.68 − 0.18 0.59 0.90 0.96 − 0.25
20 0.43 − 0.19 0.71 0.88 0.90 − 0.60
10 0.28 − 0.06 1.00 0.39 0.98 − 0.46

EOD

90 0.002 ¡0.12 0.88 0.59 0.91 0.70
80 0.001 ¡0.11 0.91 − 0.31 0.74 0.84
70 0.02 ¡0.11 − 0.04 0.98 0.05 0.99
60 0.01 ¡0.15 0.29 1.00 − 0.41 0.85
50 − 0.15 ¡0.35 0.63 0.93 ¡0.78 0.51
40 − 0.12 ¡0.29 0.49 0.94 − 0.70 0.73
30 − 0.21 ¡0.34 0.66 0.89 − 0.72 0.80
20 − 0.06 ¡0.21 0.96 0.29 − 0.72 0.74
10 − 0.19 ¡0.34 0.42 0.88 − 0.68 0.78

SOR

90 0.003 ¡0.32 0.05 1.00 0.29 0.99
80 − 0.09 ¡0.40 0.29 0.98 0.11 0.97
70 − 0.13 ¡0.46 0.62 0.85 − 0.19 0.90
60 − 0.11 ¡0.48 0.91 0.47 − 0.52 0.71
50 0.33 ¡0.44 0.74 − 0.68 − 0.42 0.85
40 0.46 − 0.42 0.66 ¡0.75 − 0.59 0.77
30 0.36 − 0.25 0.81 − 0.71 0.94 − 0.33
20 0.24 0.18 0.95 − 0.53 1.00 0.02
10 0.23 0.07 0.99 − 0.39 1.00 0.16

EOR

90 ¡0.38 0.20 0.32 0.84 0.80 − 0.74
80 ¡0.17 0.06 0.39 0.79 0.41 ¡0.96
70 − 0.56 0.56 0.66 0.49 0.98 − 0.33
60 − 0.07 0.27 − 0.53 0.98 0.91 − 0.52
50 − 0.50 0.80 0.03 0.95 0.94 − 0.45
40 − 0.54 0.97 − 0.11 0.97 0.82 − 0.64
30 − 0.26 0.90 0.12 0.89 0.94 − 0.35
20 − 0.09 0.80 0.41 0.77 0.98 − 0.12
10 − 0.08 0.72 0.92 0.14 0.98 0.38
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Hasanuzzaman et al., 2013; Li et al., 2016). Additionally, by shedding 
leaves, rubber trees reduce transpiration in dry season and consequently 
alleviate the stress caused by decreased soil moisture (Kobayashi et al., 
2014; Wang et al., 2023b). This dual strategy helps the trees manage 
both low-temperature stress and water scarcity effectively.

In contrast to the debated causes of SOD, there is a general agreement 
among scholars on the primary drivers of SOR on most deciduous forests 
(i.e., temperature) (Fu et al., 2015; Picornell et al., 2019; Azizan et al., 
2023). Our results indicated the SOR of rubber plantations was jointly 
influenced by temperature and humidity, with both factors showing a 
negative correlation. This finding is consistent with the analysis of the 
driving mechanisms conducted by Lai et al. (2023). We also found the 
impact of humidity on SOR was stronger than that of temperature. This 
is reasonable as SOR primarily occurs in the latter part of the dry season. 
During this period, temperature variations are relatively small, whereas 
humidity increases significantly, providing sufficient water for leaf bud 
development. Humidity regulates leaf unfolding by influencing water 
balance and cell turgor. High humidity facilitates water replenishment 
through root water absorption and further facilitates leaf transpiration 
and photosynthesis, while low humidity may inhibits leaf growth and 
unfolding by reducing stomatal aperture (Farooq et al., 2009; Kaur et al., 
2021). Compared to SOD and SOR, the driving factors for EOD and EOR 
are poorly understood, particularly for rubber plantations. In this study, 
we found that increased humidity accelerated EOR, indicating that hu-
midity plays a dominant role in the spring phenonogy (Farooq et al., 
2009; Waraich et al., 2012; Hasanuzzaman et al., 2013; Kaur et al., 
2021). Although RH is found to be the primary climatic factor influ-
encing EOD, the role of RH on EOD might not be decisive as its climatic 
correlation with EOD is less than 0.4 and its path coefficient is also 
relatively small. This also implied that the drivers of EOD are much more 
complex than the other three phenological dates.

