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Abstract: Ecotones, i.e., transition zones between habitats, are important landscape features,
yet they are often ignored in landscape monitoring. This study addresses the challenge
of delineating ecotones at multiple scales by integrating multisource remote sensing data,
including ultra-high-resolution RGB images, LiDAR data from UAVs, and satellite data.
We first developed a fine-resolution landcover map of three plots in Yunnan, China, with
accurate delineation of ecotones using orthoimages and canopy height data derived from
UAV-LiDAR. These maps were subsequently used as the training set for four machine
learning models, from which the most effective model was selected as an upscaling model.
The satellite data, encompassing Synthetic Aperture Radar (SAR; Sentinel-1), multispectral
imagery (Sentinel-2), and topographic data, functioned as explanatory variables. The
Random Forest model performed the best among the four models (kappa coefficient = 0.78),
with the red band, shortwave infrared band, and vegetation red edge band as the most
significant spectral variables. Using this RF model, we compared landscape patterns
between 2017 and 2023 to test the model’s ability to quantify ecotone dynamics. We found
an increase in ecotone over this period that can be attributed to an expansion of 0.287 km2

(1.1%). In sum, this study demonstrates the effectiveness of combining UAV and satellite
data for precise, large-scale ecotone detection. This can enhance our understanding of the
dynamic relationship between ecological processes and landscape pattern evolution.

Keywords: ecotone; unmanned aerial vehicles; canopy height model; machine learning;
multisensory images; multiscale

1. Introduction
Ecotones, first introduced by Clements [1] as transition zones between different habi-

tats, are a basic unit in landscape studies. They are characterized by frequent material
and energy flow [2] and support more species than adjacent ecosystems [3]. These zones
are sensitive indicators of landscape ecology functions, patterns, and ecological processes,
often signaling global climate changes [4,5]. In the context of forest fragmentation, which
reduces patch sizes and increases forest edges [6], ecotones become more prevalent. Had-
dad et al. [7] estimated that 20% of forested land globally is situated within a 100-m-wide
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ecotone, emphasizing their importance in fragmented landscapes. Due to their dynamic
characteristics, ecotones are highly susceptible to impacts from climate change and anthro-
pogenic activities [5,8]. Therefore, changes in environmental conditions can be inferred
by monitoring changes in the location, width, and species composition of ecotones [9].
Ecotones can serve as buffer zones for protected areas to minimize the negative impact of
anthropogenic activities on natural ecosystems [10].

Based on several studies on the structure, function, and edge effect of ecotones, a series
of methods have been developed to quantitatively delineate ecotones, such as moving split
window (MSW), landscape indices, remote sensing, and GIS methods [11–13]. Remote
sensing technology facilitates large-scale mapping and monitoring of ecotones, utilizing
data from Landsat, MODIS, Sentinel, or multi-source remote sensing data [8,14,15]. This
technology has been used in detecting and analyzing ecotones such as forest-tundra [16],
water-land [17], and agricultural-pastoral ecotones [18], where adjacent ecosystems typ-
ically exhibit clean, well-defined boundaries that can be easily detected from satellite
imagery. However, challenges arise with forest-grassland ecotones inside forested areas,
which are often small with blurred vegetation boundaries [19]. The spatial resolution of
commonly used remote sensing satellites is mostly inadequate for detailed mapping of such
fine-scale objects. This limitation often leads to these ecotones being ignored or simplified
to lines in image classifications if they fall within a width of one or two pixels, and it is an
oversimplification of realistic conditions [20,21]. To help resolve such issues and enable
accurate mapping of ecotones at a fine scale, integrating satellite data with other spatial
data sources is a promising way forward.

Unmanned Aerial Vehicles (UAVs) can provide ultra-high spatial resolution images of
land cover, with pixel sizes on cm-level, making it possible to map smaller biotopes such as
individual trees [22,23]. Beyond the high spatiotemporal resolution, UAVs can be used to
acquire many of the same remotely sensed variables as those collected by manned airborne
and spaceborne sensors. Three-dimensional data from Airborne Laser Scanning (ALS)
allow accurate determination of vegetation height, and this capability has been utilized
to describe vegetation structure within the ecotones [24,25]. Furthermore, ALS data have
been integrated with multispectral satellite imagery to map ecotones over large areas [24].
Despite limited spatial and temporal coverage, UAV data can overcome spatiotemporal
mismatches between field and remote sensing data [26,27]. The data collected by UAVs
can serve as an alternative source for reference data collection, effectively bridging the
gap between regional remote sensing monitoring and quadrat survey data. Moreover,
integrating UAV data with freely available satellite imagery allows for the creation of
cost-effective, large-scale maps, enhancing the accessibility and utility of remote sensing
for natural resource management and monitoring.

