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Abstract: Yunnan is located in the southwestern part of China, with rich tea tree germplasm resources
and diversified geomorphological and climatic features, which help us to carry out research related to
tea tree chronology and provide scientific and effective support information for enriching the database
of tree rings in western Yunnan. This study took the Brown Mountain tea tree in Xishuangbanna as
the research object, collected tea tree sample cores through tree growth cone sampling, measured
the width of the annual rings, cross-dated them, and established a chronology of the width of the
annual rings of the tea tree. The R language was used to analyze the response function of the tea
tree’s annual ring chronology with the climatic factors of the study site, discussed the relationship
between the radial growth of the tea tree in subtropical regions and climatic factors, and determined
the main factors that affected the radial growth of the tea tree. The results of the study showed that
the chronology of the tea tree’s whorl width spanned 70 years (1954–2023), with an average annual
growth rate of 1.283 mm/year; the average sensitivity was 0.514, which indicated that the chronology
contained richer climatic information. The representativeness of the sample group of the whorl width
index (EPS) was 0.716, indicating that the consistency of the growth inter-annual variations was better
among the different trees. The radial growth was correlated with climatic factors such as temperature
and moisture; the radial growth of the tea tree was usually more sensitive to moisture availability,
limited by hydrological and climatic factors throughout the rainy season of the year, and positively
correlated with the temperature in summer and autumn. In terms of the stability of the radial growth
of the tea tree in relation to the climatic response, the growth of the tea tree in the study area may
have benefited from future warming of the climate and reduction in precipitation.

Keywords: tea tree; annual ring width; financial year; climate change; responsiveness

1. Introduction

Tree annual rings not only record the age of the tree itself but also the process of
climatic and environmental changes experienced by the tree as it grows. Changes in global
mean surface temperature, as well as in other climate factors, have increased rapidly and
are projected to continue increasing [1]. The (sub)tropics have experienced the most rapid
warming in recent decades, which may have negatively affected tree growth and increased
mortality risk [2]. It is evident that tree growth in tropical forests in Asia shows high
sensitivity to climate change [3,4]. According to the survey, the southwest region has had
a significant upward trend in temperature and a decreasing trend in precipitation over
the last 50 years, but the intensity of precipitation is increasing [5,6]. The ranges of most
woody plant species in Southwest China are projected to decrease by more than 30% by
2080 [7]. In this regard, tree annual rings provide high-resolution data on a wide range of
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interacting factors that affect tree growth [8], and in China, dendrochronological studies
focus mainly on high-altitude regions and coniferous species that are more amenable to
reconstructing past climate change [9]. Therefore, in order to better understand the growth
response of tropical forests in Asia to climate change, it is particularly important to study
the key scientific issue of the response pattern of tea tree annual cycle characteristics to
changes in precipitation. At this time, cultural construction based on archeology from early
to late periods in Yunnan Province, China, has not yet been conducted, so the study of tree
chronology of tea trees is a very important topic.

The tea tree in China is distributed from eastern to southwestern regions [10], and
although it is widely distributed from subtropical to tropical climates, the relationship
between its growth and climate has not been reported in research. Since the tea tree is one
of the important economic tree species in the subtropical region of southwestern China,
in order to understand the main climatic variables limiting the inter-annual radial growth
of the tea tree in southwestern Yunnan, a chronology of the tea tree’s annual ring width
was established based on comparing the tectonic characteristics and chemical composition
differences in the tea tree in different regions. The study investigated the relationship
between the response of its annual ring width and climate change. It aims to explore the
following: what are the main climatic factors limiting the radial growth of tea trees in the
study area?

2. Materials and Methods
2.1. Research Materials

The material was selected from the tea tree (Camellia sinensis) in Xishuangbanna,
Yunnan Province, at low and middle altitudes (1100 m–1200 m), from the old forest of Brown
Mountain in southwestern Yunnan. This species is temperature-loving, humidity-loving,
and shade-tolerant, and it is distributed from 880 m to 2200 m above sea level [11,12].

