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A B S T R A C T

Monitoring biodiversity through analyzing acoustic signals of ecosystems, as well as their relationship with 
environmental factors has garnered significant attention in fields like landscape ecology and biodiversity con-
servation. However, validation studies centered around only one of the acoustic diversities, the alpha index, 
while largely left out the beta one. Therefore, we evaluated the efficacy of acoustic beta indices as proxies of 
dissimilarity in vocal bird composition, and investigated the relative importance of vegetation characteristics 
dissimilarity, topographic dissimilarity, and geographical distance on acoustic beta diversity. To get acoustic beta 
indices of birds, we deployed 16 autonomous acoustic recorders across a biodiversity monitoring platform within 
a subtropical evergreen broad-leaved forest during bird breeding season. We performed bird species aural 
identification and investigated the relationship between vocal bird composition dissimilarity and eight acoustic 
beta indices with Mantel test. In addition, we obtained environmental factors included vegetation characteristics 
and topography variables through unmanned aerial vehicle light detection and ranging (UAV LiDAR) and from 
census data of the forest dynamics plots. The relative importance of vegetation characteristics, topography, and 
geographical distance on acoustic beta diversity was investigated with multiple regressions on distance matrices 
(MRM) and generalized dissimilarity modelling (GDM). Our results showed that the eight acoustic beta indices 
were significantly positively related to each other. There was weak correlation between acoustic dissimilarity 
and vocal bird composition dissimilarity, indicating that acoustic diversity is an independent facet of biodi-
versity. This study provided the first evidence that the combination of vegetation characteristics dissimilarity, 
topographic dissimilarity, and geographic distance account for few variation in the acoustic beta indices within 
the subtropical forest. Notably, vegetation characteristics dissimilarity emerged as relatively more important to 
the acoustic dissimilarity compared to topographic dissimilarity. Further research examining the relationship 
between specific acoustic spectral characteristics and potential influencing factors is highly encouraged.

1. Introduction

Biodiversity encompasses diversified aspects such as taxonomy, 
functionality, and phylogeny (Faith, 1992; Petchey and Gaston, 2006), 
the measurement of which is fundamental to ecology and conservation 
research (Pavoine and Bonsall, 2011; Monnet et al., 2014; Webb et al., 
2002). With the advancement of automated soundscape recording 
technology, passive acoustic monitoring (PAM) is now a widely used 
method for assessing ecosystem status and monitoring vocal animal 

communities (also known as acoustic community) (Krause and Farina, 
2016; Pijanowski et al., 2011). Acoustic diversity has also emerged as a 
potent indicator of biodiversity (Alcocer et al., 2022; Bradfer-Lawrence 
et al., 2020; Gasc et al., 2013a). As with other biodiversity components, 
acoustic diversity indices can be divided into alpha indices (within- 
group diversity) and beta indices (between-group diversity) (Sueur 
et al., 2014). The variation patterns and influencing factors of alpha 
indices across ecosystems have been thoroughly explored (e.g. Dröge 
et al., 2021; He et al., 2022; Pan, et al., 2024; Sueur et al., 2008a). Yet 
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research on acoustic beta diversity is scarce (but see Hayashi et al., 2020; 
Lawrence et al., 2022).

Acoustic beta indices were proposed to examine acoustic differences 
between soundscapes across dimensions of time, frequency and ampli-
tude (Depraetere et al., 2012; Gasc et al., 2013b; Sueur et al., 2008a). 
Although more than ten indices have been proposed since 2008 
(Lawrence et al., 2022; Sueur et al., 2008a; Sueur et al., 2014), only a 
few have been studied. For example, the spectral dissimilarity index (Df) 
and the acoustic dissimilarity index (D), which was produced by tem-
poral dissimilarity and spectral dissimilarity (Depraetere et al., 2012; 
Gasc et al., 2013a; Wilford et al., 2021). The correlation between 
different acoustic beta indices was few studied (e.g. Lawrence et al., 
2022; Lellouch et al., 2014). Among the known indices, some have 
demonstrated a positive correlation with each other (Gasc et al., 2013a; 
Lawrence et al., 2022), so ecologists are paying increasing attention to 
their efficacy as a measurement of biodiversity between acoustic com-
munities. For example, acoustic beta indices were revealed to be related 
to vocal species composition dissimilarity between acoustic commu-
nities, even part of phylogenetic diversity and functional beta diversity 
(Gasc et al., 2013a; Gasc et al., 2013b; Sueur et al., 2008a). However, 
Lellouch et al. (2014) claimed that they should not be considered as a 
proxy of dissimilarity of bird species composition in the field. Instead, he 
proposed acoustic diversity as a new dimension of biodiversity. There-
fore, more empirical studies are needed to explore their efficacy for 
biodiversity assessment.

The dissimilarity of biodiversity within natural assemblages may be 
attributed to two primary processes: stochastic processes, including 
dispersal limitation caused by geographic distance, and deterministic 
processes, such as niche-based environmental filtering (Hubbell, 2001; 
Webb et al., 2002). Acoustic dissimilarity may increase with geographic 
distance, which could be because of growing dissimilarity among vocal 
species and distance decay of sound (Azaele et al., 2015). However, the 
Acoustic Adaptation Hypothesis states that vocal animals could adapt to 
the habitat’s physical structure to maximize the propagation of their 
vocalizations, emphasizing the importance of environmental filtering 
(Morton 1975). On the other hand, according to the Acoustic Niche 
Hypothesis (Krause, 1993), vocal organisms may engage in competition 
for acoustic space and could partition specific temporal and frequency 
intervals. In one previous research, the acoustic dissimilarity indices 
showed no correlation with the geographical distances both between 
and among oil palm plantations and surrounding forests (Hayashi et al., 
2020). It indicated that, unlike species composition, the acoustic simi-
larity did not diminish with an increase in geographical distance. At the 
same time, the soundscape of different habitat types consistently 
exhibited distinct patterns, which could be resulting from vegetation 
heterogeneity of the forest ecosystems (Rodriguez et al., 2014). How-
ever, the specific importance of respective environmental factor on 
acoustic beta indices remains largely unknown.