In this study, we put forward a methodological framework to delineate forest-
grassland ecotones across large areas, using multi-source remote sensing data conducted
at the Ailao Mountain National Nature Reserve (Yunnan, China). The main objectives
are to: (a) Successfully detect ecotones to achieve more accurate land-cover maps by com-
bining orthoimages and LiDAR data from UAVs; (b) build an ecotone upscaling model
based on machine learning algorithms using the backscattering coefficient of Sentinel-1,
multispectral bands and spectral vegetation index from Sentinel-2, and combining these
with topographic variables; and (c) apply this ecotone upscaling model on satellite images
of different years to monitor dynamic changes of ecotones across 6 years and evaluate
landscape fragmentation using landscape metrics.
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2. Materials and Methods
2.1. Overview of the Analyses

The workflow of this study (Figure 1) can be summarized into five main stages:
(i) acquisition of UAV data; (ii) pre-processing of UAV orthophotos and LiDAR data to
generate the visible light images and the canopy height model along with derived products;
(iii) classification of the imagery to create fine-scale ecotone map; (iv) construction of
ecotone upscaling model based on machine learning algorithms; and (v) spatiotemporal
dynamic analysis incorporating detection of ecotones at large scale in different periods and
landscape fragmentation assessment using landscape metrics.
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Figure 1. Workflow of the proposed upscaling model for ecotone detection at landscape scale. KNN,
RF, SVM, and GBDT represent four machine learning algorithms: k-nearest-neighbors, random forest,
support vector machine, and gradient boosting decision tree.

2.2. Study Area

This study was conducted in the Ailao Mountain area in central Yunnan Province,
China. The region is at the crossroads of three important natural geographic zones, namely
the Yunnan-Guizhou Plateau, the Hengduan Mountains, and the Qinghai-Tibet Plateau,
where a diverse range of biota converge from east to west and north to south, resulting in
high biodiversity and making it a very relevant zone for ecological research [28]. Within
this biodiversity hotspot, the specific study area (Figure 2) is located in the Xujiaba area
(24◦32′ N, 101◦01′ E) in the Ailao Mountain National Nature Reserve, with an altitude
of 2400–2600 m [29]. The study area belongs to the southwest monsoon region, with
distinct dry (November to April) and rainy seasons (May to October), the average annual
temperature in this area is 11.3 ◦C, and the average annual precipitation is 1931 mm. The
reserve is characterized by large areas of continuous subtropical broad-leaved evergreen
forests, and the tree layer is dominated by Lithocarpus hancei, Lithocarpus xylocarpus, Schima
noronhae, Hartia sinensis, Camellia forrestii, Manglietia insignis, Michelia floribunda, etc. [30]. In
this study, three types of forest-grassland ecotones, named Bojiba (BJB), Dujuanba (DJB),
and Shengtaizhan (STZ) were investigated, each with an area of 0.16 km2 and a total area
of 0.48 km2. These plots represent post-cultivation, naturally formed, and cultivation-
influenced ecotones, respectively. Each plot features a central grassland area encircled by
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forests, which simplifies feature identification from UAV orthophotos and satellite data,
especially in mountainous areas with complex terrain.

Forests 2025, 16, x FOR PEER REVIEW 4 of 22 
 

 

encircled by forests, which simplifies feature identification from UAV orthophotos and 
satellite data, especially in mountainous areas with complex terrain. 

 

Figure 2. The location of the study area and the distribution of three sample sites. 

2.3. Data Acquisition 

2.3.1. UAV Data Acquisition and Processing 

Visible light images and airborne LiDAR data for three sample plots were collected 
on 20–25 April 2022, using the DJI Phantom 4 Pro RTK (DJI, Shenzhen, China) and DJI 
M600Pro UAS platform, respectively. The survey was conducted in late April to make use 
of stable weather conditions, ensuring high-quality remote sensing data and precise eco-
tone delineation. Since the sample sites were located in a steep mountainous area with 
large terrain undulations, a ground imitation flight methodology adjusting the flight 
height according to terrain changes was used to collect UAV data to ensure flight safety 
and result quality. The first step of the aerial survey was to collect the initial Digital Sur-
face Model (DSM) using the DJI Phantom 4 Pro RTK, where the flight altitude was set to 
the highest altitude of the sample site plus 150 m. Subsequently, the flight altitude was set 
to exceed the initial DSM by 70 m for a ground imitation flight. In all aerial surveys, the 
longitudinal and lateral overlap of the flight strips exceeded 85%. 

After UAS data collection, three high-resolution (0.04 m/pix) orthoimages of each 
sample site were generated using the Agisoft Metashape 1.7.6 (https://www.agisoft.com, 
accessed on 19 May 2023) following the orthoimage generation process flow. The collected 
UAV lidar data of each study site were first imported into the LiAcquire 4.0 (GreenValley 
International Inc., Beijing, China) for pre-processing and then processed following the 
same protocol, including denoising, filtering, and normalization using the LiDAR360 5.2 

Figure 2. The location of the study area and the distribution of three sample sites.

2.3. Data Acquisition
2.3.1. UAV Data Acquisition and Processing

Visible light images and airborne LiDAR data for three sample plots were collected
on 20–25 April 2022, using the DJI Phantom 4 Pro RTK (DJI, Shenzhen, China) and DJI
M600Pro UAS platform, respectively. The survey was conducted in late April to make
use of stable weather conditions, ensuring high-quality remote sensing data and precise
ecotone delineation. Since the sample sites were located in a steep mountainous area with
large terrain undulations, a ground imitation flight methodology adjusting the flight height
according to terrain changes was used to collect UAV data to ensure flight safety and result
quality. The first step of the aerial survey was to collect the initial Digital Surface Model
(DSM) using the DJI Phantom 4 Pro RTK, where the flight altitude was set to the highest
altitude of the sample site plus 150 m. Subsequently, the flight altitude was set to exceed
the initial DSM by 70 m for a ground imitation flight. In all aerial surveys, the longitudinal
and lateral overlap of the flight strips exceeded 85%.

