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Summary

� Plant interactions with abiotic and biotic environments are mediated by diverse metabolites,

which are crucial for stress response and defense. These metabolites can not only support

diversity by shaping species niche differences but also display heritable and plastic intraspecific

variation, which few studies have quantified in terms of their relative contributions.
� To address this shortcoming, we used untargeted metabolomics to annotate and quantify

foliar metabolites and restriction-site associated DNA (RAD) sequencing to assess genetic dis-

tances among 300 individuals of 10 locally abundant species from a diverse tropical commu-

nity in Southwest China. We quantified the relative contributions of relatedness and the

abiotic and biotic environment to intraspecific metabolite variation, considering different bio-

synthetic pathways.
� Intraspecific variation contributed most to community-level metabolite diversity, followed

by species-level variation. Biotic factors had the largest effect on total and secondary metabo-

lites, while abiotic factors strongly influenced primary metabolites, particularly carbohydrates.

The relative importance of these factors varied widely across different biosynthetic pathways

and different species.
� Our findings highlight that intraspecific variation is an essential component of

community-level metabolite diversity. Furthermore, species rely on distinct classes of metabo-

lites to adapt to environmental pressures, with genetic, abiotic, and biotic factors playing

pathway-specific roles in driving intraspecific variation.

Introduction

The metabolome, the suite of small organic compounds, or meta-
bolites in an organism, represents a deep and diverse pool of
functional trait variation that mediates plant interactions with
the environment (Walker et al., 2022). Plant metabolites mediate
abiotic stress responses and adaptations to drought, heat, freezing
temperatures, and ultraviolet light (Tegelberg et al., 2001; Defos-
sez et al., 2021; Volf et al., 2023). By acting as attractants and
defenses, they also shape the host ranges of natural enemies such
as herbivores and pathogens (Salazar et al., 2016; Endara
et al., 2017) and mutualists such as pollinators (Rivest et al.,
2024). The biosynthesis of metabolites requires energetic invest-
ment from the plant; hence, metabolites contribute to fundamen-
tal trade-offs in resource allocation that define alternative defense

syndromes (Kursar & Coley, 2003) and life-history strategies
(Coley et al., 1985). Finally, because of their role as functional
traits, variation in metabolites is associated with species distribu-
tions across environmental gradients (Defossez et al., 2021; Volf
et al., 2023) and individual performance (Forrister et al., 2019).

Plant functional ecology seeks to understand individual perfor-
mance as a function of traits and to extrapolate such relationships
to understand variation in species distributions and abundances
and community diversity over space and with respect to environ-
mental gradients (Yang et al., 2018). It is commonplace to repre-
sent individuals of a species using species mean trait values,
which has been used to reveal important insights into
species-level trade-offs (Wright et al., 2004) and broad differ-
ences in communities (Sedio et al., 2018). However, the distribu-
tion and co-occurrence of species are the result of the successes
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and failures of individual plants, which may be best understood
in the context of the phenotype of individuals (He et al., 2022;
Rubio & Swenson, 2024). Recent studies have demonstrated the
importance of intraspecific trait variation (ITV) in trait-based
community ecology (Violle et al., 2012; Siefert et al., 2015; Kup-
pler et al., 2020) and that accounting for intraspecific variation
improves predictive power for tree demography (Yang
et al., 2018, 2021; Asefa et al., 2021).

Techniques that seek to identify, classify, and quantify the vast
diversity of metabolites present in a tissue or organism, known as
untargeted metabolomics (Di Minno et al., 2021), have advanced
dramatically in the past decade, with exciting implications for
plant ecology (Sedio, 2017; Sun et al., 2024). Untargeted meta-
bolomics allows for comprehensive profiling of metabolic diver-
sity without prior knowledge of specific compounds, making it
particularly valuable for studying ecological interactions. Studies
integrating metabolomics and plant community ecology have
provided new insights into plant–herbivore interactions (Forrister
et al., 2019; Wang et al., 2023; Sun et al., 2024), community
assembly (Sedio et al., 2018; Endara et al., 2022; Müller &
Junker, 2022), and ecosystem processes (Sardans et al., 2011; van
Dam & van der Meijden, 2011) across environmental gradients
(Defossez et al., 2021; Volf et al., 2023). However, a key feature
of untargeted metabolomics data is that it is difficult to compare
across species because of the large degree of divergence in phyto-
chemical composition, the small number of shared metabolites
even among congeneric species, and challenges in metabolite
annotation and detection sensitivity (Sedio et al., 2017; Forrister
et al., 2023). This extreme disparity in composition has necessi-
tated the development of new analytical methods for comparative
metabolomics, such as similarity metrics that account for the
structural similarity of unique metabolites (Sedio et al., 2017). It
has also resulted in a general sense that since interspecific metabo-
lite variation is substantial, quantifying intraspecific metabolite
diversity may be of lesser importance for comparative metabolo-
mics in community ecology (Sedio et al., 2017).

Despite the mounting evidence of vast interspecific variation,
plant metabolites are also well known to exhibit substantial
within-species variation, and this is likely critically important for
ecological investigations (Rubio & Swenson, 2024). Metabo-
lomes of individual plants respond dynamically to variations in
the environment (Wang et al., 2019; Wetzel & Whitehead,
2020). For example, Huberty et al. (2020) showed that
plant-induced changes in soil can modify the metabolomes of
plants growing in those soils subsequently, highlighting how
plant–soil feedbacks may significantly contribute to the often
unexplained intraspecific variation in plant chemical composi-
tion. Some intraspecific metabolite variation is clearly linked to
genetic differences, as in Populus tremuloides, where genotypic
variation drives chemical heterogeneity (Kroymann, 2011).
Furthermore, genetic variation in Pinus sylvestris influences ter-
pene diversity (Iason et al., 2005). Such variation may have sig-
nificant fitness effects, as within-species chemical variation shows
observable effects on herbivorous caterpillars in Piper (Glassmire
et al., 2016). Taken together, a growing body of work suggests
that intraspecific metabolite variation, driven by genetic variation

or responses to the environment, may be essential to consider
because of its functional consequences for plant performance.