Therefore, this study focused on the relationship between acoustic 
beta diversity and vocal bird species beta diversity, as well as relative 
importance of vegetation characteristics dissimilarity, topographic 
dissimilarity and geographic distance on acoustic beta diversity in forest 
ecosystem. The expectation was that the majority of acoustic beta 
indices would show significant relationship between each other, as they 
were all designed to assess differences in soundscape (Lawrence et al., 
2022). Although the acoustic dissimilarity was found to be associated 
with the number of unshared species among simulated acoustic com-
munities (Sueur et al., 2008a), the soundscape of natural fields and 
simulated acoustic environments was different. As a result, we also 
anticipated that the vocal bird species composition dissimilarity calcu-
lated with aural identification results would exhibit no correlation with 
acoustic beta diversity (Lellouch et al. 2014). According to the Acoustic 
Adaptation Hypothesis, habitat heterogeneity may produce different 
physical environments for sound propagation (Mullet et al., 2017). We 
further predicted that vegetation characteristics, rather than geographic 
distance and topography, play a relatively more important role in 

explaining acoustic dissimilarity within subtropical evergreen broad- 
leaved forest.

2. Materials and Methods

2.1. Study area

The Ailao Mountains extend across central Yunnan Province, China 
(E 100◦54′-101◦ 30′, N 23◦44′-24◦44′). Within it, there are over 34,000 
ha of primary evergreen broadleaf forests conserved in the Ailaoshan 
National Nature Reserve (Pang et al., 1988). In 2018, a biodiversity 
monitoring platform comprising 19 1-ha forest dynamics plots was 
established in the northern region of the Mountains (Yang et al., 2023), 
following the protocols of Centre for Tropical Forest Science (CTFS) 
(Condit, 1998). Through it, all trees ≥ 10 cm DBH were mapped, tag-
ged, identified to species, and measured across all plots. The vegetation 
type of the plot network is subtropical mid-mountain moist evergreen 
broad-leaved forest. Its composition and structure are dominated by 
subtropical species, such as Lithocarpus hancei (Fagaceae), Lithocarpus 
xylocarpus (Fagaceae), Schima noronhae (Theaceae), and Machilus 
bombycina (Lauraceae) (Yao et al., 2023). This study was conducted in 
16 1-ha forest dynamics plots within the platform (Fig. 1).

2.2. Data collection

2.2.1. Soundscape monitoring
Song Meter SM4 recorders (Wildlife Acoustics Inc., Maynard, USA) 

were deployed in the center 20 × 20 quadrat of each forest dynamics 
plot during bird breeding season from June 1st to August 31st, 2022 
(Table S1). The first one-minute recording was collected of each hour, 
totaling 24 recordings per day. As the current study focused on bird 
vocalization, the signals were sampled at 24 kHz and a depth of 16 bits 
quantization. Sound fragments were recorded in wav format and stored 
on two 16 GB SDHC memory cards in each machine. All recorders were 
attached to tree trunks at the height of 2.0–2.5 m.

2.2.2. Pre-processing and selection of the recordings
Except for one machine (ID: 6703) which stopped recording since 

July 2nd, all others functioned the entire three months, collecting 2208 
recordings for each of the 15 plots. All recordings were previewed 
aurally and visually by analyzing their waveforms and spectrograms 
using Kaleidoscope (v5.4.2) (Wildlife Acoustics Inc., Maynard, USA). As 
the absence of human disturbance within the research plots, there was 
few anthrophony recorded. Recordings including geophonic sources 
(mainly raindrop sounds) and biophony from other animal taxa were 
deleted.

In order to review bird vocalization pattern, recordings of all the 16 
plots on one particular day, June 20th, when the weather was good with 
no wind or rain, were chosen. The cumulative vocal time of birds and 
other vocal animal species such as insects and squirrels were accessed 
separately. That is, if one bird species calls or sings for a duration of 10 s, 
and another species occurs during that same period, the total cumulative 
time remains 10 s. Results showed that avian vocalization displayed a 
typical daily rhythm, characterized by silence from 21:00 to 05:00 with 
shorted than 1 s vocalization (Fig. S1, Table S2). Bird vocal activity was 
notably higher during the morning hours from 07:00 to 11:00 and in the 
afternoon from 16:00 to 17:00. During these periods, The cumulative 
vocal time of birds exceeded 20 s (19.9 s in 10:00) within a span of 60 s. 
As a result, we narrowed down to recordings from 07:00 to 11:00 for 
further analysis. A total of 30 recordings from each plot were selected. 
The spectrograms of all the selected recordings were relatively “clear”, 
devoid of sounds from other vocal animal species, as well as distinct 
raindrops and wind. To eliminate the influence of permanent device 
background noise, frequencies below 1000 Hz were removed with filter 
function in the R package seewave from all the one-minute recordings 
(Sueur et al., 2008b).
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2.2.3. Aural identification
Our group has been doing bird survey in the region since 2021, so we 

are familiar with local bird vocalization. Aural identification was 
accomplished through both listening to and visualizing spectrogram of 
the recordings from each plot. A presence/absence (1/0) matrix was 
built to record the occurrence of each species within recordings. For bird 
taxonomy and nomenclature, we followed the HBW and BirdLife 
Taxonomic Checklist v8 (HBW and BirdLife International, 2023).

2.3. Acoustic beta diversity

Eight acoustic beta indices were used in the present study (Table S3). 
The Mutual information index (I) measured the differences in shape 
between each pair of cumulative frequency spectra, including variations 
of increases, decreases, peaks, troughs, and the lengths of flat segments 
(Cazelles et al., 2004). The Correlation-based dissimilarity index (R) 
employs a correlation coefficient to estimate the covariation between 
two frequency spectra (Lellouch et al., 2014). Kolmogorov-Smirnov 

distance index (DKS) calculated the frequency location of the 
maximum difference between two cumulative frequency spectra using 
the Kolomogorov-Smirnov distance (Gasc et al.,2013a). The spectral 
dissimilarity index (Df) was obtained by calculating the average of the 
STFT (Short Time Fourier Transform) of each sound, scaling each 
average spectra by its integral, and calculating the difference for each 
frequency bin (Sueur et al., 2008a). The symmetric Kullback-Leibler 
distance index (DKL) was estimated by calculating the relative entropy 
between two probability frequency spectra (Gasc et al.,2013a). Log- 
spectral distance index (DLS) was the log of the difference between 
two frequency spectra (Sueur, 2018). The symmetric Itakura-Saito dis-
tance index (DIS) calculated the dissimilarity of two frequency spectra by 
calculating the Itakuro-Saito distance (Sueur, 2018). The relative fre-
quency dissimilarity index (S) calculated the relative dissimilarity be-
tween minimum and maximum frequency of two frequency spectra 
(Deecke and Janik, 2006).