After UAS data collection, three high-resolution (0.04 m/pix) orthoimages of each sample
site were generated using the Agisoft Metashape 1.7.6 (https://www.agisoft.com, accessed on
19 May 2023) following the orthoimage generation process flow. The collected UAV lidar data
of each study site were first imported into the LiAcquire 4.0 (GreenValley International Inc.,
Beijing, China) for pre-processing and then processed following the same protocol, including
denoising, filtering, and normalization using the LiDAR360 5.2 (GreenValley International

https://www.agisoft.com
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Inc., Beijing, China). Based on the normalized lidar point clouds, the Digital Surface Model
(DSM), Digital Terrain Model (DTM), and Canopy Height Model (CHM = DSM − DTM) were
calculated at a spatial resolution of 0.5 m using ArcGIS Pro 2.8.3.

2.3.2. Satellite Image Acquisition

Satellite images covering the study area, including Sentinel-2 (S2) and Sentinel-1 (S1),
were acquired and processed through Google Earth Engine (GEE, https://code.earthengine.
google.com/, accessed on 10 March 2024). To reduce the impact of clouds, all available
imageries of S2A and S1 with cloud cover less than 5% from March to May 2022 were
collected. S2 images cover 13 spectral bands from visible and near-infrared to short-wave
infrared with a revisit period of 5 days and a spatial resolution from 10 to 60 m. S2
images were downloaded from the COPERNICUS/S2_SR collection. Since the width of
the ecotone is limited, we only selected the 10 m and 20 m resolution bands in the S2
images and resampled the 20 m resolution band to 10 m using bilinear interpolation to
facilitate integration and consistency. We obtained the reflectance of 10 raw bands and
used the median-value composite method to generate 13 vegetation indices based on these
10 raw bands.

S1 consists of two C-band polar-orbiting satellites, Sentinel-1A and Sentinel-1B, car-
rying synthetic aperture radar (SAR) that provides continuous imagery across day and
night in all weather conditions. Sentinel-1 supports both single-polarization mode (HH or
VV) and dual-polarization mode (HH + HV or VV + VH). VV and VH are commonly used
for the estimation of vertical parameters. S1 images with VV and VH polarization were
downloaded from the Copernicus S1_GRD collections (IW instrument mode). Two indices
were also calculated from the backscattering coefficients [31,32].

sum = VV + VH (1)

ratio = VV / VH (2)

where sum and ratio indicate the sum and ratio of backscattering coefficients, respectively.
VV denotes single co-polarization, vertical transmit/horizontal receive, while VH repre-
sents dual-band cross-polarization, vertical transmit/horizontal receive.

Topography factors were obtained from digital elevation model (DEM) data with
12.5 m spatial resolution, downloaded from ALOS-PALSAR data at https://search.asf.
alaska.edu/ (accessed on 20 March 2024). To match the resolution of S1 and S2 images, we
also resampled the elevation data to 10 m resolution and calculated the slope for each pixel
based on it.

There are 29 variables extracted from satellite images, as detailed in Table 1, which
include 10 S2 spectral features, 13 vegetation indices, 4 S1 structural features, and 2 topog-
raphy factors. These variables will be referred to below as the 29 variables. We generated a
10 m × 10 m fishnet and label points in ArcGIS 10.7 to align with the resolution of these
variables and utilized the R package “terra” (version 1.7-55) [33] to extract variable values
at corresponding fishnet points.

Table 1. Features from remote sensing data as inputs of machine learning models for ecotone upscaling.

Type Name Equation or Description Source

Spectral band Blue Central wavelength: 490 nm Sentinel-2
Green Central wavelength: 560 nm Sentinel-2
Red Central wavelength: 665 nm Sentinel-2

Red Edge 1 Central wavelength: 705 nm Sentinel-2
Red Edge 2 Central wavelength: 740 nm Sentinel-2

https://code.earthengine.google.com/
https://code.earthengine.google.com/
https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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Table 1. Cont.

Type Name Equation or Description Source

Red Edge 3 Central wavelength: 783 nm Sentinel-2
NIR 1 Central wavelength: 842 nm Sentinel-2
NIR 2 Central wavelength: 865 nm Sentinel-2

SWIR 1 Central wavelength: 1610 nm Sentinel-2
SWIR 2 Central wavelength: 2190 nm Sentinel-2

C-band SAR VV Single co-polarization, vertical
transmit/horizontal receive Sentinel-1

VH
Dual-band cross-polarization,
vertical transmit/horizontal

receive
Sentinel-1

VV + VH The sum of backscattering
coefficients Sentinel-1

VV / VH The ratio of backscattering
coefficients Sentinel-1

Topography
factor Elevation The vertical distance above sea

level ALOS

Slope The ratio of the vertical height to
the horizontal distance ALOS

Vegetation Index EVI 2.5 × (NIR − Red) / (NIR + 6 ×
Red − 7.5 × Blue + 1) Sentinel-2

GNDVI (NIR 1 − Green) / (NIR 1 +
Green) Sentinel-2

IRECI (Red Edge 3 − Red) / (Red Edge
1/Red Edge 2) Sentinel-2

MSI SWIR 1 / NIR 2 Sentinel-2

MSR (NIR 1 / Red − 1) / (sqrt (NIR 1
/ Red + 1.0)) Sentinel-2

NBR (Red Edge 2 − SWIR 2) / (Red
Edge 2 + SWIR 2) Sentinel-2

NDVI (NIR 1 − Red) / (NIR 1 + Red) Sentinel-2

RENDVI (Red Edge 3 − Red) / (Red Edge
3 + Red) Sentinel-2

RRI1 NIR 2 / Red Edge 1 Sentinel-2
SLAVI NIR 2 / (Red Edge 1 + SWIR 2) Sentinel-2

SR NIR / Red Sentinel-2
SRRE Red Edge 1 / Red Sentinel-2
VIg (Green − Red) / (Green + Red) Sentinel-2

NIR—Near Infrared; SWIR—Short Wave Infrared.