2.2. Research Methodology
2.2.1. Sample Collection

Tree annual rings and tree core sampling aimed to study the relationship between
tea tree growth and climate using the annual ring width characteristics of trees in the
subtropical climate of Yunnan, southwestern China. Therefore, in this study, 20 tea tree
growth cone samples were collected from the Brown Mountain study area to investigate the
relationship between tree growth and climate. To obtain high-quality data on tree annual
rings, tea tree individuals without obvious diseases and with upright trunks were selected.
Tree cores were obtained for each sample at a distance of approximately 40 cm above the
base [13].

During October 2023, one or two cores were collected from each tree using growth
cones (5.15 mm inner diameter). Damage from growth cone sampling was treated with
tree repair cream to the wound to allow for rapid healing; the diameter at breast height
(DBH) of all sampled trees was measured using a tree measuring tape, and the latitude,
longitude, and elevation of each tree were recorded using GPS. To ensure that estimates
of common growth trends were not confounded by potentially low-frequency climatic or
environmental forcing in the chronology, all live trees with a diameter at breast height
(DBH) greater than 5 cm were sampled [14–16]. Samples were collected in plastic pipettes
and taken back to the laboratory for subsequent experiments.

2.2.2. Measurement and Cross-Dating of Tree Annual Ring Widths

The method of determining the width of the annual rings of the tea tree was carried out
in accordance with traditional dendrochronological studies. The tea tree core samples were
fixed on a flat plate with adhesive tape to air dry (to prevent bending) for a fortnight, and
to increase the visibility of the annual ring boundaries, the cores were fixed on a wooden
frame with grooves and polished and sanded with sandpaper of grit sizes 200 mesh,
400 mesh, 600 mesh, 800 mesh, 1000 mesh, 1500 mesh, 2000 mesh, and 3000 mesh in that
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order. To enhance the visibility of the annual ring boundaries, the surface of the cores
was chalked to increase the contrast of the annual ring boundaries. The width of the
annual rings was measured under a stereomicroscope (Leica M50, Carl Zeiss AG, Jena,
Germany) with the help of a cold light source using a tree annual ring meter, LINTABTM
(RINNTECH, Heidelberg, Germany) 6 (Rinntech, accuracy: 0.001 mm), and the samples in
TSAP-Win were cross-dated by visual curve matching and statistical tests (sign test, t-test,
and cross-dating indices) during the measurement process. When performing cross-dating,
cores that were severely broken at the time of sampling, decayed, and had low cross-dating
index (CDI) values in relation to the main chronological sequence were discarded.

2.2.3. Establishment of Brown Mountain Tea Tree Chronology

In order to minimize the influence of non-climatic factors and to eliminate the ‘young
age effect’ in the final tree chronology, the original tree-rotor width series were normalized
using a two-step detrending process [17,18]. This detrending method maximized the
common signals among tree-rotor sequences. It also removed low-frequency trends caused
by stand dynamics and tree aging. The final mean annual wheel width was calculated from
a double-weighted robust mean of the individual tree wheel width sequences to eliminate
the effect of outliers. Several descriptive statistics, such as the average radial growth rate
(AGR), mean sensitivity (MS), signal-to-noise ratio (SNR), and first-order autocorrelation
(AC1), were then calculated for the tree chronology. Finally, a standard chronology of tree
annual ring widths was created for related statistical analyses.

2.2.4. Statistical Analyses

The relationship between tea tree growth and climate was analyzed by calculating the
Pearson correlation coefficients between the tree ring characteristics from August of the
previous year to October of the current year—a total of 15 months—and the monthly climate
dataset. Since the climate of the previous year’s growing season might have influenced
the growth of trees in the current year, it was essential to consider the climate variables
from the previous growing season in the analysis. Using the bootstrap [19] package
in R, the relationship between tree growth and climate factors was calculated through
bootstrapping correlation. In addition to the monthly climate data, seasonal averages of
climate parameters were also analyzed. This study examined tree chronology and climate
variables—including monthly mean temperature (Tmean), minimum temperature (Tmin),
maximum temperature (Tmax), precipitation (Pre), and relative humidity (RH)—from 1961
to 2022, employing a moving correlation analysis with a 20-year moving window and a
2-year offset, to assess the temporal stability of the climate–growth relationship. Finally,
the dcc function in the R package treeclim was used for a moving correlation analysis to
evaluate the temporal stability of the relationship between tree growth and climate.