4.3. Uncertainty and future direction

One of the primary challenges in rubber phenology monitoring is the 
data contamination caused by tropical cloudy and rainy weather (Guyon 
et al., 2011; Shen et al., 2024). The coarser resolution of quality control 
bands may result in undetected sub-pixel clouds and landscape shadows, 
contributing to data contamination and ultimately leading to the un-
certainty of rubber phenology monitoring. Mixed pixels can also intro-
duce errors. For instance, although the resampled 250-meter pixel 
contains over 90 % of the 30-meter rubber plantation pixels, the 
remaining 10 % non-rubber pixels may still bring uncertainties in the 
calculation of VIs. The second uncertainty may come from the topo-
graphic effects on reflectance. Since rubber plantations are primarily 
located in mountainous regions in Xishuangbanna, reflectance errors 
caused by topographic effects can influence phenology monitoring. 
However, we suggest this influence would be partially eliminated by the 
calculation of vegetation indices, especially for the ratio indices such as 
NDVI. In terms of method, we attempted to use the commonly employed 
method of interpolation with adjacent dates, but found that the 
increased gap-filling rate was still insufficient to construct an integrated 
daily-scale time series curve. Therefore, we further complemented the 
missing pixels based on homogeneous pixels with the same planting 
characteristics and elevation, reducing the data gap rate to less than 
30 %. However, even if a daily time series can be constructed, spectral 
differences between interpolated pixels and actual pixels still exist 
(Atkinson et al., 2012; Bolton et al., 2020), leading to errors in extracting 
phenological metrics. The VI time series were reconstructed through 
smoothing and fitting to extract phenological metrics. This process may 
attenuate sudden VI changes due to extreme climatic events, potentially 
causing shifts in phenological extraction dates and impacting the overall 
phenological trend. Finally, uncertainty may also come from the 
inconsistency between ground-based phenological observations and 
satellite-derived phenological estimates. Satellite-derived phenology is 
primarily estimated based on changes in vegetation reflectance, whereas 

ground-based phenology is defined according to biological theories 
related to leaf development levels (Hmimina et al., 2013), leading to 
fundamentally different mechanisms. Additionally, due to spatiotem-
poral heterogeneity of individual trees, validating satellite-derived 
phenology at the pixel scale (ranging from tens of meters to kilome-
ters) against ground-based observations from a few trees involves sig-
nificant uncertainties (Shen et al., 2024). The latest advancements in 
near-surface remote sensing methods, such as PhenoCams (Tools for 
monitoring plant phenological changes) and drones, offer the potential 
to bridge ground-based and satellite-derived phenology (Richardson 
et al., 2018; Li et al., 2021).

In the future, firstly, determining thresholds for vegetation time se-
ries corresponding to each phenological event requires standardization. 
Currently, there is no unified and widely accepted threshold for rubber 
phenology. Azizan et al. (2021) applied 20 % seasonal amplitude 
threshold to extract the EOD and SOR of rubber in Indonesia. Mean-
while, Lai et al. (2023) determined 15 % and 20 % to extract EOD and 
SOR of rubber in Yunnan province, China. Hu et al. (2022) set 60 % and 
30 % to extract SOD and SOR of rubber in Hainan province, China. To 
minimize uncertainty from subjective threshold setting, this study 
extracted rubber phenology by comparing different thresholds and 
validating the optimal one using PhenoCam imagery. Our results show 
that 20 % and 5 % thresholds are optimal for extracting the start of 
defoliation and refoliation in rubber plantations using the four indices. 
However, further studies should be conducted to assess their reliability 
and applicability in other regions or ecosystems.

Secondly, to better monitor rubber phenology, future efforts should 
focus on using multi-source remote sensed imagery to improve spatio-
temporal resolution. This can be achieved by integrating high temporal 
resolution data (e.g., MODIS) with medium-high spatial resolution data 
(e.g., Landsat, Sentinel-2) using mature fusion algorithms such as the 
Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model 
(ESTARFM) (White et al., 2009; Zeng et al., 2020). Additionally, Syn-
thetic Aperture Radar (SAR) can penetrate cloud cover to obtain canopy 
structure information, as it is minimally affected by clouds and rain, 
making it a valuable tool for monitoring vegetation phenology in cloudy 
regions. However, SAR may encounter challenges in high-density 
vegetation areas, where dense canopies can attenuate the radar signal, 
reducing accuracy in estimating vegetation structure and biomass. 
Recent studies have also found that Solar-Induced Chlorophyll Fluo-
rescence (SIF) can directly measure photosynthetic activity, showing 
higher sensitivity to vegetation greenness changes and being less 
affected by clouds and atmospheric scattering (Mohammed et al., 2019; 
Xu et al., 2023). This provides new possibilities for monitoring rubber 
phenology. However, the coarse spatial resolution of current SIF data (e. 
g., 0.05◦ for GOSIF) may be insufficient for accurately monitoring rub-
ber plantations, particularly in heterogeneous landscapes or small-scale 
plantations. Therefore, effectively combining different data sources for 
phenological extraction remains an area for further exploration. How-
ever, there are still many challenges and limitations in the fusion of these 
data, which mainly manifest in the following aspects: (1) Due to the 
differing geometric accuracies of the various datasets, fusion of different 
data sources may introduce new registration errors. This can result in 
spectral signal distortion, which, in turn, affects phenological assess-
ment (Ghamisi et al., 2019); (2) The spectral response ranges of different 
optical data are inconsistent, so the fusion process is prone to spectral 
distortion, which affects the extraction of phenological information 
(Ghassemian, 2016); (3) The structural differences between SAR and 
optical data are even greater, making signal distortion more likely 
during the fusion process (Kulkarni et al., 2020). Thus, the improve-
ments in fusion algorithms in future may provide great potential in 
monitoring phenology of tropical plantations.