Detailed description of the R functions and equations used in 
calculation are in Table S3. The beta indices return a data matrix of pair- 

Fig. 1. Distribution map of the 16 forest dynamics plots within north Ailaoshan National Nature Reserve in Yunnan Province, China. The distance between research 
forest dynamics plots varies from 774 m to 6644 m, while their elevations range from 2414 m to 2642 m.
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wise comparisons between recordings. Based on the 480 recordings, 
mantel tests was used to explore the relationship between the eight 
acoustic beta indices with mantel function in the R package vegan 
(Oksanen et al., 2022). To evaluated the acoustic dissimilarity between 
forest plots, the mean value of the acoustic beta indices were calculated 
from 900 pairs of one-minute recordings (30 × 30) taken from each pair 
of plots.

2.4. Environmental factors

UAV LiDAR data of the study dynamics plots were collected from 
October 2018 to February 2019 using a Velodyne LiDAR PUCK-16 laser 
scanner. The point cloud data obtained of each plot were processed in 
the following procedure: denoising, filtering, and normalizing (more 
details in Yao et al., 2023). A canopy height model (CHM) of 1 m res-
olution was derived by normalized point clouds using point-to-raster 
algorithms. With the normalized point clouds and CHM, we obtained 
three plot-level lidar-derived metrics to characterize forest structure. 
Canopy closure (Closure) was measured as the ratio of pixels with a 
height value of more than 10 m (Zhang et al., 2016). The values ranged 
from 0 to 1 with higher values indicating a closed canopy. Mean canopy 
height (Hmean) was defined as the mean value of all cloud points with 1 
m resolution. The vertical distribution ratio (VDR) was calculated with 
the equation: VDR = (HTmax-HTmed)/HTmax, where HTmax and 
HTmed were the maximum and median values of canopy height within 
the plot (Goetz et al., 2007) respectively. Areas with more even vertical 
biomass distribution showed larger values close to 1.

In addition to the three LiDAR-derived metrics, four other vegetation 
characteristics were calculated based on census data of the forest dy-
namics plot collected in 2019. The stand basal area (BA) was the sum of 
stem basal area in each plot. Tree size variation within a plot was 
calculated by the coefficient of variation of individual DBH (diameter at 
breast height) (DBHcv). Tree species richness (SR) was the total tree 
species number within each plot. Tree density (Density) was estimated 
as the total number of tree individuals recorded within each plot. In all, 
we obtained seven plot-level vegetation characteristics in each plot.

Four topographic characteristics were obtained per plot. Mean 
elevation (Elevation) was the mean value of four corners. The slope 
(Slope) was the mean angular deviation from the horizontal of each of 
the four triangular planes formed by connecting three of its corners 
(Harms et al., 2001). Aspect (Aspect) was the orientation of slope, for 
which both the sine and cosine value were calculated. Topographic 
complexity (Complex) was calculated with the equation: complexity =
As/Ap, where as was the total surface area and Ap, the projected area of 
the plot (Ren et al., 2019).

2.5. Statistical analyses

We used Mantel tests to verify the statistical significance of corre-
lation between acoustic beta indices and species composition dissimi-
larity for the 480 one-minute recordings. The species dissimilarity was 
calculated as the Bray-Curtis distance (B-C distance) using the presence/ 
absence vocal bird species composition got from aural identification 
(Magurran, 1988). B-C distance was assessed with vegdist function in 
the R package vegan.

The environmental factors, which encompassed vegetation charac-
teristics and topographic variables of the 16 plots, were normalized. 
Euclidean distance among plots was calculated with dist function in the 
R package stats (R Core Team, 2024). The geographic distance between 
each pair of plots was also calculated with the dist function based on the 
coordinate of the plots.

To distinguish the effects of environmental dissimilarity and 
geographic distance on acoustic beta indices, multiple regressions on 
distance matrices (MRM) were used. It involved a multiple regression of 
a response matrix on any number of explanatory matrices (Lichstein 
2007). In this stage, vegetation and topographic characteristics of each 

forest plot were considered as environmental factors. We used MRM to 
partition variance in acoustic beta indices between unique contributions 
of environmental and geographic distances, as well as the combination 
of them. The significance of regression coefficients was tested with 
1,000 permutations. MRM was performed with MRM function in the R 
package ecodist (Goslee and Urban, 2007).

The relative importance of specific vegetation characteristics 
dissimilarity, topographic dissimilarity, and geographic distance in 
explaining acoustic beta indices was assessed by generalized dissimi-
larity modelling (GDM). All the explanation variables were considered 
as GDM is generally insensitive to collinearity between predictor vari-
ables (Ferrier et al., 2007). With the acoustic beta indices served as 
response variables, we used Akaike’s Information Criterion (AIC) for 
model selection with the lowest AICs as final models (Mokany et al., 
2022). The GDM model was implemented with the R package gdm 
(Ferrier et al., 2007).

3. Results

3.1. Vocal bird species composition dissimilarity and acoustic beta 
diversity

A total of 75 bird species were recorded by aural identification 
(Table S4), among them 81 % belonging to Passeriformes. Yuhina gularis, 
Heterophasia desgodinsi, and Minla ignotincta were the three most 
frequently recorded bird species in the study area. The dissimilarity in 
bird composition exhibited weak correlations with all the eight acoustic 
indices, with the Mantel correlation coefficients ranged from 0.028 to 
0.120 (Table 1).

All the eight acoustic beta indices exhibited significant positive 
correlations with one another. The Mantel correlation coefficients were 
all higher than 0.50, except for the DKL (Fig. 2).