Untargeted metabolomics holds great promise for improving
mechanistic and predictive power in ecology by integrating meta-
bolites, physiology, and fitness (Kessler & Kalske, 2018; Müller
& Junker, 2022; Walker et al., 2022). Unlike traditional
unidimensional traits (e.g. specific leaf area) that measure static
phenotypic compromises, plant metabolomes function as
high-dimensional phenotypic integrators: hundreds of covarying
metabolites dynamically encode organismal responses through
biochemical networks, simultaneously reflecting genetic con-
straints, environmental plasticity, and biotic interactions (Kessler
& Kalske, 2018). However, the extreme variability of plant meta-
bolomes poses analytical challenges. While traditional traits rely
on direct measurement protocols, metabolomics requires multi-
step computational pipelines—including peak detection, reten-
tion time alignment, batch correction, and normalization—to
transform raw LC-MS data into feature lists. These features can
then be annotated via spectral databases or analyzed through
molecular networks to resolve compound association patterns. By
quantifying chemical diversity indices or similarity metrics, meta-
bolomic variation can be linked to ecological processes. Addres-
sing the relative degree of intra- vs interspecific metabolite
variation and how this variation is linked to underlying genetic
and environmental factors is crucial for understanding when,
where, and why quantifying intraspecific metabolite diversity is
useful. This is particularly important as untargeted metabolo-
mics, unlike functional trait data, can be logistically and finan-
cially prohibitive for large numbers of individuals.

Here, we present the first metabolomic study of genetic and
environmental drivers of intraspecific metabolite variation in tree
species co-occurring within a tropical forest community. We use
untargeted metabolomics based on high-resolution mass spectro-
metry to quantify and classify metabolites, alongside RAD
sequencing to assess genetic distances among 30 individuals of
each of 10 locally abundant species in a species-rich tropical
moist forest in Southwest China. In addition, we used measure-
ments reflecting soil, light, neighborhood crowding, and herbiv-
ory to quantify variation in the abiotic and biotic environment
experienced by individual trees within a permanent 20-ha forest
dynamics plot and evaluated the relative contributions of genes
and the abiotic and biotic environment to intraspecific metabolite
variation to address the following questions: (i) Is intraspecific
metabolite variation important relative to overall variation within
a community? (ii) What is the relative importance of genetic
diversity, abiotic environment, and biotic environment in contri-
buting to intraspecific metabolite variation? (iii) Does the relative
importance of these factors vary among metabolites from differ-
ent biosynthetic pathways with broad differences in function?

Materials and Methods

Study site

This study was conducted in a 20-ha tropical seasonal rainforest
dynamics plot (FDP) located in Xishuangbanna, Southwest
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China (21°3604200–5800N, 101°3402600–4700E; Supporting
Information Fig. S1). The plot was established in 2007 within
the Xishuangbanna National Nature Reserve and is dominated
by Parashorea chinensis H. Wang (Dipterocarpaceae). The mean
annual temperature is 21.8°C (Cao et al., 2006). Influenced by
the monsoon climate, the region receives an annual rainfall of
1493 mm, 84% of which falls during the wet season (May–
October; Yang et al., 2021). The elevation ranges from 708 to
869 m above sea level, contributing to significant habitat hetero-
geneity (Lan et al., 2009). Following the standard protocols for
FDPs from Condit (1998), all free-standing woody stems with a
diameter at breast height (DBH) of at least 1 cm were identified,
mapped, tagged, and measured every 5 yr. The initial census in
2007 recorded 468 species and 95 946 individuals, and three
re-censuses have been completed to date. Further details on the
climate, geology, and flora of the plot are available in Cao
et al. (2008).

Focal species selection

The main objective of this study was to investigate intraspecific var-
iation in foliar metabolites and assess the relative contributions of
genetic diversity and environmental factors to this variation. To
achieve this, we strategically selected 10 tree species, considering
factors such as abundance, habitat heterogeneity, and representa-
tion across different life stages. First, we focused on common spe-
cies with population sizes over 500, based on census data from
2017, as larger populations tend to harbor greater genetic diversity,
facilitating local adaptation and functional differentiation (Raabová
et al., 2015). Second, priority was given to habitat generalists. This
selection minimized the confounding effects of environmental fac-
tors and genetic influences caused by dispersal limitation. We also
prioritized species exhibiting low gene flow and spatial autocorrela-
tion in the environment. However, the small plot size and limited
environmental variation make it unlikely that strong selective gradi-
ents or limited gene flow would generate strong genotype–
environment correlations. Additionally, we selected species that
represented a range of cohort stages, from small to large individuals
(Yang et al., 2014). This approach enabled a comprehensive assess-
ment of ITV and genetic differentiation across developmental
stages. We sampled 30 individuals per species, evenly distributed
across the quadrats where they occurred, resulting in 300 indivi-
duals from 10 tree species (Table S1).

Leaf sampling and processing

From each focal individual, three to five young, fully expanded
leaves were randomly collected. The leaf samples were immedi-
ately placed in liquid nitrogen to preserve DNA and metabolites
and stored in a �80°C freezer at the laboratory. Three branches
were randomly selected from different directions, with each con-
taining more than 10 leaves. Ten leaves from each branch were
collected sequentially from top to bottom to accurately assess her-
bivore damage.

Restriction site-associated DNA sequencing (RAD-Seq) was
performed to obtain high-resolution population genomic data

(detailed methods see Methods S1). DNA was extracted using a
modified cetyltrimethylammonium bromide (CTAB) method
(Doyle & Doyle, 1990), and samples were sent to BGI-Wuhan
(Wuhan, China) for library construction and sequencing. A non-
targeted metabolomic approach based on ultra-high-performance
liquid chromatography–tandem mass spectrometry (UHPLC–
MS/MS) was used for metabolite analysis, following the proto-
cols of Sedio et al. (2018, 2021), with slight modifications to suit
our laboratory equipment.