2.3. Overview of Study Area
2.3.1. Climatic Profile of Study Area

The Yunnan region had a distinct seasonal climate, with the summer rainy season
(May to October) influenced by the Asian and tropical southwestern monsoon, and the
winter dry season (November to April) influenced by the northern continental cold air
mass and temperate westerly winds [20,21]. In this study, the Brown Mountain tea tree
in Xishuangbanna was selected as the research object to carry out the dendrochronolog-
ical study. The study area was located in Xishuangbanna Nature Reserve, which has a
subtropical monsoon climate.

2.3.2. Climate Data Acquisition in the Study Area

Monthly climatic data were obtained from the Menglun Meteorological Station (21.54◦ N
–101.46◦ E, 580 m) at the Xishuangbanna Tropical Rainforest Ecosystem Research Station
(XTRES), in a study area approximately 130 km away from the meteorological station. It
was demonstrated that the correlation between the annual ring widths of the trees sampled
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within a range of 150 km around the meteorological station and the climatic factors did
not significantly decrease [22]. Similarly, the distance between the meteorological station
and the sampling site of tree core samples did not have to be very close in order to observe
the link between tree core samples and regional large-scale changes [23]. Climatic data
obtained from weather stations in this study included monthly mean temperature (Tmean),
minimum temperature (Tmin), maximum temperature (Tmax), precipitation (Prec), and
relative humidity (RH).

According to the data from the Menglun Meteorological Station (Figure 1), the average
annual precipitation was 1447 mm (1959–2022), with more than 85 percent of the precipita-
tion occurring during the rainy season (May–October); the average annual temperature
was 24 ◦C (1959–2022).
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Figure 1. The Walter–Lieth climate diagram of the Menglun climate station for the period 1959–2022.
(The red and blue lines indicate monthly mean temperature and precipitation, respectively; the
red dotted area indicates periods of drought; the area labeled with blue vertical lines indicates wet
months/seasons; and the blue shaded area indicates periods when monthly precipitation exceeds
100 mm, and the station name, altitude, time span, annual mean temperature, and annual mean
precipitation are also shown).

The climate trend analysis was carried out on the data from the Menglun Meteoro-
logical Station (1959–2022) by using the lm function in the stats package of the R language.
As shown in Figure 2, this indicated an increasing trend in mean temperature (Tmean),
minimum temperature (Tmin), and maximum temperature (Tmax), and a slight decreasing
trend in precipitation (mm) and relative humidity (Rh).
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Figure 2. Long-term changes in mean annual temperature, maximum temperature, minimum tem-
perature, precipitation, and relative humidity in the study area, 1959–2022 (Menglun Meteorological
Station).

3. Results
3.1. The Chronological Characterization of the Width of the Annual Rings

In this study, a total of 36 cores were collected from 20 tea trees to establish a chronology
of tea tree wheel widths, and the descriptive statistical characteristics of the standard
tea tree chronology are shown in Table 1: the tea tree wheel width chronology spanned
70 years (1954–2023), and the average annual growth rate of the tea trees was 1.283 mm/year.
The first-order autocorrelation coefficient (ACI) was 0.269, which indicated that the growth
of the tea trees in the current year was less significantly affected by the previous year. The
average sensitivity was 0.514, which indicated that the chronology contains richer climatic
information. The correlation coefficient between core sequences was 0.112, and the sample
population representativeness (EPS) of the wheel width index was 0.514. The first-order
autocorrelation coefficient (ACI) was 0.269, indicating that the growth of the tea tree in the
current year was influenced by the growth of the previous year. The average sensitivity
was 0.514, indicating that the chronology contains rich climate information. The correlation
coefficient of the tree core series (Rbar) was 0.112, and the expressed population signal (EPS)
of the tree wheel width index was 0.716; the signal-to-noise ratio was 2.526. This indicated
that the inter-annual variation in growth among different trees was more consistent, and
the quality of the chronology was better, which could represent the overall characteristics
of tea tree growth in the study area and contain more climate information. In the standard
chronology of tree wheel width, it could be seen that the inter-annual growth of the tea tree
fluctuated a lot, and there were more extreme narrow years (Figure 3), so the tea tree grew
slowly in this region (Table 1).