3.2. Effect of environmental dissimilarity and geographic distance on 
acoustic beta diversity

The results of the MRM analysis showed that environmental factors 
accounted for a greater proportion of variation than geography in five 
out of the eight acoustic beta indices. However, less than 5 % of the 
variation could be attributed to the combined influence of both envi-
ronmental and geographical factors (Table 2). The Mantel tests showed 
that the vegetation characteristics and topographic dissimilarity showed 
higher relationship for all the acoustic beta indices (Fig. 3). The vege-
tation characteristics dissimilarity was significantly related with the 
relative frequency dissimilarity index (S).

GDM was further used to weigh how specific vegetation character-
istic dissimilarity, topographic dissimilarity, and geography explains 
acoustic beta indices. Based on AIC results, we got the best generalized 
dissimilarity model with two to three variables of vegetation charac-
teristics and topography left for all the indices (Fig. 4 and Table S5). We 
found that the best fitted GDM models for S included only the canopy 
height vertical distribution ratio (VDR) and tree size variation (DBHcv) 
(Fig. 4 and Table S5). Vegetation characteristics dissimilarity explained 
relatively more deviance compared with the topographic dissimilarity 
for all acoustic indices.

4. Discussion

Ecoacoustics is a discipline that investigates the ecological role of 
sound along a broad range of spatial and temporal scales (Sueur and 
Farina, 2015). Automated species identification from recordings is 
difficult to get correct results due to the variability of songs and calls of a 
certain species, as well as frequency overlap caused by simultaneous 
singing species (Acevedo et al., 2009; Stowell, 2022). On the other hand, 
acoustic alpha and beta indices have been specifically developed to 
evaluate the acoustic diversity at acoustic community level without the 
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need for species identification (Lawrence et al., 2022; Sueur et al., 
2008a). As anticipated, the eight acoustic beta indices were significantly 
positively related to each other. There was a weak correlation observed 
between the beta diversity of vocal bird species, as determined through 
aural identification, and the acoustic beta indices. Moreover, the char-
acteristics of vegetation and topographic dissimilarity generally 
exhibited a higher correlation with acoustic beta indices than 
geographic dissimilarity, though the combination of them explained few 
variation of acoustic beta indices. Vegetation characteristics dissimi-
larity was relatively more important than topographic dissimilarity for 
acoustic dissimilarity.

In natural ecosystems, sounds produced by non-human organisms 

(biophony) constitute the primary component of the soundscape. Bio-
phony could exhibit diverse temporal patterns depending on specific life 
cycle or biological event. In this subtropical forest, avian vocalizations, 
unlike those of other vocal animals, displayed a typical daily rhythm 
characterized by silence during the period from 21:00 to 05:00. As 
previous studies have indicated that acoustic indices performed better 
when applied during ecologically relevant periods (Metcalf et al., 2021), 
we focused on the soundscape in birds’ breeding season, which spans 
from April to early August in the study area. Furthermore, recordings 
from 7:00 to 11:00, a period during which birds were vocally active, 
were selected as reliable comparisons.

After the acoustic indices were proposed, biologists were trying to 
decide how well acoustic diversity represents biodiversity, with a 
particular focus on avian species. (e.g. Alcocer et al., 2022; Mammides 
et al., 2017; Myers et al., 2019). Yet what was more investigated was the 
relationship between biodiversity metrics and acoustic alpha diversity, 
with beta largely understudied. Acoustic alpha indices did show a low 
positive correlation with animal diversity, but it was inconsistent, 
vulnerable to various factors that may affect their performance (Alcocer 
et al., 2022; Eldridge et al., 2018; Pan et al., 2024; Sethi et al., 2023). 
Among the limited researches on acoustic beta indices, the acoustic 
dissimilarity index (D) was found linked to the number of unshared 
species between simulated acoustic communities (Sueur et al., 2008a). 
Additionally, the frequency spectral dissimilarity index (Df) was sug-
gested as a tool to detect acoustic differences between sites character-
ized by varying species assemblages within a Pacific island (Gasc et al., 
2013b). However, the correlation between other beta indices and spe-
cies composition dissimilarity requires further investigation with addi-
tional empirical data.

Automated identification of vocal animal species from recordings 
could be unreliable due to the complexity of real-world field data. 
Further technical challenges come from the difficulty of optimizing the 
identification through machine learning, which, itself, is to be perfected 
(Kumar et al., 2024; Ovaskainen et al., 2018). By comparison, identifi-
cation done by human experts seems more reliable in spite of more time- 
consuming. More than 210 bird species were recorded from 2021 to 
2023 in the study region, from which 75 vocal species were assembled 
into the acoustic community in this study. All the acoustic beta indices 
calculated from field recordings showed weak correlation with vocal 
bird composition dissimilarity in the present subtropical forest. On the 
other hand, the acoustic beta indices were significantly positively 
related as former studies showed (Gasc et al., 2013a; Lawrence et al., 
2022; Lellouch et al., 2014), confirming their similar function to 
determine how much two acoustic communities dissimilarity.

Unlike conclusions drawn from field data evidence, the acoustic beta 
indices derived from simulated acoustic communities exhibited a cor-
relation with the number of unshared species, or with species compo-
sitional dissimilarity among these simulated communities (Lellouch 
et al., 2014; Sueur et al., 2008a). This could be because of the significant 
differences between real (field) and simulated acoustic communities. As 
the songs and calls of specific species usually exhibited distinct spec-
trogram characteristics, both can be utilized for species aural identifi-
cation. Nevertheless, one typical song from each species is used to 
construct the simulated choruses (e.g. Sueur et al., 2008a). In addition, 
though spectral frequency is typically confined to a specific range for a 
certain species, the duration of vocalizations may vary in the field, 
which may affect acoustic diversity. Moreover, the distance from vocal 
individuals to recorders could influence sound pressure level and, 
consequently, influencing the acoustic dissimilarity indices (Sueur et al., 

Table 1 
Mantel correlation coefficients (R) and significant level (p) between the eight acoustic beta indices and vocal bird species composition dissimilarity (B-C distance).