Approximately 250mg of finely ground leaf material was mixed
with 1800 μl of 90 : 10 methanol : water extraction solvent (pH 5).
The mixture was shaken at 2.81570 g for 5 min, followed by
0.14985 g for 8 h at 4°C. After shaking, samples were centrifuged
at 19 693 g for 30min at 4°C, and the supernatant was collected.
Methanol was evaporated using a vacuum centrifuge concentrator,
reducing the volume to about one-third, leaving mostly the water
phase, and the samples were freeze-dried for 24 h. The dried mate-
rial was reconstituted in 1000 μl of extraction solvent, filtered
through a 0.22 μm Millipore filter, and transferred to 2 ml brown
chromatographic vials. Instrumental methods for metabolite detec-
tion were modified from Sedio et al. (2018, 2021) for the use of
an Agilent 1290 UPLC/Q-TOF using a GOLD aQ analytical col-
umn (250mm × 4.6 mm, 5-μm particle size). Chromatographic
separation was achieved with a solvent gradient using ultrapure
water (Buffer A) and acetonitrile (MeCN, Buffer B), starting at
20% Buffer B for 20min, then linearly increasing to 100% over
30min. For electrospray ionization in positive ion mode, the gas
temperature was set at 350°C with an 8 l min�1 gas flow. Tandem
mass spectrometry (MS/MS) was conducted using time-of-flight
(TOF) MS, with a fragmentation voltage of 135 V, skimmer vol-
tage of 65 V, and Vpp of 750 V. The MS1 and MS2 spectra were
acquired for mass-to-charge ratios (m/z) of 100–1700 and
20–1700, respectively, with a 1 spectrum/second acquisition rate.
Collision energy was adjusted between 10 and 50 eV for optimal
metabolite fragmentation and structural characterization.

Environmental measurements

To quantify the effects of abiotic factors on intraspecific metabo-
lite variation, we used data on 10 soil variables and the light
environment, which have been found to influence plant perfor-
mance and species distributions at our site (Hu et al., 2012; Yang
et al., 2014; Song et al., 2018). Soil variables were recorded at
756 points within the plot and included total nitrogen (TN),
total phosphorus (TP), total potassium (TK), total carbon (TC),
available nitrogen (AN), extractable phosphorus (AP), extractable
potassium (AK), bulk density, pH, and moisture (Hu et al.,
2012). We used canopy openness in each 20 m × 20 m quadrat
as a proxy for the light environment (Wang et al., 2023). This
was done by capturing hemispherical photographs with a digital
camera, which were then analyzed using the GAP LIGHT ANALYZER

v.2.0 software. The software calculated the canopy gap fraction,
indicating the portion of each image that was open and nonvege-
tated (Frazer et al., 2000).

To fully assess the influence of biotic factors on intraspecific
metabolite variation, we quantified the effects of neighborhood
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size and herbivore damage. The neighborhood crowding index
(NCI; Canham et al., 2006) was used to quantify the impact of
neighboring trees on 300 focal individuals. Specifically, the NCI
for a focal tree (i) was calculated as the sum of contributions from
all neighboring trees within 15 m (Yang et al., 2014, 2021)
around the focal tree. The contribution of a neighboring tree (j)
is modulated by its DBH and distance from the focal individual
as per the following formula:

NCIi = ∑
nj

j = 1, i≠j

DBH2
j

dist2ij

where DBHj is the diameter at breast height of the neighboring
tree, and distij is the Euclidean distance between the focal and
neighboring trees.

To accurately assess herbivore damage, we scanned 30 leaves of
each individual using an Epson scanner (Epson Co., Beijing,
China). We distinguished different damage types using the
‘Guide to Insect (and Other) Damage Types on Compressed
Plant Fossils’ (Labandeira et al., 2007) and our field expertise,
disregarding fungal and mechanical damage (Sun et al., 2024).
ADOBE PHOTOSHOP (Adobe System Inc., USA) was used to out-
line missing leaf edges and blacken visible damages for analysis.
Leaf damage quantification was performed using IMAGEJ software
(v.1.47), calculating the remaining and original leaf area as per
Abramoff et al. (2004). The leaf area lost to herbivory was calcu-
lated by subtracting the remaining area from the original leaf
area. We calculated the leaf area loss ratio, defined as the leaf area
lost to herbivory divided by the original leaf area (Andrew
et al., 2012).

Genetic data processing

Genetic diversity was analyzed by calculating pairwise genetic dis-
tances among individuals to generate a genetic distance matrix
(detailed methods see Methods S2). This process included the de
novo assembly and SNP calling using the STACKS 2.5 pipeline
(Rochette & Catchen, 2017). Low-quality reads and those with
potential adapter contamination were filtered, and SNPs were
called using the ‘population’ module. Only loci present in at least
two species and with < 20% missing data were retained. Genetic
distances were quantified using the identity-by-state matrix in
PLINK (Purcell et al., 2007). We performed a principal compo-
nent analysis (PCA) on the genetic distance matrix to generate
genetic eigenvectors and selected the first three axes for down-
stream analyses (Swenson, 2014). These axes summarize the most
informative genetic differences, enabling efficient incorporation
of genetic diversity into our models.

Metabolomic data preprocessing

We started by converting raw mass spectrometry files using
MSConvert, converting .d files to .mzXML format with 64-bit
binary encoding precision and zlib compression. We applied
Peak Picking with the Vendor’s algorithm, limiting MS levels to

1–2. For mass data processing, we used MZmine (v.3.9.0;
Schmid et al., 2023) and adjusted the parameters to match the
instrument specifications. Mass detection was conducted for
MS1 and MS2 using a centroid mass detector (MS1
noise= 1 × 103, MS2 noise= 0). Chromatograms were built
using the ADAP chromatogram builder (minimum scan group
size= 4, minimum group intensity= 1 × 103, minimum highest
intensity= 2 × 103, and m/z tolerance= 0.005m/z or
10.0 ppm). Peaks were deconvoluted with the local minimum
resolver algorithm (chromatographic threshold= 90%, mini-
mum search range RT/Mobility= 0.05, minimum relative
height= 0.0%, minimum absolute height= 2 × 103, minimum
ratio of peak top/edge= 1.8, peak duration range= 0.0–3.0,
minimum data points= 4). Isotopes were detected using the
13C isotope filter (m/z tolerance= 0.005m/z or 10.0 ppm, abso-
lute RT tolerance= 0.1 min, maximum charge= 2). Peaks were
aligned using the join aligner method (m/z tolerance= 0.005m/z
or 10.0 ppm, m/z weight= 3, RT weight= 1, absolute RT
tolerance= 0.1 min). We exported the feature list for
FBMN/SIRIUS and created the spectral file (.mgf) and ion abun-
dance ‘quant’ table (.csv), as well as the SIRIS/CSI FingerID fea-
ture list. Molecular networking was conducted on the GNPS
(Wang et al., 2016) platform using the feature-based molecular
networking (FBMN) workflow (Nothias et al., 2020), with mass
tolerance and network options set to default (Minimum Pairs
Cos= 0.6).