Agronomy 2024, 14, 2913 6 of 12

Table 1. Statistics of tree ring width standard chronologies of Camellia sinensis.

Statistical Characteristics

Time span 1954–2023
Average annual growth rate (mm/year) 1.283

First-order autocorrelation coefficient (ACI) 0.269
Average sensitivity (MS) 0.514

Signal-to-noise ratio (SNR) 2.526
Sequence correlation (Rbar) 0.112

Expressed population signal (EPS) 0.716
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low-pass filter; shaded area: sample depth).

3.2. Relationship Between Radial Growth and Climate

According to the Walter Lees climatological map of Menglun Meteorological Station,
from 1959 to 2022, the average annual precipitation in Menglun Township was 1447 mm,
with more than 85% of the precipitation occurring during the rainy season (May–October),
and the average annual temperature was 24 ◦C.

The correlation analysis between the tea tree’s tree ring standard chronology and
climate factors is shown in Figure 4. The width of the tea tree’s tree rings was positively
correlated with temperature in most months and negatively correlated with precipitation
and relative humidity. In the study area, the radial growth of tea trees showed a consistent
response to mean temperature (Tmean), minimum temperature (Tmin), and maximum
temperature (Tmax), with significant positive correlations with the average temperature in
May (Tmean) and the maximum temperature in April (Tmax) of the same year. There was
a non-significant positive correlation with the average temperature from February to April
(Tmean) of the same year. It showed a significant positive correlation with December pre-
cipitation (Prec) of the previous year and a significant negative correlation with September
of the current year; there was a non-significant positive correlation with relative humidity
(RH) from October of the previous year to March of the current year.
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Figure 4. Correlation coefficients between ring-width standard chronology of Camellia sinensis
and monthly climatic parameters (the bootstrapped correlation analysis was performed for the
months from the previous August to the current October during the period 1982–2019). (Colors
represent correlation coefficients ranging from negative (blue) to positive (red). * indicates a significant
correlation coefficient. TMN, minimum temperature; TMP, mean temperature; TMX, maximum
temperature; PRE, total precipitation; RH, relative humidity).

Based on the response of tea trees to climate parameters at different time scales, it
was found that during the current growing season, the growth of tea trees was mainly
influenced by temperature. The temperatures in spring and early summer were limiting
factors, with radial growth positively correlated with temperatures from February to
July [24]. In the previous growing season, the radial growth of tea trees was positively
influenced by water supply, but in the current growing season, it was negatively affected,
indicating that excessive rainfall during the growth period may inhibit the expansion of
tree diameter [25]. The findings of this study align with observations in other humid
forests in China, where researchers have found that relative humidity and precipitation are
negatively correlated with the growth of Tetracentron sinensis Oliv, while being positively
correlated with the duration of sunshine during the growing season [26]. Similarly, in the
eastern part of China, the growth of Schima superban. et Champ in Gutian Mountain shows a
significant negative correlation with summer precipitation and a positive correlation with
sunshine duration [27]. It was evident that the year-round growth of evergreen species
is significantly affected by climate conditions during the dry season [28], while there was
generally a lack of climate records for trees in regions with relatively high humidity and
low temperature amplitude [29].