Lastly, major rubber-producing countries should actively establish 
phenological and meteorological observation systems with standardized 
observation protocols. Currently, most countries have relatively short 
historical records and limited stable and consistent monitoring locations 
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for vegetation phenology except for some developed countries such as 
Germany, Finland, Sweden, and Japan (Morellato et al., 2013; Peng 
et al., 2017). For rubber plantation, besides China and Thailand, which 
have a few monitoring sites, there are no reports from other countries in 
the Lancang-Mekong region. Establishing a standardized phenological 
and meteorological observation network in Southeast Asian countries 
would enhance our understanding of the mechanisms driving rubber 
plantation phenology.

5. Conclusions

The study of phenology monitoring and its driving mechanisms in 
rubber plantations can help improve plantation management and opti-
mize tapping schedules. In this study, we investigated the performance 
of four vegetation indices in monitoring rubber phenology metrics. In 
addition, we also investigated their spatiotemporal patterns and re-
sponses to climate dynamics and topography. The results showed that 
kNDVI performed best in monitoring defoliation metrics (SOD and EOD) 
while NIRv outweighed in extracting refoliation metrics (SOR and EOR). 
EOD, SOR and EOR showed averagely advanced trend with 0.13, 0.34, 
and 0.66 days per year, respectively, while SOD showed no significant 
trend from 2003 to 2022. All four phenological dates generally showed a 
delayed trend with increasing elevation and slope. Partial correlation 
and path analysis suggested that temperature variables (Tmax and 
Tmin) and humidity variables (RH and VPD) jointly regulated the SOD 
and EOD, whereas humidity variables predominantly influenced SOR 
and EOR. This study fills the knowledge gap on the spatiotemporal 
trends of four rubber phenology events and their response to climatic 
and topographic factors, and help a better understanding of phenology 
in tropical tree species. Future efforts should focus on integrating multi- 
source remote sensing data (e.g., microwave imagery, SIF data, etc.) to 
improve the retrieval accuracy of rubber phenology and constructing a 
phenological and meteorological observation network in major rubber- 
producing countries to better investigate the response of rubber 
phenology to future climate change.
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Guerra-Hincapié, J.J., Córdoba-Gaona, O. d J., Gil-Restrepo, J.P., Monsalve-García, D.A., 
Hernández-Arredondo, J.D., Martínez-Bustamante, E.G., 2020. Phenological patterns 
of defoliation and refoliation processes of rubber tree clones in the colombian 
northwest. Rev. Fac. Nac. De. Agron. Medellin 73 (3), 9293–9303. https://doi.org/ 
10.15446/rfnam.v73n3.80546.

Y. Chen et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.gloenvcha.2015.06.002
https://doi.org/10.1016/j.gloenvcha.2015.06.002
https://doi.org/10.1016/j.rse.2012.04.001
https://doi.org/10.1016/j.rse.2012.04.001
https://doi.org/10.3390/rs13152932
https://doi.org/10.1016/j.agee.2023.108531
https://doi.org/10.1016/j.agee.2023.108531
https://doi.org/10.1126/sciadv.1602244
https://doi.org/10.1126/sciadv.1602244
https://doi.org/10.1016/j.foreco.2020.118663
https://doi.org/10.1016/j.foreco.2020.118663
https://doi.org/10.1016/j.rse.2020.111685
https://doi.org/10.1016/j.rse.2020.111685
https://doi.org/10.1126/sciadv.abc7447
https://doi.org/10.1017/S0014479711000901
https://doi.org/10.1071/FP14294
https://doi.org/10.1071/FP14294
https://doi.org/10.1016/j.indcrop.2022.114617
https://doi.org/10.1093/treephys/tpq043
https://doi.org/10.1016/S0168-1923(01)00233-7
https://doi.org/10.1016/S0168-1923(01)00233-7
https://doi.org/10.11867/j.issn.1001-8166.2021.006
https://doi.org/10.11867/j.issn.1001-8166.2021.006
https://doi.org/10.1016/j.rse.2013.03.014
https://doi.org/10.1016/j.rse.2013.03.014
https://doi.org/10.3390/rs15010187
https://doi.org/10.3390/rs15010187
https://doi.org/10.1051/agro:2008021
https://doi.org/10.1051/agro:2008021
https://doi.org/10.1038/nature15402
https://doi.org/10.1038/nature15402
https://doi.org/10.1111/gcb.12648
https://doi.org/10.1111/gcb.12648
https://doi.org/10.1007/s10457-008-9104-y
https://doi.org/10.1109/MGRS.2018.2890023
https://doi.org/10.1016/j.inffus.2016.03.003
https://doi.org/10.1002/eco.110
https://doi.org/10.1002/eco.110
https://doi.org/10.15446/rfnam.v73n3.80546
https://doi.org/10.15446/rfnam.v73n3.80546


Industrial Crops & Products 226 (2025) 120753

16

Gutiérrez-Vanegas, A.J., Correa-Pinilla, D.E., Gil-Restrepo, J.P., López-Hernández, F.G., 
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