For feature annotation, SIRIUS (v.5.8.5) was used to classify
compounds (detailed methods see Methods S3) into seven major
biosynthetic pathways of origin based on NPClassifier (Kim
et al., 2021) using Canopus (Dührkop et al., 2021): carbohy-
drates and fatty acids, which we defined as primary metabolites;
and alkaloids, amino acids and peptides, polyketides, shikimates
and phenylpropanoids, and terpenoids, which we classified as sec-
ondary metabolites. Primary metabolites are crucial for basic cel-
lular functions like growth and energy production, while
secondary metabolites play significant roles in environmental
interactions, such as defense and stress adaptation (Wink, 2003).
We removed metabolites with Canopus confidence scores ≤ 0.90
for the ‘pathway’-level classification. A master table combining
quant data and metadata (sample information) was constructed,
with compounds from blank samples and those with peak areas
< 10 000 removed, a threshold chosen based on data quality con-
siderations, including instrument sensitivity and background
noise levels. This dataset supported further downstream analyses.

Statistical analyses

We initiated our analysis by examining the metabolome profiles
of 300 individuals across 10 species to characterize the profiles of
metabolites within each species, including maximum, minimum,
mean values, and standard deviations of metabolite richness
among individuals in each species. We also calculated the propor-
tion of these compound features in each biosynthetic pathway for
each species. To assess intraspecific variation in metabolite
richness, we used Kvålseth’s coefficient of variation (kCV)
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(Kvålseth, 2017), an improved version of the standard coefficient
of variation that accounts for scale. The kCV is defined as

kCV=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2

1þ CV2

s

where CV= SD
mean, quantified the degree of variation within each

species.
To identify the sources of variation across different metabolite

biosynthetic pathways, we applied a framework from Messier
et al. (2010) to decompose the variance in metabolite richness
across four hierarchical levels: plot, species, life-history stage, and
individual trees. This approach was applied using the varcomp
function in the R package APE (Paradis & Schliep, 2019). Using
the lme function in NLME (Pinheiro et al., 2024), we used a gener-
alized linear model with the Restricted Maximum Likelihood
(REML) optimization method to account for hierarchically
nested variances, with metabolite biosynthetic pathway treated as
a fixed effect. Additionally, we partitioned the dataset into pri-
mary metabolites and secondary metabolites, applying the same
variance decomposition framework to each subset.

We also used the quant table and network data to calculate
chemical structural-compositional similarity (CSCS; Sedio
et al., 2017), a method for assessing structural and compositional
similarities among sample pairs. Unlike traditional ecological
similarity measures such as Bray–Curtis, which focus on com-
pound concentration or ion intensity, CSCS also incorporates
molecular structural relationships. This approach evaluates not
only shared compounds but also those with similar structures,
even if they are not common to both samples. We generated
matrices detailing the chemical similarity between all individual
pairs sampled. Our analysis covered the entire metabolome, pri-
mary metabolites, secondary metabolites, and the seven major
biosynthetic pathways, enabling us to quantify CSCS within each
of the 10 species.

We compared metabolomic dissimilarities among individuals
using nonmetric multidimensional scaling (NMDS) applied to
the dissimilarity matrix using the isoMDS function in MASS

(Venables & Ripley, 2002). Metabolite dissimilarity was quanti-
fied as 1 – CSCS. This analysis reduced the complexity of che-
mical space to two dimensions for visualization. To statistically
assess the significance of interspecific differences in compound
composition, we performed a permutational analysis of variance
(PERMANOVA) using the adonis2 function in VEGAN (Oksa-
nen et al., 2024). The NMDS and PERMANOVA were
applied to the dissimilarity data for the entire metabolome, pri-
mary metabolites, secondary metabolites, and seven major bio-
synthetic pathways. Additionally, we calculated the mean
dissimilarity within and across species for each compound cate-
gory to provide a valuable measure of intra- vs interspecific
diversity. For mean interspecific dissimilarity, we performed
pairwise comparisons between all species, resulting in 45 unique
species combinations. For each combination, the mean dissimi-
larity was computed based on the dissimilarities between the
samples of the two species involved. For mean intraspecific

dissimilarity, we calculated the mean dissimilarity within each
of the 10 species.

To assess the relative contributions of genetic diversity, abiotic
environment, and biotic environment to intraspecific metabolite
variation, we also applied PERMANOVA. Abiotic environmen-
tal variables were preprocessed by removing factors with correla-
tions greater than 0.6, followed by standardization and PCA,
which extracted the first three components explaining over 76%
of the total variation (Table S2). Biotic environmental factors,
including measures of neighborhood crowding and herbivory
damage, were also standardized. Genetic eigenvector processing is
detailed in the previous section. We constructed three main mod-
els: (1) a model assessing the individual contributions of genetic
diversity, abiotic environment, and biotic environment; (2) a
model evaluating the interaction between genetic diversity and
abiotic environment; and (3) a model evaluating the interaction
between genetic diversity and biotic environment. These three
models were applied independently to each of the 10 species,
with each model evaluated using 10 sets of response variables:
overall metabolite dissimilarity, primary and secondary metabo-
lite dissimilarity, and dissimilarity for each of seven major biosyn-
thetic pathways, where each data point represents the
dissimilarity between two individuals. Additionally, at the com-
munity level (using data from all species), we applied these three
models and added a model considering the interaction between
biotic and abiotic environments to provide an overall assessment.
Metabolite dissimilarity was quantified as 1 – CSCS for each
dataset. The explanatory power of each model was assessed by R2

values, and model significance was determined via 999 permuta-
tion tests. All analyses were conducted in R v.4.4.1 (R Core
Team, 2024).