2.4. Methods
2.4.1. Extraction and Classification of Ecotones at Fine Scale

The ecotones between forest and grassland refer to mixed vegetation above the grass
layer but below the overstory formed by a combination of side branches of canopy trees,
small trees, and shrubs [1]. Based on this, variations in height served as indicators of the
environmental gradient along the forest-grassland boundary [23,34]. The first step to extract
ecotones between forest and grassland is mapping the land-cover map for three sample
plots. In our case, we chose object-based image classification (OBIC) in the eCognition
developer 10.3 to distinguish forest, grass, shadow, and other classes (farmland, road,
etc.) based on UAV orthoimages. Then, we adopted the method developed by Hou and
Walz [34], which can be concluded as a “shrinking process” to detect the ecotones. There
were two prerequisites used for extracting the ecotones: vegetation height and proportion
of non-ecotone pixels. By overlaying the land-cover map with the Canopy Height Model
(DSM-DTM), the average height of forest (Hf) and grassland (Hg) in each sample site was
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calculated using the “zonal statistics” tool in ArcGIS 10.7. In addition to the height limits,
the proportion of non-ecotone pixels within the moving window was set to less than 60%
based on the model from Riitters et al. [35]. To minimize the impact of shadows, this class
was reclassified to forest or grassland based on the proportion of classes in the nearest
pixel before running the shrinking procedure. The shrinking process was completed in
eCognition developer 10.3 using the “pixel-base object resizing” tool. A window moving
along the edge between forest and grassland was used to judge pixels under two conditions
(height restriction and area ratio), the specific processes (Figure 3) were (1) shrink forest
along the border pixels where CHM < Hf and the proportion of forest pixels within a
moving window (201 by 201 pixels, which is c. 0.01 km2) < 60% and (2) shrink grassland
along the border pixels where CHM > Hg and the proportion of grassland pixels within a
moving window (201 by 201 pixels) < 60%. Finally, impurities inside the ecotones were
eliminated by removing forest/grassland pixels smaller than four pixels and enclosing by
ecotones to avoid some mixed pixels. Following the processing sequence described above,
we produced ecotone-containing land-cover maps to serve as training examples for the
subsequent ecotone-upscaling models.
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Figure 3. Shrinking process diagram. Hij represents the CHM of any pixel, Hf represents the average
height of the forest, and Hg represents the average height of the grassland. Pgij represents the
proportion of grass pixels within a moving window. Pfij represents the proportion of forest pixels
within a moving window.

2.4.2. Quantifying the Landscape Pattern Containing Ecotones

Compared with traditional ecotone detection methods, spatially continuous detection
offers a significant advantage by enabling the quantification of ecotones. To assess the
landscape characteristics of ecotones, a series of landscape metrics at the class level were
computed using the “landscapemetrics” package [36] in R 4.2.3, including total area (TA),
percentage of landscape (PLAND), total edge (TE), shape index (SI), and edge contrast
index (ECON). These metrics facilitate a quantitative assessment of ecotone characteristics
and the effects of their inclusion or exclusion on landscape patterns.

Total Area quantifies the size of landscape classes and their composition, providing
a direct assessment of the scale of various landscape elements. The vegetated area sig-
nificantly influences the number of species it can harbor due to the area effect [37]. The
percentage of the landscape is used to quantify the landscape weight of each class in the
landscape, serving as an indicator of landscape composition. The value of PLAND indi-
rectly reflects the contribution of the landscape of each class to the spatial heterogeneity
within the landscape [38]. The total edge reflects the total edge length of a class, with longer
edge lengths generally associated with larger edge effects, which could influence ecological
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processes along class boundaries. The shape index is used to assess the geometric complex-
ity of landscape elements, with more complex shapes potentially reflecting more frequent
disturbances. Furthermore, TE and SI are employed to determine the edge characteristics
of land cover types, which can be related to the edge effect of the corresponding land cover
class [39]. Finally, ECON is used to describe the relative difference between adjacent classes.
High contrast values indicate significant differences, suggesting the transitions between
them are narrow or absent [34].

2.4.3. Ecotones Upscaling Model

In this study, we used the machine learning algorithm from the scikit-learn library
(version 1.2.2) in Python 3.10.9 to construct the ecotone upscaling model, combining the
results of the ecotones extracted based on UAV data with 29 variables extracted from
satellite images. The term “upscaling” here refers to utilizing high-resolution UAV data to
enhance the classification accuracy and interpretative capability of satellite imagery across
large areas.

Four different machine learning algorithms were tested to construct the model: k-
nearest-neighbors (KNN), random forest (RF), support vector machine (SVM), and gradient
boosting decision tree (GBDT). Since the model parameters affected the performance of
Machine Learning (ML) algorithms, the grid search method was used in this study to find
the optimal parameter values that would result in the highest average accuracy for each
ML algorithm (Table 2).

Table 2. Results of the hyper-parameter optimization process.