B-C distance I R DKS Df DKL DLS DIS S

R 0.120 0.056 0.028 0.044 0.051 0.049 0.054 0.031
p 0.001 0.001 0.057 0.006 0.003 0.003 0.003 0.016

Fig. 2. Mantel correlation coefficients (R) and significant level (p) between the 
eight acoustic beta indices for the 480 one-minute recordings.

Table 2 
Results of MRM demonstrating the variation explained by environment (vege-
tation characteristics and topography together), geography and the combination 
of them for the eight acoustic beta indices. R2: the proportion of variation 
explained.

Index Type Environment Geography Both

I R2 0.018 0.001 0.019
 p 0.551 0.803 0.734
R R2 0.009 0.015 0.018
 p 0.439 0.197 0.480
DKS R2 0.005 0.009 0.011
 p 0.744 0.490 0.800
Df R2 0.011 0.002 0.017
 p 0.524 0.704 0.645
DKL R2 0.002 0.002 0.005
 p 0.817 0.709 0.873
DLS R2 0.036 0.003 0.049
 p 0.209 0.655 0.219
DIS R2 0.017 0.014 0.045
 p 0.472 0.313 0.349
S R2 0.042 0.000 0.046
 p 0.281 0.960 0.371
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2014). They may all serve as potential explanations for why the acoustic 
dissimilarity between filed recordings cannot be a proxy of vocal species 
composition dissimilarity. As a result, it supported that acoustic di-
versity is an independent facet of biodiversity (Lellouch et al., 2014).

The effect of environmental factors such as vegetation and topo-
graphic characteristics on acoustic alpha diversity has been studied 
since last decade (e.g. Bradfer-Lawrence et al., 2019; Do Nascimento 
et al., 2020; Pekin et al., 2012). In terrestrial ecosystem, different habitat 
types always showed unique acoustic signature resulting from the 
vegetation heterogeneity. For example, in tropical forests, horizontal 
vegetation characteristics and topographic complexity were found to be 
important variables related to acoustic alpha diversity (He et al., 2022). 
On the other hand, although acoustic beta diversity was recognized as 
related to vegetation condition (BioCondition scores in Ng et al., 2018) 
or heterogeneity in forest ecosystems (Rodriguez et al., 2014), the 
relative importance of environmental factors, including vegetation 

characteristics and topography, on the diversity has yet to be investi-
gated. Acoustic dissimilarity was generally found to be less related with 
geographic distance, indicating an absence of distance decay in acoustic 
similarity (Hayashi et al., 2020). Furthermore, this finding confirmed 
that dispersal limitation is not an underlying mechanism for acoustic 
dissimilarity.

Habitat structure was considered as an important factor shaping the 
evolution of vocal signals, especially for birds (Boncoraglio and Saino, 
2007). The Acoustic Adaptation Hypothesis even predicts that birds tend 
to adjust their vocal signals to enhance transmission and minimize song 
degradation. For example, lower frequencies and narrower frequency 
ranges occur more frequently in densely vegetated habitat (Blumenrath 
and Dabelsteen, 2004; Morton 1975). Here in the subtropical forest, the 
dissimilarity on vegetation characteristics exhibited a more important 
impact compared to habitat topographic dissimilarity, though the 
combination of them explained few variation for all the acoustic indices. 

Fig. 3. Mantel correlation coefficients (R) between the eight acoustic beta indices and vegetation characteristics dissimilarity, topographic dissimilarity, and 
geographic distance of the 16 forest dynamics plots. NS: p > 0.05, *: p < 0.05.

Fig. 4. The relative importance (%) of predictor variables results from the best fitted GDM model of eight acoustic beta indices. The radius of each specific arc 
represents the corresponding relative importance value. Hmean: mean canopy height; VDR: canopy height vertical distribution ratio; BA: stand basal area; DBHcv: 
tree size variation; Density: tree density; Complex: topographic complexity; Sinaspect: aspect (sine).
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Vegetation structure heterogeneity may produce different physical en-
vironments for sound propagation, and support different acoustic com-
munities, indicated the importance of environment filtering on the 
acoustic dissimilarity.

5. Conclusions

Well-recorded local scale vegetation characteristics and UAV LiDAR 
data of forest dynamics plots available made the current biodiversity 
monitoring platform ideal for our research. As anticipated, we observed 
a significant positive correlation between the eight acoustic beta indices. 
However, there was weak correlation between acoustic dissimilarity and 
vocal bird composition dissimilarity, indicating that acoustic diversity is 
a distinct facet of biodiversity. The relative importance of vegetation 
characteristics dissimilarity, topographic dissimilarity, and geographic 
distance on acoustic beta diversity were weighed for the first time. The 
combination of the them explained few variation of acoustic beta 
indices, and the characteristics of vegetation and topographic dissimi-
larity generally exhibited weak correlation with acoustic beta indices. 
Vegetation characteristics dissimilarity emerged as relatively more 
important to the acoustic dissimilarity compared to topographic 
dissimilarity. More empirical studies that examine the correlation be-
tween specific acoustic characteristics and potential influencing factors 
is highly encouraged.
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Dröge, S., Martin, D.A., Andriafanomezantsoa, R., Burivalova, Z., Fulgence, T.R., 
Osen, K., Rakotomalala, E., Schwab, D., Wurz, A., Richter, T., Kreft, H., 2021. 
Listening to a changing landscape: Acoustic indices reflect bird species richness and 
plot-scale vegetation structure across different land-use types in north-eastern 
Madagascar. Ecol. Indic. 120, 106929. https://doi.org/10.1016/j. 
ecolind.2020.106929.

Eldridge, A., Guyot, P., Moscoso, P., Johnston, A., Eyre-Walker, Y., Peck, M., 2018. 
Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic 
indices in temperate but not tropical habitats. Ecol. Indic. 95, 939–952. https://doi. 
org/10.1016/j.ecolind.2018.06.012.

Ferrier, S., Manion, G., Elith, J., Richardson, K., 2007. Using generalized dissimilarity 
modelling to analyse and predict patterns of beta diversity in regional biodiversity 
assessment. Divers. Distrib. 13, 252–264. https://doi.org/10.1111/j.1472- 
4642.2007.00341.x.