Results

Intraspecific variation in foliar metabolites

An analysis of leaf extracts from 300 individuals representing 10
species provided a total of 3146 unique features with biosynthetic
pathway predictions with ≥ 0.90 confidence and abundance
> 10 000 units in the chromatographic peak area. These com-
pounds had a combined total of 19 586 occurrences across all
individuals. Terpenoids and fatty acids were the most prevalent,
comprising 24.66% and 24.11% of the total, while polyketides
were the least frequent at 5.70% (Fig. S2). Compound richness
exhibited substantial intraspecific variation across species
(Fig. 1a; Table 1). Macropanax dispermus displayed the largest
variation; the number of compounds per individual ranged from
14 to 207, with an average of 59 compounds per individual. By
contrast, Baccaurea ramiflora displayed the least variation, with
individual compound counts ranging from 13 to 84 and an aver-
age of 39 compounds (Table 1). The coefficient of intraspecific
variation (kCV) in compound richness was generally high and
exhibited notable variation among species, ranging from 38.93%
in Ficus langkokensis to 54.66% in Macropanax dispermus
(Table 1). This significant intraspecific variability highlighted the
diversity of metabolites within species.
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Following the NMDS analysis, we observed that each species
occupies a large chemical space due to substantial intraspecific
variation, resulting in some overlap between species (Fig. 1b).
However, despite this visual overlap, permutational ANOVA
revealed significant interspecific differences in the overall chemi-
cal space as well as across seven biosynthetic pathways, indicating
that each species maintains distinct chemical characteristics
(Fig. S3; Table S3). We further examined the compound compo-
sition across species by analyzing the proportion of compounds
in various biosynthetic pathways, revealing differences among
species (Fig. 2a). For instance, in Baccaurea ramiflora, fatty acids
were more abundant than terpenoids, whereas in Garcinia cowa,
the reverse was observed. We also assessed the degree of

metabolite variation by comparing mean dissimilarity within and
between species across different compound categories, including
total, primary, and secondary metabolites, as well as seven major
biosynthetic pathways (Fig. S4). For total metabolites, the mean
intraspecific dissimilarity was 0.682, while the mean interspecific
dissimilarity was 0.883. Similar to total metabolites, the mean
interspecific dissimilarity was higher than the mean intraspecific
dissimilarity for each of the seven major biosynthetic pathways
(Fig. S4). However, the substantial intraspecific variation
observed in metabolite profiles is noteworthy, as it is often com-
parable to, and in some cases nearly as high as, the interspecific
variation, underscoring the significant role of intraspecific
variability.

Fig. 1 Foliar metabolite profiles of 300 individuals. (a) Boxplot of metabolite richness of 10 species. (b) NMDS visualization based on dissimilarity matrix for
all metabolites across 10 species. The boxplots display the interquartile range (IQR; 25th–75th percentiles) as boxes, with a central horizontal line marking
the median. Whiskers extend to 1.5 times the IQR from the box edges; individual observations are shown as small circles, and larger circles highlight
potential outliers (values beyond 1.5 × IQR). Permutational analysis of variance (PERMANOVA) tests indicate species identity had a significant effect on
dissimilarity among individuals (P= 0.001). Species code: BACCRA, Baccaurea ramiflora; CASTEC, Castanopsis echinocarpa; CINNBE, Cinnamomum

bejolghota; DIOSHA, Diospyros hasseltii; FICULA, Ficus langkokensis; GARCCO, Garcinia cowa; MACRDI,Macropanax dispermus; NEPHCH, Nephelium
chryseum; SEMERE, Semecarpus reticulatus; SLOATO, Sloanea tomentosa.

Table 1 Statistical summary and Kvålseth’s coefficient of variation (kCV) of compound richness across the 10 species.

Species Family Max Min Mean SD KCV (%)

Ficus langkokensis Drake Moraceae 148 12 86 36 38.93
Baccaurea ramiflora Lour. Euphorbiaceae 84 13 39 17 39.41
Sloanea tomentosa (Benth.) Rehder & E. H. Wilson Elaeocarpaceae 187 28 87 39 41.11
Castanopsis echinocarpa A. DC. Fagaceae 180 26 78 38 43.53
Nephelium chryseum Blume Sapindaceae 193 1 93 47 45.07
Semecarpus reticulatus Lecomte Anacardiaceae 137 19 62 32 45.55
Diospyros hasseltii Zoll. Ebenaceae 106 1 47 24 46.12
Cinnamomum bejolghota (Buch.-Ham.) Sweet Lauraceae 122 10 50 29 50.42
Garcinia cowa Roxb. Guttiferae 145 1 61 38 52.60
Macropanax dispermus (Blume) Kuntze Araliaceae 207 14 59 39 54.66
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Sources of variation in foliar metabolites

Our nested variance decomposition analysis indicated that the
largest proportion of variation in total foliar metabolites was
among individuals, contributing 27.5% of the total variance
(Fig. 2b). Variation among species contributed 12.88%, making
it the second-largest source of variation (Fig. 2b). By contrast,
‘life stage’ and ‘plot’ contributed minimally, suggesting these fac-
tors had little consistent influence on the variation in foliar meta-
bolites. When the analysis was further partitioned into primary
and secondary metabolites, distinct patterns of contribution
emerged (Fig. 2b). For primary metabolites, plot-level factors
explained 7.65% of the variation, while the contribution of
individual-level differences remained substantial at 21.41%.
Notably, ‘species’ showed negligible contributions to primary
metabolite variation. By contrast, for secondary metabolites,
species-level contributions became more pronounced, explaining
18% of the total variance, while individual-level differences
remained similar at 21.5%.

Relative importance of genetic diversity, abiotic
environment, and biotic environment

Our results (Figs 3, 4) illustrate the contributions of genetic
diversity, abiotic environment, biotic environment, and their
interactions to intraspecific variation across different metabolite
categories, including total, primary, and secondary metabolites as
well as seven major biosynthetic pathways. By comparing R2

values and significance levels for each model (Figs S5, S6), we
observed distinct responses of intraspecific variation to genetic,
abiotic, and biotic factors among species, which enabled us to
determine whether compounds within the same category consis-
tently respond to specific factors across species or whether sub-
stantial interspecies variability exists.

For total metabolites (Fig. 3a), the largest contributor to
intraspecific variation was the biotic environment. For example,

in Diospyros hasseltii, the most significant factor influencing
intraspecific variation was the biotic environment, along with the
interaction between genetic diversity and the biotic environment
(Figs 3a, S5a). Moreover, the responses of intraspecific variation
in total metabolites to biotic factors displayed greater interspecies
variability than responses to abiotic or genetic factors (Fig. 3a).
This variation suggests that biotic factors exert diverse influences
across species, indicating distinct adaptive strategies in metabolite
profiles among species.