Model Optimal Parameter Values

K nearest neighbor n_neighbors—10, metric—manhattan,
weights—distance

Random forest n_estimators—100, max_depth—13, max_features—sqrt
Support vector machine penalty value C—1.0, kernel functions—linear

Gradient boost decision tree n_estimators—450, learning_rate—0.1, max_depth—7

K-nearest-neighbors is a non-parameter algorithm that uses an instance-based learning
approach, or “lazy learning”. Unlike other classifiers that generate a predictive model,
k-NN directly compares each unknown sample with the training data [40,41], assigning
it to the most common class among the k-nearest training samples in the feature space.
Therefore, K is the key tuning parameter in this classifier, which largely determines the
performance of the KNN classifier.

The random forest classifier is a decision-tree-based ensemble classifier, which operates
by constructing a number of decision trees in the training process and outputting the
prediction classes. RF has become popular within the remote sensing community due to
its high predictive accuracy for high-dimensional data and low sensitivity to overfitting,
multicollinearity, and outliers [42].

Support vector machine is a non-parametric supervised machine learning algorithm
initially described by Cortes and Vapnik [43], based on the concept of structural risk
minimization (SRM). This model seeks the optimal separating hyperplane that maximizes
the distance between the nearest samples (support vectors) to the plane and effectively
separates classes [44–46]. The method is suitable for small-sample, nonlinear prediction
problems and has good generalization ability [47].

Gradient boosted decision trees classifier is a boosting ensemble machine learning
method that combines multiple decision trees [48]. The GBDT implements a classification
task by building an ensemble of weak prediction models, typically decision trees, to create
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a strong prediction model. It improves the accuracy of classification through multiple
iterations, each of which reduces the residuals of the previous iteration and continuously
adjusts the weights of misclassified samples. GBDT can fit the true distribution of data and
has a strong generalization ability.

The 29 variables (for details, see Table 1) were imported into these models to detect
ecotones at a large scale. To define the best set of features for detecting ecotones, these
data were divided into three subsets: (1) “s1”, which considers only the backscattering
coefficients for the S1 data and the indices calculated from the original data of S1 data;
(2) “s2”, which considers only the multispectral bands from the S2 data and the vegetation
indices calculated from these reflectance bands; and (3) “all”, which include all features
from S1 and S2 data. The topographic features were included in all three subsets. Based
on the three subsets of variables, 70% of pixels in the landcover map of ecotones were
randomly selected as training samples, and the remaining 30% of data were selected as the
verification samples to evaluate the classification accuracy.

To evaluate the land cover classification accuracy, the accuracy metrics, including
the overall accuracy (OA) and kappa coefficient (k), have been widely used [49]. Overall
accuracy was determined as the ratio of correctly classified samples to the total number of
samples. The kappa coefficient was a measurement to test whether the predicted results of
the model were consistent with the actual classification results [50].

By comparing the OA and k of different models, we selected the most effective
model as an upscaling model. The mean decrease accuracy which refers to how much
the prediction accuracy of the model was reduced after deleting this feature was used to
determine the significance of each feature. We subsequently identified the features suitable
for ecotone detection, thus obtaining a large-scale landscape pattern map. All modeling
steps were developed in the Python environment, using scikit-learn [51].

2.4.4. Spatio-Temporal Dynamic Analysis of Ecotones

We employed the overlapping region of Ailao Mountain National Nature Reserve
and one scene Sentinel-2 image as the area for spatio-temporal dynamic analysis using the
upscaling model. The selection of the temporal range, spanning from 2017 to 2023, was
based on image acquisition timing, quality, and data availability. Although the Sentinel-2
satellite was launched in 2015 [52], data for our area before 2017 was limited and often
cloud-covered, while 2023 is the most recent year with a full dataset. The 2017–2023 range
thus provides the most extensive and reliable imagery series available for our study area.
Sentinel-1 and Sentinel-2 datasets for this period were downloaded from the GEE platform,
and the 29 features mentioned in Table 1 were obtained after preprocessing. Subsequently,
these features were processed through the upscaling model to generate large-scale maps of
ecotones. Due to the limited resolution of satellite imagery, fine-scale features like single
trees could not be effectively identified, unlike with higher-resolution UAV data. To ensure
methodological consistency across various data sources, we therefore classified non-forest
and non-ecotone areas collectively as “Others”.

To assess landscape fragmentation, we focused on the edge effect, isolation effect,
and patch size effect, which are deemed the most important features for understanding
landscape fragmentation [7]. These effects were quantified using three landscape pattern
metrics, including edge density (ED), patch density (PD) and mean patch area (MPA),
respectively. The three landscape metrics were calculated at the class level using the
“landscapemetrics” package [36] in R 4.2.3 based on the large-scale maps of ecotones
described above. A synthesized fragmentation index (FI) [53] was constructed using the
mean values of ED, PD, and MPA in the ArcGIS 10.7, providing a synthetic measure of
landscape fragmentation.
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3. Results
3.1. Ecotone Detection at Fine Scale

The canopy height of each sample site was extracted from the normalized lidar point
clouds. Figure 4 shows the DTM, DSM, and CHM of each site. From the results, the
vegetation height changed obviously at the boundary between forest and grassland.
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Based on the high-resolution orthoimages of UAV and CHM derived from LiDAR data
and following the classification framework proposed in Section 2.4.1, a fine-scale landscape
pattern map was obtained (Figure 5d–f), which is an essential prerequisite for accurate
detection of ecotones. Based on the classification results (Figure 5d–f), we calculated the
average height of forest and grassland classes for each sample site. The average height of
the forest class in the three sample sites BJB, DJB, and STZ was 8.20 m, 12.24 m, and 7.65 m,
and the average height of the grassland class was 0.87 m, 0.99 m, and 0.84 m, respectively.
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Figure 5. The orthoimage of three sample plots (a–c), fine-scale landscape pattern map derived from
UAV-data (d–f), and landscape pattern maps including the delineated ecotones (shadows removed)
(g–i).