Gasc, A., Sueur, J., Jiguet, F., Devictor, V., Grandcolas, P., Burrow, C., Depraetere, M., 
Pavoine, S., 2013a. Assessing biodiversity with sound: Do acoustic diversity indices 
reflect phylogenetic and functional diversities of bird communities? Ecol. Indic. 25, 
279–287. https://doi.org/10.1016/j.ecolind.2012.10.009.

Gasc, A., Sueur, J., Pavoine, S., Pellens, R., Grandcolas, P., 2013b. Biodiversity sampling 
using a global acoustic approach: contrasting sites with microendemics in New 
Caledonia. PloS One 8, e65311. https://doi.org/10.1371/journal.pone.0065311.

Goetz, S., Steinberg, D., Dubayah, R., Blair, B., 2007. Laser remote sensing of canopy 
habitat heterogeneity as a predictor of bird species richness in an eastern temperate 
forest, USA. Remote Sens. Environ. 108, 254–263. https://doi.org/10.1016/j. 
rse.2006.11.016.

Goslee, S.C., Urban, D.L., 2007. The ecodist package for dissimilarity-based analysis of 
ecological data. J. Stat. Softw. 22, 1–19. https://doi.org/10.18637/jss.v022.i07.

Harms, K.E., Condit, R., Hubbell, S.P., Foster, R.B., 2001. Habitat associations of trees 
and shrubs in a 50-ha neotropical forest plot. J. Ecol. 89, 947–959. https://doi.org/ 
10.1111/j.1365-2745.2001.00615.x.

Hayashi, K., Erwinsyah, L.V.D., Yamamura, K., 2020. Acoustic dissimilarities between an 
oil palm plantation and surrounding forests: Analysis of index time series for beta- 
diversity in South Sumatra. Indonesia. Ecol. Indic. 112, 106086. https://doi.org/ 
10.1016/j.ecolind.2020.106086.

H. Wang et al.                                                                                                                                                                                                                                   Ecological Indicators 172 (2025) 113266 

7 

https://doi.org/10.1016/j.ecolind.2025.113266
https://doi.org/10.1016/j.ecolind.2025.113266
https://doi.org/10.1016/j.ecoinf.2009.06.005
https://doi.org/10.1016/j.ecoinf.2009.06.005
https://doi.org/10.1111/brv.12890
https://doi.org/10.1111/brv.12890
https://doi.org/10.1111/2041-210X.12319
https://doi.org/10.1111/2041-210X.12319
http://www.jstor.org/stable/4536177
https://doi.org/10.1111/j.1365-2435.2006.01207.x
https://doi.org/10.1016/j.ecolind.2020.106400
https://doi.org/10.1111/2041-210x.13254
https://doi.org/10.1111/j.1461-0248.2004.00629.x
https://doi.org/10.1111/j.1461-0248.2004.00629.x
https://doi.org/10.1121/1.2139067
https://doi.org/10.1121/1.2139067
https://doi.org/10.1016/j.ecolind.2011.05.006
https://doi.org/10.1016/j.ecolind.2020.106679
https://doi.org/10.1016/j.ecolind.2020.106929
https://doi.org/10.1016/j.ecolind.2020.106929
https://doi.org/10.1016/j.ecolind.2018.06.012
https://doi.org/10.1016/j.ecolind.2018.06.012
https://doi.org/10.1111/j.1472-4642.2007.00341.x
https://doi.org/10.1111/j.1472-4642.2007.00341.x
https://doi.org/10.1016/j.ecolind.2012.10.009
https://doi.org/10.1371/journal.pone.0065311
https://doi.org/10.1016/j.rse.2006.11.016
https://doi.org/10.1016/j.rse.2006.11.016
https://doi.org/10.18637/jss.v022.i07
https://doi.org/10.1111/j.1365-2745.2001.00615.x
https://doi.org/10.1111/j.1365-2745.2001.00615.x
https://doi.org/10.1016/j.ecolind.2020.106086
https://doi.org/10.1016/j.ecolind.2020.106086


HBW and BirdLife International, 2023. Handbook of the Birds of the World and BirdLife 
International digital checklist of the birds of the world. Version 8 . http://datazone. 
birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v8_Dec23. 
zip/(accessed December 2023).

He, X., Deng, Y., Dong, A., Lin, L., 2022. The relationship between acoustic indices, 
vegetation, and topographic characteristics is spatially dependent in a tropical forest 
in southwestern China. Ecol. Indic. 142, 109229. https://doi.org/10.1016/j. 
ecolind.2022.109229.

Hubbell, S.P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. 
Princeton University Press, Princeton. 

Krause, B.L., 1993. The Niche Hypothesis. The Soundscape Newsl. 6, 6–10.
Krause, B., Farina, A., 2016. Using ecoacoustic methods to survey the impacts of climate 

change on biodiversity. Biol. Conserv. 195, 245–254. https://doi.org/10.1016/j. 
biocon.2016.01.013.

Kumar, S.A., Verma, M., Kumar, V., Kumar, G., 2024. Identification of Bird Species 
Through Audio Signal Processing Using Neural Network. In: Bhattacharya, A., 
Dutta, S., Dutta, P., Samanta, D. (Eds.), Innovations in Data Analytics. Springer, 
Singapore, pp. 437–447.

Lawrence, B.T., Hornberg, J., Haselhoff, T., Sutcliffe, R., Ahmed, S., Moebus, S., 
Gruehn, D., 2022. A widened array of metrics (WAM) approach to characterize the 
urban acoustic environment; a case comparison of urban mixed-use and forest. Appl. 
Acoust. 185, 108387. https://doi.org/10.1016/j.apacoust.2021.108387.

Lellouch, L., Pavoine, S., Jiguet, F., Glotin, H., Sueur, J., 2014. Monitoring temporal 
change of bird communities with dissimilarity acoustic indices. Methods Ecol. Evol. 
5, 495–505. https://doi.org/10.1111/2041-210x.12178.

Lichstein, J.W., 2007. Multiple regression on distance matrices: a multivariate spatial 
analysis tool. Plant Ecol. 188, 117–131. https://doi.org/10.1007/s11258-006-9126- 
3.

Magurran, A.E., 1988. Ecological diversity and its measurement. Princeton University 
Press, Princeton. 