For primary metabolites (Fig. 3b), genetic, abiotic, and biotic
factors had relatively balanced contributions to intraspecific varia-
tion, with responses showing less interspecies variability. How-
ever, within specific pathways such as ‘Carbohydrates’ (Fig. 4f),
abiotic factors were the dominant contributors. For instance, in
Macropanax dispermus, the abiotic environment was the primary
factor affecting intraspecific variation in carbohydrates (Figs 4f,
S6f). Notably, responses of carbohydrate variation to abiotic fac-
tors were more divergent among species than those to genetic or
biotic factors (Fig. 4f).

For secondary metabolites (Fig. 3c), the pattern of intraspecific
variation was similar to that of total metabolites, with biotic fac-
tors having a predominant influence. For example, in Macropa-
nax dispermus, intraspecific variation in ‘Amino Acids and
Peptides’ (Figs 4b, S6b) was primarily influenced by biotic fac-
tors, while in Garcinia cowa, biotic factors had the largest impact
on intraspecific variation in ‘Terpenoids’ (Figs 4e, S6e). In parti-
cular, the magnitude of intraspecific variation in responses to bio-
tic factors differed considerably among species within pathways
such as ‘Alkaloids’ (Fig. 4a), ‘Amino Acids and Peptides’
(Fig. 4b), and ‘Polyketides’ (Fig. 4c), suggesting that species exhi-
bit distinct responses to biotic interactions.

While abiotic and biotic factors emerged as important influ-
ences on intraspecific variation across different metabolite cate-
gories, our analysis also highlighted the substantial role of genetic
background and its interactions with environmental factors
(Figs 3, 4). Across all metabolite categories, interactions between

Fig. 2 Hierarchical variance decomposition of foliar metabolites. (a) Composition of foliar metabolites across 10 common species. (b) Contributions of four
hierarchical levels to variation in total, primary, and secondary metabolites. Species code: BACCRA, Baccaurea ramiflora; CASTEC, Castanopsis
echinocarpa; CINNBE, Cinnamomum bejolghota; DIOSHA, Diospyros hasseltii; FICULA, Ficus langkokensis; GARCCO, Garcinia cowa; MACRDI,
Macropanax dispermus; NEPHCH, Nephelium chryseum; SEMERE, Semecarpus reticulatus; SLOATO, Sloanea tomentosa.
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genetic diversity and abiotic or biotic environments showed high
R2 values, indicating a significant impact on intraspecific varia-
tion. This finding underscores the importance of considering
genetic–environment interactions when examining factors that
influence metabolite diversity within species.

Discussion

The plant metabolome mediates interactions with natural ene-
mies, mutualists, and the abiotic environment, influencing
resource allocation trade-offs that shape life-history strategies
and defense syndromes (Coley et al., 1985; Kursar &
Coley, 2003). However, plant metabolites exhibit substantial
intraspecific variation driven by genetic and environmental fac-
tors (Glassmire et al., 2016; Salgado et al., 2023). This study
assessed intraspecific metabolite variation, its role in
community-level metabolite diversity, and the genetic and
environmental contributions to this variation in co-occurring
tree species in a seasonal tropical forest. We found that
individual-level variation was the largest source of metabolite
diversity, followed by species-level variation (Fig. 2b). The
metabolic pathways linked to genetic and environmental varia-
tion differed among species (Fig. 4). Our results highlight
intraspecific variation as a key driver of community metabolite
diversity. However, species rely on different metabolite classes
to cope with environmental pressures, underscoring the role of
genetic variation and plasticity. Furthermore, interspecific var-
iation shapes the relative influence of these drivers within spe-
cies, as well as the predominant biosynthetic pathways that
they affect.

Importance of intraspecific metabolite variation in tree
communities

Intraspecific trait variation is increasingly recognized as ecologi-
cally significant across morphological (Hulshof & Swen-
son, 2010) and physiological traits (Martin et al., 2017).
Community-level studies reveal that morphological ITV is com-
parable to interspecific variation, accounting for 25% of
within-community and 32% of between-community trait differ-
ences (Messier et al., 2010; Siefert et al., 2015). These levels sug-
gest that predictions of ecological dynamics based on species
mean trait values may be flawed (Yang et al., 2018; Rubio &
Swenson, 2024). Despite these insights, research on ITV remains
disproportionately focused on easily measurable phenotypic
traits, and most studies that have explored metabolomic variation
in the context of functional ecology have done so using species
mean trait values (Sardans et al., 2011; Endara et al., 2022;
Walker et al., 2022).

Our findings demonstrate substantial intraspecific variation in
foliar metabolomes, with individual-level differences explaining
27.5% of total variance—consistent with population-specific
metabolite diversity in Cistus ladanifer (Masa et al., 2016) and
global herbivory variation patterns (Robinson et al., 2023). On
the other hand, interspecific chemical dissimilarity (mean=
0.883) clearly exceeds intraspecific levels (mean= 0.682). This
apparent discrepancy can be reconciled. Mean dissimilarity quan-
tifies compositional divergence between species, whereas variance
decomposition assesses hierarchical contributions. Furthermore,
our results suggest that species possess distinct metabolic toolkits,
and in many cases unique metabolites, yet individuals vary as to

Fig. 3 Contributions of genetic, abiotic, and biotic factors to intraspecific dissimilarity in total, primary, and secondary metabolites. Boxplots show the
relative contributions of genetic diversity, abiotic environment, and biotic environment to intraspecific dissimilarity across 10 plant species, with subplots
representing (a) total metabolites, (b) primary metabolites, and (c) secondary metabolites, analyzed via R2 values. Points represent individual species, with
closed points indicating significant effects (P< 0.05) and open points indicating nonsignificant effects (P≥ 0.05). Contributions were assessed using three
models: (1) individual effects; (2) gene–abiotic interactions; and (3) gene–biotic interactions. Model significance was determined via 999 permutation tests.
The boxplots display the interquartile range (IQR; 25th–75th percentiles) as boxes, with a central horizontal line marking the median. Whiskers extend to
1.5 times the IQR from the box edges, individual observations are shown as small circles, and larger circles highlight potential outliers (values beyond
1.5 × IQR). Species code: BA, Baccaurea ramiflora; CA, Castanopsis echinocarpa; CI, Cinnamomum bejolghota; DI, Diospyros hasseltii; FI, Ficus
langkokensis; GA, Garcinia cowa; MA,Macropanax dispermus; NE, Nephelium chryseum; SE, Semecarpus reticulatus; SL, Sloanea tomentosa.
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which metabolites are expressed. As a result, individual-to-
individual differences make up a significant proportion of
community-scale chemical variation, with the potential to
reshape our understanding of plant adaptation and ecosystem
functioning.