The landscape pattern maps, including ecotones, were obtained using the object-
based image analysis (Figure 5g–i) and the size of ecotones was calculated based on these
maps (Table 3). This revealed the influence of land management practices on ecological
processes. The STZ site, still under active farming, presented the largest ecotone area
due to more human interventions. In contrast, DJB represents a transition zone in a more
natural state, while BJB, in a phase of restoration after farming abandonment, showed the
smallest ecotone area. In areas with complex terrain like our study area, UAV-derived
orthoimages often display shadows caused by the terrain or large structures such as trees.
To ensure the accuracy of ground features, we mark “shadow” as a separate class. This
classification enhances the accuracy of the analysis and interpretation of actual ground
conditions, ensuring data quality and improving the reliability of research findings.

Table 3. Area and proportion of ecotones.

Plots Area (km2) Proportion (%) 1

BJB 0.0113 11
DJB 0.0123 12.06
STZ 0.0253 24.72

1 The “Proportion (%)” indicates the area percentage of each plot classified as ecotone, with each plot covering an
area of 0.1024 km2.

According to Forman [54], the ecotones in this region can be mainly detected in two
forms: (1) the thin transitions along the forest/field border and (2) wide forest borders with
convex or concave shapes. The ecotones at BJB are simpler, consisting solely of the thin
transition type along the forest–grassland junction. Conversely, DJB and STZ exhibit both
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forms of ecotones, indicating a more complex interaction between forest and adjacent land
at these sites.

From the quantitative results (Table 4), when ecotones were incorporated into the
analysis (compared to the classification excluding ecotones), the value of each landscape
metric decreased, and the ecotones had the maximum boundary length. Specifically, the
ECON values decreased upon considering ecotones. Taking BJB as an example, the ECON
values for the forest class decreased from 22.4 (without ecotones) to 18.9 (with ecotones),
indicating a reduction in the average contrast of forests due to the presence of ecotones.
This trend was consistent across other land cover classes, leading to a smoother transition
between grassland and forest.

Table 4. A series of common landscape metrics used to quantify some elements of the landscape.

Plot Class TA (hm2) PLAND (%) TE (m) SI ECON

BJB Ecotone -/1.13 1 -/11.00 -/2.01 -/4.73 -/26.24
Forest 9.40/8.34 91.83/81.45 0.99/1.10 1.85/1.75 22.38/18.87
Grass 0.78/0.72 7.65/7.04 1.53/1.32 4.3/3.88 45.43/30.82

DJB Ecotone -/1.23 -/12.05 -/3.84 -/2.84 -/26.54
Forest 7.72/6.65 75.35/64.94 2.24/2.07 3.06/2.01 46.48/16.96
Grass 2.27/2.11 22.19/20.56 3.44/2.84 1.7/1.89 68.99/26.00

STZ Ecotone -/2.53 -/24.73 -/5.02 -/2.19 -/25.43
Forest 8.97/6.94 87.65/67.77 5.21/2.57 1.31/1.55 49.61/27.08
Grass 1.20/0.70 11.76/6.81 5.28/1.97 1.77/1.85 48.73/25.4

1 The values before “/” were calculated without considering ecotones; values after “/” include ecotones.

3.2. Detection of Ecotones at Large Scale

Among the three subsets of input variables, the “all” subset could obtain the highest
detection accuracy of ecotones. Combining Sentinel-1 with Sentinel-2 data can slightly
improve accuracy. The results indicated that the Random Forest (RF) model outperformed
the other three models in this study (Table 5). Therefore, RF was chosen as an upscaling
model and the combination of S1 and S2 features were chosen as input variables for
upscaling the ecotones from fine (UAV) to large (Satellite) scale.

Table 5. The performance of various feature subsets for the detection of ecotones using four ML algo-
rithms.

Algorithm Features Subset OA Kappa Precision Recall F1-Score Training Time (s) 1

RF s1 0.79 0.48 0.69 0.62 0.67 311
s2 0.88 0.73 0.83 0.77 0.82 314
all 0.90 0.78 0.86 0.84 0.85 455

SVM s1 0.77 0.35 0.64 0.52 0.51 493
s2 0.87 0.71 0.83 0.76 0.79 508
all 0.89 0.76 0.85 0.82 0.84 505

KNN s1 0.77 0.42 0.64 0.58 0.59 513
s2 0.87 0.72 0.83 0.77 0.80 519
all 0.88 0.74 0.84 0.80 0.82 533

GBDT s1 0.80 0.52 0.71 0.64 0.63 452
s2 0.88 0.76 0.84 0.80 0.80 482
all 0.89 0.77 0.85 0.82 0.83 714

1 The “Training time” data were obtained using a MacBook Pro equipped with an M1 Pro chip.
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We compared the land cover classification results for three sample plots using the
upscaling model versus only satellite imagery (Figure 6). The data used for comparison
were the UAV data collected in 2022 and the satellite imagery from the same year. The
upscaling model outperformed satellite-only imagery, achieving an ecotone classification
accuracy of 0.9 compared to 0.25. This highlights the importance of combining UAV data
with satellite imagery for delineating ecotones across large areas.
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satellite data (j–l).