Mammides, C., Goodale, E., Dayananda, S.K., Kang, L., Chen, J., 2017. Do acoustic 
indices correlate with bird diversity? Insights from two biodiverse regions in Yunnan 
Province, south China. Ecol. Indic. 82, 470–477. https://doi.org/10.1016/j. 
ecolind.2017.07.017.

Metcalf, O.C., Barlow, J., Devenish, C., Marsden, S., Berenguer, E., Lees, A.C., 2021. 
Acoustic indices perform better when applied at ecologically meaningful time and 
frequency scales. Methods Ecol. Evol. 12, 421–431. https://doi.org/10.1111/2041- 
210x.13521.

Mokany, K., Ware, C., Woolley, S.N.C., Ferrier, S., Fitzpatrick, M.C., 2022. A working 
guide to harnessing generalized dissimilarity modelling for biodiversity analysis and 
conservation assessment. Glob. Ecol. Biogeogr. 31, 802–821. https://doi.org/ 
10.1111/geb.13459.

Monnet, A.-C., Jiguet, F., Meynard, C.N., Mouillot, D., Mouquet, N., Thuiller, W., 
Devictor, V., 2014. Asynchrony of taxonomic, functional and phylogenetic diversity 
in birds. Glob. Ecol. Biogeogr. 23, 780–788. https://doi.org/10.1111/geb.12179.

Morton, E.S., 1975. Ecological Sources of Selection on Avian Sounds. Am. Nat. 109, 
17–34. https://doi.org/10.1086/282971.

Mullet, T.C., Farina, A., Gage, S.H., 2017. The acoustic habitat hypothesis: an 
ecoacoustics perspective on species habitat selection. Biosemiotics 10, 319–336. 
https://doi.org/10.1007/s12304-017-9288-5.

Myers, D., Berg, H., Maneas, G., 2019. Comparing the soundscapes of organic and 
conventional olive groves: A potential method for bird diversity monitoring. Ecol. 
Indic. 103, 642–649. https://doi.org/10.1016/j.ecolind.2019.04.030.

Ng, M.-L., Butler, N., Woods, N., 2018. Soundscapes as a surrogate measure of vegetation 
condition for biodiversity values: A pilot study. Ecol. Indic. 93, 1070–1080. https:// 
doi.org/10.1016/j.ecolind.2018.06.003.

Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., 
O’Hara, R. B., Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., 
Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., 
Durand, S., Antoniazi Evangelista H. B., FitzJohn R., Friendly M., Furneaux B., 
Hannigan G., Hill M.O., Lahti L., McGlinn D., Ouellette M.-H., Ribeiro Cunha E., 
Smith T., Stier A., Ter Braak C.G.F., Weedon, J. (2022). Vegan: Community ecology 
package. R Package Version 2.6-2. https://CRAN.R-project.org/package=vegan.

Ovaskainen, O., de Camargo, U.M., Somervuo, P., 2018. Animal Sound Identifier (ASI): 
software for automated identification of vocal animals. Ecol. Lett. 21, 1244–1254. 
https://doi.org/10.1111/ele.13092.

Pan, W., Goodale, E., Jiang, A., Mammides, C., 2024. The effect of latitude on the efficacy 
of acoustic indices to predict biodiversity: A meta-analysis. Ecol. Indic. 159, 111747. 
https://doi.org/10.1016/j.ecolind.2024.111747.

Pang, J.H., Fan, J.R., Qiu, X.Z., Qian, D.R., Li, R.L., Li, X.W., Sun, M.S., 1988. The 
vegetation of the Ailao Mountains (in Chinese with English abstract). In: Xu, Y.C., 
Jiang, H.Q. (Eds.), Comprehensive Survey of Ailaoshan Nature Reserve. Yunnan 
Ethnic Press, Kunming, pp. 63–171.

Pavoine, S., Bonsall, M.B., 2011. Measuring biodiversity to explain community assembly: 
a unified approach. Biol Rev. 86, 792–812. https://doi.org/10.1111/j.1469- 
185X.2010.00171.x.

Pekin, B.K., Jung, J., Villanueva-Rivera, L.J., Pijanowski, B.C., Ahumada, J.A., 2012. 
Modeling acoustic diversity using soundscape recordings and LIDAR-derived metrics 
of vertical forest structure in a neotropical rainforest. Landsc. Ecol. 27, 1513–1522. 
https://doi.org/10.1007/s10980-012-9806-4.

Pijanowski, B.C., Villanueva-Rivera, L.J., Dumyahn, S.L., Farina, A., Krause, B.L., 
Napoletano, B.M., Gage, S.H., Pieretti, N., 2011. Soundscape Ecology: The Science of 
Sound in the Landscape. Bioscience 61, 203–216. https://doi.org/10.1525/ 
bio.2011.61.3.6.

R Core Team (2024). Stats: The R Stats Package. R package version 4. 4. 1. https://www. 
R-project.org.

Ren, H., Keil, P., Mi, X., Ma, K., Hao, Z., Ye, W., Lin, L., Valencia, R., Fletcher, C.D., 
Thomas, D.W., Howe, R.W., Lutz, J., Bourg, N.A., Su, S.-H., Sun, I.F., Zhu, L., 
Chang, L.-W., Wang, X., Du, X., Kenfack, D., Chuyong, G.B., Jetz, W., 2019. 
Environment- and trait-mediated scaling of tree occupancy in forests worldwide. 
Glob. Ecol. Biogeogr. 28, 1155–1167. https://doi.org/10.1111/geb.12922.

Rodriguez, A., Gasc, A., Pavoine, S., Grandcolas, P., Gaucher, P., Sueur, J., 2014. 
Temporal and spatial variability of animal sound within a neotropical forest. Ecol 
Inform. 21, 133–143. https://doi.org/10.1016/j.ecoinf.2013.12.006.

Sethi, S.S., Bick, A., Ewers, R.M., Klinck, H., Ramesh, V., Tuanmu, M.-N., Coomes, D.A., 
2023. Limits to the accurate and generalizable use of soundscapes to monitor 
biodiversity. Nat. Ecol. Evol. 7, 1373–1378. https://doi.org/10.1038/s41559-023- 
02148-z.