In tropical forests, the role of biotic interactions is important
to understanding potential mechanisms of coexistence among
species. Negative intraspecific interactions must be stronger than
negative interspecific interactions for species to stably coexist
(Adler et al., 2018), and this niche differentiation can be achieved

by species divergence in traits that mediate resource use or inter-
actions with natural enemies (Chesson & Kuang, 2008). While
opportunities for differentiation in plants with respect to
resources are few, insect herbivores and microbial pathogens
represent a high-dimensional space within which plants might
differentiate to avoid enemy-mediated competition. Jan-
zen (1970) and Connell (1971) proposed that, as a result of plant
differentiation with respect to host range-limiting traits such as
chemical defenses, specialist natural enemies may suppress their
host plants where locally abundant. This dynamic enforces

Fig. 4 Contributions of genetic, abiotic, and biotic factors to intraspecific dissimilarity across seven major biosynthetic pathways. Boxplots show the relative
contributions of genetic diversity, abiotic environment, and biotic environment to intraspecific dissimilarity across seven major biosynthetic pathways (a–g)
of 10 species, based on R2 values. Points represent individual species, with closed points indicating significant effects (P< 0.05) and open points indicating
nonsignificant effects (P≥ 0.05). Contributions were assessed using three models: (1) individual effects; (2) gene–abiotic interactions; and (3) gene–biotic
interactions. Model significance was determined via 999 permutation tests. The boxplots display the interquartile range (IQR; 25th–75th percentiles) as
boxes, with a central horizontal line marking the median. Whiskers extend to 1.5 times the IQR from the box edges, individual observations are shown as
small circles, and larger circles highlight potential outliers (values beyond 1.5 × IQR). Species code: BA, Baccaurea ramiflora; CA, Castanopsis echinocarpa;
CI, Cinnamomum bejolghota; DI, Diospyros hasseltii; FI, Ficus langkokensis; GA, Garcinia cowa; MA,Macropanax dispermus; NE, Nephelium chryseum;
SE, Semecarpus reticulatus; SL, Sloanea tomentosa.
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intense, enemy-mediated competition, thereby promoting species
coexistence. The diversity of density-dependent enemies can
likely vary with the degree of chemical divergence among plants
and hence overlap in natural enemies (Sedio & Ostling, 2013).
Empirical studies of Inga (Fabaceae) based on species average
metabolomes found that chemical similarity is associated with
the degree to which herbivores are shared among species (Kursar
et al., 2009; Endara et al., 2017) and that chemical similarity to
neighbors reduces sapling survival (Forrister et al., 2019).
Furthermore, local neighborhoods consist of species that are less
chemically similar than random in the Xishuangbanna, China,
forest dynamics plot, our study site (Wang et al., 2023; Sun
et al., 2024). Yet other studies have found that variation in the
chemical profiles of individual plants can affect their palatability
and susceptibility to herbivores (Massad et al., 2011; Glassmire
et al., 2016). Hence, our findings suggest that considering intras-
pecific variation in metabolomes will provide valuable insights
into resource utilization, competition, and diversity maintenance,
even in species-rich tropical forests.

The contribution of the abiotic and biotic environment to
intraspecific variation in plant metabolites

Our findings support a growing body of evidence that different
metabolite classes respond differentially to abiotic and biotic
environmental variation (Fig. 4; Table S4; Volf et al., 2023). In
our study, primary and secondary metabolites exhibited distinct
responses to these factors, with primary metabolites more
strongly influenced by abiotic conditions and secondary metabo-
lites showing a greater response to biotic interactions (Fig. 3b,c).
We defined primary metabolites as carbohydrates and fatty acids
to distinguish them from more specialized metabolic pathways
that are more likely to be involved in defense. Variations in car-
bohydrates and fatty acids may reflect underlying plant physiol-
ogy and adaptations to abiotic environmental stresses such as
drought, temperature fluctuations, and nutrient availability
(Sampaio et al., 2016; Das et al., 2017; Salam et al., 2023).
Furthermore, abiotic stress can significantly alter the expression
of metabolic pathways associated with primary metabolites,
resulting in changes in plant growth and survival strategies (Abd
El-daim et al., 2019; Godoy et al., 2021).

By contrast, secondary metabolites encompass a vast diversity
of plant compounds with numerous and sometimes multiple
functions, including responses to abiotic stress and defense
against herbivores and pathogens (Volf et al., 2023). Their pro-
duction is often induced by herbivory or pathogen attack (Jan
et al., 2021; Al-Khayri et al., 2023). For example, research has
demonstrated that the accumulation of secondary metabolites
such as alkaloids and phenolics is significantly influenced by bio-
tic stressors, which induce their biosynthesis (Ghorbanpour
et al., 2013; Erb & Kliebenstein, 2020). In addition to induction
in direct response to the attack by natural enemies, environmen-
tal factors such as soil composition and moisture levels can mod-
ulate biotic interactions, further shaping the relationship between
secondary metabolite production and environmental conditions
(Erb & Lu, 2013; Walter, 2018; Bennett & Klironomos, 2019).

The growth–differentiation balance hypothesis provides a valu-
able framework for understanding trade-offs in investment
between growth and defense faced by individuals (Herms &
Mattson, 1992). According to this hypothesis, individuals
respond to favorable resource conditions (e.g. high soil nutrient
availability) by investing in primary metabolism and growth,
whereas individuals that experience resource limitation invest in
secondary metabolites for defense. Recent studies have found that
both biotic (e.g. competition and herbivory) and abiotic (e.g.
nutrient availability) factors shape metabolome expression
(Ballaré & Austin, 2019; Volf et al., 2022). Hence, variations in
soil nutrients, crowding, and herbivory all likely contributed to
intraspecific metabolite variation across our 10 focal species.