Based on a study of red pine wood formation in eastern China, the dry season showed
better tree growth compared to periods of abundant precipitation, and autumn was ob-
served to play an important role in the overall growth of trees throughout the year [30]. In
this regard, the present study observed that tea tree growth was negatively correlated with
both relative humidity and precipitation in summer and autumn, but positively correlated
with the temperature of the year. This may be attributed to the fact that in the lower layers
of subtropical montane humid forests, smaller tea tree canopies did not dominate over the
surrounding taller species, whose canopies blocked light and limited photosynthesis. This
discrepancy was related to the distribution pattern of the tea tree in the sample plots. The
study area is located at low to medium altitude and has a mild climate, which, during the
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summer months, is characterized by cloudiness and mist. This, together with high humidity
and adequate precipitation, has a significant impact on sunlight hours and photosynthesis,
ultimately limiting tree growth.

3.3. Stability of Radial Growth and Climate Response

A 20-year sliding correlation analysis of the tea tree wheel width chronology with
climate factors from August of the previous year to December of the current year showed
(Figure 5) that the p-value was below 0.05, indicating a significant correlation between tree
growth and climate change, and that the radial growth of the tea tree varied in its stability
in response to climate factors. The mean June temperature (Tmean) with the previous
year shifted from a non-significant positive correlation (1961–1984) to a significant positive
correlation (1985–2010) and then to a non-significant positive correlation (2010–2022). The
maximum temperature (Tmax) in November of the previous year shifted from a significant
negative correlation (1981–2012) to a non-significant positive correlation. The minimum
temperature (Tmin) in June of the previous year shifted from a non-significant negative
correlation (1973–2010) to a significant positive correlation. In terms of the moisture effect,
the positive correlation with precipitation (Prec) from August to November of the previous
year shifted from non-significantly positive to negative, and the positive correlation with
precipitation (Prec) from December of the previous year basically reached significance.
Relative humidity (RH) from October of the previous year to March of the current year was
either significantly positively correlated or not significantly positively correlated. Overall,
tea trees showed strong correlations in the mid- to late 20th century, but the response
pattern has gradually weakened in the last two decades.
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Figure 5. Moving correlation coefficients’ ring-width standard chronology of Camellia sinensis and
climatic parameters. (Correlations were computed for a 20-year moving window with a 2-year
offset during the period 1961–2022. * indicates a significant correlation coefficient. TMN, minimum
temperature; TMP, mean temperature; TMX, maximum temperature; PRE, total precipitation; RH,
relative humidity).
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Sliding correlation analyses revealed unstable relationships between tea tree growth
and climate parameters over time. Overall, all correlations showed a weakening trend in
recent decades. Tea plants as a whole exhibited persistent negative hydroclimatic impacts
and positive maximum temperature (Tmax) during the season of abundant precipitation
(May to October), while there were no limiting impacts during the dry season (November
of the previous year to April of the current year). Although the strength of the correlations
weakened over time, the results were consistent with and mutually validated by monthly
growth climate correlations. However, the correlations between climate and tree growth
were erratic for all tree species, suggesting that temperature may no longer be the main
limiting factor for tree growth in the future.

4. Discussion

Tree annual rings are not only a record-of-time scale, but also a treasure trove of
scientific information, containing in each whorl a chain of information influenced by the
natural environment and anthropogenic activities [31]. In this study, the relationship
between radial growth of the tea tree and climatic factors was investigated based on the
annual ring width chronology of the tea tree, and the results revealed the sensitivity of tea
tree growth to changes in temperature and moisture. The annual average growth rate of the
tea tree annual ring width chronology was 1.283 mm/year, and the average sensitivity of
the annual ring width sequence was 0.514, indicating that tea tree growth was significantly
affected by climatic conditions. The sensitivity index of annual ring width reflected the
responsiveness of tea tree annual rings to climate change, and this result suggested that
tea tree growth had a high sensitivity to climate fluctuations, especially when temperature
and moisture conditions changed. Compared with many other tree species, the sensitivity
of the annual rings of tea trees to climate response was moderate, which was not too
sensitive to cause data interference, but also reflected the trend of climate change better.
The width index of tea tree rings (EPS) in this study was 0.716, indicating that the inter-
annual variability of growth was more consistent among different tea trees, which was
more representative and comparable. This implied that the measured sample population
of tea trees could effectively represent the growth dynamics of tea trees in the region,
which in turn provided a reliable basis for analyzing the climate–growth relationship. The
relatively high value of the EPS also supports the validity and robustness of the chronology
in long-term climate change studies.