We also calculated the precision of all four algorithms for each class (Table 6). Ecotones
had the lowest precision, which highlights the difficulties in distinguishing this class from
the rest. The RF method performed better than other methods.

Table 6. Detection precision of three classifications.

Algorithm Ecotone Forest Others

RF 0.78 0.94 0.89
SVM 0.76 0.92 0.88
KNN 0.72 0.92 0.87
GBDT 0.77 0.93 0.83

Subsequently, the importance of input variables for RF was calculated (Figure 7).
As indicated by the variable importance for detecting ecotones, multispectral data from
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Sentinel-2 were far more suitable than the SAR data from Sentinel-1. In these bands, the
red band (band 4), shortwave infrared band (band 12), and vegetation red edge band (band
5) were identified as the three most important variables. VIg was the most important
vegetation index for the ecotone upscaling model.
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3.3. Temporal Dynamic Analysis of Ecotones

By applying the upscaling model to the satellite images of 2017 and 2023, the landscape
pattern maps of ecotones in these two years were obtained (Figure 8) and the area of
different land use types was calculated, with the “Others” category including grassland,
water, road and other classes except forest and ecotone. Overall, the area of the ecotones
increased by 0.287 km2 in these six years (Table 7).

Table 7. The area of different land use types in 2017 and 2023 (km2).

Year Ecotones Forests Others

2017 26.2098 133.5169 11.2733
2023 26.4968 131.5166 12.9866

We also calculated a transition matrix describing the land cover change in the
2017–2023 period (Table 8). The results indicate that changes in ecotones and other land
use types were substantial, whereas forests remained relatively stable. Additionally, the
expansion of ecotone areas primarily originated from non-forest land uses.
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Table 8. Land cover change transition matrix for the whole region (in km2).

2017
2023

Ecotones Forests Others

Ecotones 17.561 (67%) 1 4.8574 (18.5%) 3.7914 (14.5%)
Forests 7.1035 (5.3%) 126.0671 (94.4%) 0.3463 (0.3%)
Others 1.8323 (16.3%) 0.5921 (5.3%) 8.8489 (78.5%)

1 The values in parentheses represent the proportions of land use types transformed from 2017 to 2023.

The quantitative analysis results of landscape fragmentation (Table 9) show that the
PD, ED, and FI all decreased, while the MPA increased, indicating that the degree of
landscape fragmentation of forests decreased. However, fragmentation increased in the
ecotones and other categories.

Table 9. A series of landscape metrics used to quantify landscape fragmentation at a large scale.

Metrics
Forest Ecotones Others

2017 2023 2017 2023 2017 2023

PD 4.83 4.67 3.82 4.47 5.53 6.42
ED 57.16 56.63 86.26 90.46 33.17 39.56

MPA 16.16 16.46 4.01 3.27 1.19 1.18
FI 26.05 25.92 31.37 32.82 13.3 15.72
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4. Discussion
Since ecotones are considered sensitive indicators of climate and land use change

(including forest fragmentation), accurately tracking their dynamics is important [55,56].
With the increased spatial and temporal resolution of remote sensing data, extracting and
tracking ecotones at large scales has become available in principle [57]. However, difficulties
exist in using the relatively coarse remote sensing data for extracting fine-scale ecotones.
Our results show that combining UAV-based and satellite data can fill this surface analysis
and monitoring gap. The proposed integration leverages the high-resolution capabilities of
drones for detailed observations and the extensive coverage of satellites, thereby enhancing
the overall accuracy and scope of environmental assessments focusing on ecotones.

4.1. Delineating Ecotones on the UAV Scale

The heterogeneous character of any landscape (mosaic) significantly influences many
ecological processes [58,59]. Figure 5 shows the presence of ecotones formed a more com-
plicated landscape pattern. Despite their crucial role in enhancing landscape heterogeneity,
ecotones are often ignored in traditional landscape analyses. Conventional studies utilizing
remote sensing image data have identified transition zones and landscape boundaries
on a larger scale [60]. However, some gradual transition zones between different land-
scape units or patches are also easily overlooked due to the limitations in the resolution of
satellite imagery.

Utilizing Unmanned Aerial Systems (UAS) for photography offers a higher resolution
alternative that provides a potential advantage over traditional satellite remote sensing
methods in studying ecotones at regional and fine scales. This method enables comprehen-
sive data acquisition on a regional scale, facilitating landscape pattern analysis without
needing multiple field investigations, thereby offering significant reductions in time and
labor. Furthermore, UAV-LiDAR data have proven previous studies for delineating transi-
tions in forest and vegetation, particularly in highlighting height variations among plant
communities. Such precise data are crucial for accurately mapping forest-grassland eco-
tones, offering advantages over traditional airborne and spaceborne LiDAR technologies in
terms of flexibility, cost, and data density [61]. As a newly emerging and low-cost active
remote sensing technology, UAV-LiDAR can characterize the vertical structure of forest
ecosystems at a fine spatial resolution [62], even for the attributes of individual trees [63].