Although most species exhibited some variation in response
to the abiotic or biotic environment or their interaction with
genetic distance (Figs 4, S6), our results suggest that the particu-
lar metabolic pathways that respond to such variation vary
among species. For example, in Castanopsis echinocarpa, abiotic
and biotic factors significantly affected intraspecific variation in
shikimates, terpenoids, and fatty acids (Figs 4d,e,g, S6d,e,g),
suggesting that these metabolites play an important role in
defense and/or stress response (Huber et al., 2016). By contrast,
in Baccaurea ramiflora, variation in the abiotic and biotic envir-
onment was associated with intraspecific variation in polyketides
(Figs 4c, S6c), suggesting a reliance on a distinct metabolic path-
way for defense. Polyketides are known for their diverse biologi-
cal activities, including antimicrobial properties, which can be
crucial for plants facing varying environmental stresses (Volf
et al., 2022). These species-specific metabolic responses likely
reflect metabolic pathways that are unique to specific plant phy-
logenetic lineages, well-known examples of which include gluco-
sinolates in Brassicaceae and quinolizidine alkaloids in Fabaceae
(Wink, 2003). Such lineage-characteristic biosynthetic pathways
may have evolved in response to different selection pressures
experienced by different lineages during their evolutionary his-
tory. Hence, the variation in metabolic pathways we observed
among species likely reflects a deep phylogenetic signal that dis-
tinguishes the families represented by our 10 focal species
(Wink, 2003). Such lineage-specific metabolic strategies may
contribute to niche differentiation by allowing species to miti-
gate competition through distinct resource allocation patterns.
However, a growing body of evidence suggests that even closely
related tree species often display distinctive and characteristic
metabolomic composition perhaps especially in species-rich tro-
pical tree genera (Sedio et al., 2017; Endara et al., 2018).
Although this is often seen as evidence for within-site niche par-
titioning with respect to defensive metabolites (Kursar
et al., 2009; Forrister et al., 2019), interspecific metabolomic
variation may also contribute to abiotic niche segregation among
closely related species despite ITV (Volf et al., 2022, 2023). As a
consequence of the fundamental differences in metabolic path-
ways that co-occurring species rely on for similar functions,
interspecific variation represents an important component of
metabolite diversity at the scale of the forest community. This
holds true even when considering the magnitude of intraspecific
variation we observed.
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The contribution of genetic diversity to intraspecific
variation of plant metabolites

Understanding the role of genetic diversity in intraspecific meta-
bolite variations is crucial for elucidating plant adaptation to
environmental changes. Genetic diversity can enhance a popula-
tion’s ability to adapt to varying environmental conditions, which
is essential for survival and reproduction in fluctuating ecosys-
tems (Crawford & Whitney, 2010). Previous research has shown
that genetic variation can lead to significant differences in chemi-
cal profiles, influencing traits such as herbivore resistance and dis-
ease tolerance (Pardo et al., 2018). For instance, studies have
demonstrated that even minor genetic differences, such as single
amino acid substitutions, can result in substantial variation in
secondary metabolite production, which, in turn, can affect plant
fitness and interactions with herbivores (Pais et al., 2018). In our
study, we found that genetic factors exerted a less significant
influence on intraspecific metabolite variation compared to envir-
onmental factors. Specifically, we observed that genetic distance
primarily affected intraspecific variation in fatty acids (Figs 4g,
S6g), which we defined as primary metabolites, as well as certain
secondary metabolites such as alkaloids and terpenoids (Figs 4a,e,
S6a,e). This pattern aligns with our expectations and can be
attributed to several factors.

First, our community-level sampling revealed limited genetic
diversity, likely due to the relatively small spatial extent (20 ha) of
the sampled community. This limited genetic diversity may
restrict the range of metabolic responses available to individuals
within the population (Riedelsheimer et al., 2012). Moreover,
the dynamics of plant metabolite production are often rapid and
responsive to environmental changes (Metlen et al., 2009; Moore
et al., 2014), which can overshadow heritable variation due to
genetics. As environmental conditions fluctuate, plant individuals
may quickly adjust their metabolite profiles to optimize growth
and defense strategies. This rapid response diminishes the
observed association between genotype and phenotype in
the population.

However, the interplay between genetic diversity and envir-
onmental conditions creates a dynamic landscape of metabolite
expression, in which both abiotic and biotic influences converge
to shape the chemical ecology of a species. For example, studies
have shown that genetic diversity can enhance the resilience of
plant populations to environmental stressors, thereby influen-
cing the production of secondary metabolites that function in
defense against herbivores and pathogens (Isah, 2019; Jan
et al., 2021). This suggests that, while genetic diversity may play
a crucial role in underpinning potential adaptation to environ-
mental changes, its contribution to observed phenotypic varia-
tion within a population is difficult to detect in the face of the
extreme phenotypic plasticity and dynamic variation in expres-
sion exhibited by plant metabolites. Moreover, variation in nat-
ural selection pressures, which shape responses in growth and
defense traits based on their impact on plant fitness, adds
another layer of complexity to this relationship. Future work
should further compare the relative importance of genetic and
abiotic/biotic environmental factors and their interactions in

shaping intra- and interspecific variation in plant metabolites
across a range of spatial and temporal scales in multiple forest
types.

Conclusion

Our study highlights the crucial role of intraspecific metabolite
variation in shaping community-level chemical diversity in tropi-
cal forests. We demonstrate that while species differ in the meta-
bolic pathways and chemical classes they express to cope with
ecological pressures, both genetic diversity and environmental
factors exert significant influence on the metabolite profiles of
individual trees. By integrating metabolomics with genetic and
environmental analyses, our study provides novel insights into
the ecological and evolutionary mechanisms underlying plant
chemical diversity. These findings suggest that both metabolic
plasticity and genetic variation make significant contributions to
community-level chemical variation and raise important ques-
tions about the implications of this variation for interspecific
competition and diversity maintenance. Future research should
explore how these sources of metabolomic variation respond to
broader environmental gradients and how such variation influ-
ences higher trophic interactions and long-term community
dynamics in tropical ecosystems.
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