In terms of climatic response, the radial growth of trees in different locations showed
different responses to climatic factors [32], and the relationship between the radial growth
of the tea tree and temperature and moisture was more pronounced. From the response
relationship between the standard chronology of the tea tree and monthly climate, the
growth of the tea tree showed a significant correlation with temperature (moisture), es-
pecially in the warm season, where the increase in temperature helped the growth of the
tea tree, particularly in the season of abundant precipitation (May to October). However,
during the dry season (November of the previous year to April of the current year), tea
tree growth showed a strong negative hydroclimatic effect; i.e., the scarcity of precipitation
inhibited its radial growth. This result also suggested that tea tree growth was not only
dependent on adequate water supply, but the suitability of temperature was also a key
factor in promoting its growth [33].

In particular, the tea tree showed stronger negative hydroclimatic effects and positive
temperature (Tmax) effects during the season of abundant precipitation, possibly due to
higher temperatures contributing to efficient water utilization and enhanced photosynthesis.
In contrast, during the dry season, the lack of precipitation in conjunction with lower
temperatures may have inhibited tea tree growth. The finding that the mechanisms by
which climatic factors affected tea tree growth showed different patterns in different seasons
further deepened the understanding of the complex relationship between tea tree growth
and climate response. Thus, tree growth in the study area may have benefited from future
warming and reduced precipitation, as predicted by recent global climate scenarios [34].
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In later studies, stable oxygen isotopes [35] were used to analyze the moisture infor-
mation and temperature signals of tea tree growth. Through the determination of stable
oxygen isotopes, both the intra-annual variability characteristics of tree radial growth were
explored, and the response of annual growth to climate was interpreted. The key climatic
factors influencing the radial growth of trees were also explored by tapping into the more
climatic information recorded in the tree whorls. In turn, this helped to formulate appro-
priate policies for the development and protection of ancient tea trees and to construct a
tree-rotor database in western Yunnan.

In summary, this study showed that the radial growth of the tea tree is sensitive to
climate change, especially the changes in water and temperature, which have important
effects on its growth. The results not only provide a quantitative analysis of the relationship
between tea tree growth and climate change, but also offer theoretical support for the study
of tea tree cultivation and climate adaptation. Future research could further explore the
growth pattern of tea trees under different climatic conditions, and combine the prediction
results of climate models to provide a more scientific basis for tea tree cultivation manage-
ment and climate adaptation strategies. Meanwhile, as the growth of tea trees is greatly
influenced by climatic factors, the research results have some implications for the potential
impacts of climate change on agricultural production.

5. Conclusions

This study established a tree ring width chronology by measuring the annual ring
widths of tea trees and cross-dating them. The tea tree ring width chronology spanned
70 years (1954–2023), with an average annual growth rate of 1.283 mm/year; the average
sensitivity of the ring width series was 0.514, indicating that the chronology contains rich
climatic information. The expressed population signal (EPS) of the tree ring width index
was 0.716, suggesting good consistency in inter-annual growth variations among different
tea trees.

From the response relationship between the standard tea tree chronology and monthly
climate, there was a correlation between the radial growth of tea trees and temperature and
moisture. In terms of the stability of the climate response of tea tree radial growth, during
the rainy season (May to October), tea trees generally showed continuous hydroclimatic
negative impacts and positive impacts from maximum temperatures (Tmax). During the
dry season (November of the previous year to April of the following year), unrestricted
effects were observed, which were consistent with the correlations between monthly growth
and climate.
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