From an applied perspective, our methodology employs high-resolution UAV-acquired
orthoimage and LiDAR data to achieve highly accurate ecotone delineation, revealing
discrete ecological gradients and previously undetected transitional patterns. The resulting
high-resolution land cover map incorporating these ecotonal features provides new insights
into ecosystem dynamics, delivering critical information for evidence-based conservation
planning in ecologically sensitive regions. Notably, our findings demonstrate how spatially
explicit data enables optimized intervention strategies through precise identification of
ecological transition zones, which may significantly improve cost-effectiveness in long-term
landscape management. While existing studies have successfully applied this technology to
small-scale feature extraction (e.g., individual trees and linear vegetation structures [34,64]),
our research establishes a novel framework for the 3D characterization of complex ecotonal
systems. Specifically, the developed approach for forest-grassland ecotone identification
offers a three-dimensional analytical perspective that enhances environmental decision-
making processes and resource allocation efficiency. Furthermore, the precisely mapped
ecotones could serve as reference data for upscaling methodologies, facilitating integration
with coarse-resolution satellite datasets to enable large-area ecotone monitoring while
maintaining classification accuracy. This methodological advancement not only improves
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ecological management strategies but also provides new opportunities for understanding
landscape-level ecological processes.

4.2. Upscaling from the UAV Scale to the Sentinel Scale

Our results demonstrate that the combination of UAV and satellite imagery, particu-
larly through an upscaling model constructed from this integration, accurately delineated
forest-grassland ecotones with a kappa coefficient of 0.78 (Table 6). This indicates a robust
capability to monitor their dynamics effectively. Direct spatial correlation between UAV
imagery and Sentinel products improved the accuracy by utilizing an overhead canopy
perspective, unlike field-based estimates, thereby providing a continuous landscape rep-
resentation. Our findings furthermore reveal that the accuracy of the ecotone upscaling
model was significantly influenced by the choice of input variables, with the 11 most im-
portant variables all extracted from Sentinel-2 multispectral data (Figure 7). This suggests
that Sentinel-2 data are more suitable than the SAR data from Sentinel-1 for detecting
forest-grassland ecotones. Although combining Sentinel-1 with Sentinel-2 data can further
improve accuracy, previous studies have shown that optical data is generally ascribed to a
higher potential than SAR data [65]. Despite the relatively small contribution, incorporating
Sentinel-1 data may still be advantageous, particularly in regions with frequent cloud cover
where the availability of high-quality spectral data from Sentinel-2 is constrained. Further-
more, coupling the accessibility and cost-effectiveness of Sentinel-1 data with preprocessing
routines can enhance data robustness under challenging observational conditions. Ad-
ditionally, while grayscale covariance matrix-based image texture features are usually
utilized in large-scale ecotone extraction [66,67], their effectiveness diminishes in areas with
complex terrain, such as the Ailao Mountain National Nature Reserve, where they tend to
decrease classification accuracy. This suggests a need for careful selection and application
of texture features based on the specific geographical and ecological characteristics of the
study area.

The presented approach is easily transferable to other regions and can be applied to
detect different types of small biotopes, such as abandoned land-forest ecotones, agricul-
tural terraces, etc. [23,68]. Categorizing transition zones as distinct land use types within
existing land change monitoring frameworks can help evaluate and optimize management
zones of existing nature reserves and establish additional protected areas [69–71]. More-
over, our results suggest that upscaling UAV-based reference data to satellite-based earth
observation systems offers significant potential for vegetation-related mapping tasks. This
approach could enhance applications in tree species classification for forestry, biodiversity
assessments, and habitat mapping by supplementing low-resolution satellite images with
detailed, high-resolution data [72,73].

We have demonstrated that integrating multi-source remote sensing data facilitates
large-scale ecotone detection. By incorporating diverse satellite data types, such as hyper-
spectral imagery and LiDAR from various platforms, we could further refine the accuracy
of ecotone delineation by capturing detailed biochemical and structural vegetation features.
Future research should focus on enhancing ecotone detection accuracy by considering the
seasonality of vegetation indices and SAR data bands with a high capacity for penetrating
structurally dense forest canopies. This could be done by comparing multi-seasonal re-
mote sensing data and integrating ground-based observations to analyze shifts in ecotone
boundaries related to phenological changes. Additionally, this study represents an initial
exploration to integrate multi-source remote sensing data, with plans to refine and expand
our methods as more and longer data series become available in the future.
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5. Conclusions
In this study, we propose a semi-automatic workflow to delineate large-scale ecotones

which integrates visual delineation using UAV-derived orthoimages and LiDAR data, train-
ing of upscaling model using Sentinel-1 and Sentinel-2 data, and application of this model
to monitor ecotone dynamics over different years. Integrating structural and spectral infor-
mation from UAV data enables more precise delineation of fine-scale ecotones and other
small biotopes. The upscaling model was highly accurate for all three plots, demonstrating
the potential of upscaling UAV reference data to the Sentinel scale to delineate ecotones
over large spatial extents. This study confirms the suitability of UAV-based reference data
for training satellite-based models, offering a promising alternative to traditional field-
acquired data. The advantages of UAV-based data include consistency in perspective with
satellite products (top-down) and ease of spatial matching through resampling. Moreover,
UAV data generation is relatively efficient, especially across less accessible terrain. The
proposed workflow is easily transferable to other regions and facilitates long-term ecotone
monitoring, which is important for understanding the impacts of climate change and forest
fragmentation on natural ecosystems.
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