Stowell, D., 2022. Computational bioacoustics with deep learning: a review and 
roadmap. Peerj 10, e13152. https://doi.org/10.7717/peerj.13152.

Sueur, J., 2018. Sound analysis and synthesis with R. Springer, Cham. 
Sueur, J., Aubin, T., Simonis, C., 2008a. Seewave, a free modular tool for sound analysis 

and synthesis. Bioacoustics 18, 213–226. https://doi.org/10.1080/ 
09524622.2008.9753600.

Sueur, J., Farina, A., 2015. Ecoacoustics: the ecological investigation and interpretation 
of environmental sound. Biosemiotics 8, 493–502. https://doi.org/10.1007/s12304- 
015-9248-x.

Sueur, J., Farina, A., Gasc, A., Pieretti, N., Pavoine, S., 2014. Acoustic indices for 
biodiversity assessment and landscape investigation. Acta Acust. Acust. 100, 
772–781. https://doi.org/10.3813/aaa.918757.

Sueur, J., Pavoine, S., Hamerlynck, O., Duvail, S., 2008b. Rapid acoustic survey for 
biodiversity appraisal. PloS One 3, e4065.

Webb, C.O., Ackerly, D.D., McPeek, M.A., Donoghue, M.J., 2002. Phylogenies and 
community ecology. Annu. Rev. Ecol. Syst. 33, 475–505. https://doi.org/10.1146/ 
annurev.ecolsys.33.010802.150448.

Wilford, D.C., Miksis-Olds, J.L., Martin, S.B., Howard, D.R., Lowell, K., Lyons, A.P., 
Smith, M.J., 2021. Quantitative Soundscape Analysis to Understand 
Multidimensional Features. Front. Mar. Sci. 8, 672336. https://doi.org/10.3389/ 
fmars.2021.672336.

Yang, X., Yao, Z., Wang, B., Wen, H., Deng, Y., Cao, M., Zhang, Z., Tan, Z., Lin, L., 2023. 
Driving effects of forest stand structure of a subtropical evergreen broad-leaved 
forest on species composition variation: From local to regional scales. Biodivers. Sci. 
31, 22139. https://doi.org/10.17520/biods.2022139.

Yao, Z., Yang, X., Wang, B., Shao, X., Wen, H., Deng, Y., Zhang, Z., Cao, M., Lin, L., 2023. 
Multidimensional beta-diversity across local and regional scales in a Chinese 
subtropical forest: The role of forest structure. Ecol. Evol. 13, e10607. https://doi. 
org/10.1002/ece3.10607.

Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., Ye, W., 2016. Seeing the forest from 
drones: Testing the potential of lightweight drones as a tool for long-term forest 
monitoring. Biol. Conserv. 198, 60–69. https://doi.org/10.1016/j. 
biocon.2016.03.027.

H. Wang et al.                                                                                                                                                                                                                                   Ecological Indicators 172 (2025) 113266 

8 

https://doi.org/10.1016/j.ecolind.2022.109229
https://doi.org/10.1016/j.ecolind.2022.109229
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0120
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0120
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0125
https://doi.org/10.1016/j.biocon.2016.01.013
https://doi.org/10.1016/j.biocon.2016.01.013
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0135
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0135
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0135
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0135
https://doi.org/10.1016/j.apacoust.2021.108387
https://doi.org/10.1111/2041-210x.12178
https://doi.org/10.1007/s11258-006-9126-3
https://doi.org/10.1007/s11258-006-9126-3
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0155
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0155
https://doi.org/10.1016/j.ecolind.2017.07.017
https://doi.org/10.1016/j.ecolind.2017.07.017
https://doi.org/10.1111/2041-210x.13521
https://doi.org/10.1111/2041-210x.13521
https://doi.org/10.1111/geb.13459
https://doi.org/10.1111/geb.13459
https://doi.org/10.1111/geb.12179
https://doi.org/10.1086/282971
https://doi.org/10.1007/s12304-017-9288-5
https://doi.org/10.1016/j.ecolind.2019.04.030
https://doi.org/10.1016/j.ecolind.2018.06.003
https://doi.org/10.1016/j.ecolind.2018.06.003
https://doi.org/10.1111/ele.13092
https://doi.org/10.1016/j.ecolind.2024.111747
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0215
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0215
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0215
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0215
https://doi.org/10.1111/j.1469-185X.2010.00171.x
https://doi.org/10.1111/j.1469-185X.2010.00171.x
https://doi.org/10.1007/s10980-012-9806-4
https://doi.org/10.1525/bio.2011.61.3.6
https://doi.org/10.1525/bio.2011.61.3.6
https://doi.org/10.1111/geb.12922
https://doi.org/10.1016/j.ecoinf.2013.12.006
https://doi.org/10.1038/s41559-023-02148-z
https://doi.org/10.1038/s41559-023-02148-z
https://doi.org/10.7717/peerj.13152
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0260
https://doi.org/10.1080/09524622.2008.9753600
https://doi.org/10.1080/09524622.2008.9753600
https://doi.org/10.1007/s12304-015-9248-x
https://doi.org/10.1007/s12304-015-9248-x
https://doi.org/10.3813/aaa.918757
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0280
http://refhub.elsevier.com/S1470-160X(25)00195-5/h0280
https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
https://doi.org/10.3389/fmars.2021.672336
https://doi.org/10.3389/fmars.2021.672336
https://doi.org/10.17520/biods.2022139
https://doi.org/10.1002/ece3.10607
https://doi.org/10.1002/ece3.10607
https://doi.org/10.1016/j.biocon.2016.03.027
https://doi.org/10.1016/j.biocon.2016.03.027

	Acoustic beta indices exhibited a weak correlation with both vocal species composition dissimilarity and environmental fact ...
	1 Introduction
	2 Materials and Methods
	2.1 Study area
	2.2 Data collection
	2.2.1 Soundscape monitoring
	2.2.2 Pre-processing and selection of the recordings
	2.2.3 Aural identification

	2.3 Acoustic beta diversity
	2.4 Environmental factors
	2.5 Statistical analyses

	3 Results
	3.1 Vocal bird species composition dissimilarity and acoustic beta diversity
	3.2 Effect of environmental dissimilarity and geographic distance on acoustic beta diversity

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Data availability
	References


