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A B S T R A C T

Increasing carbon sequestration (CS) in soils and biomass is an important land-based solution in mitigating global 
warming. Ecosystems provide a wide range of ecosystem services (ESs). The necessity to augment CS may 
engender alterations in the interrelationships among ESs, thereby heightening the probability of ecosystem 
destabilization. This study developed a framework that integrates machine learning and interpretable predictions 
to evaluate the destabilization risk resulting from alterations in ecosystem service relationships dominated by CS. 
We selected Northeastern China as study area to estimate six ESs and identified areas of destabilization risk 
among the three services most relevant to CS, including food production (FP), soil retention (SR), and habitat 
quality (HQ). Subsequently, we compared three machine learning models (random forest, extreme gradient 
boosting, and support vector machine) and introduced the Shapley additive interpretation (SHAP) method for 
driving mechanism analysis. The results showed that: (1) CS-FP had 30.28% of its area at destabilization risk and 
is the most significant ecosystem service pair; (2) Heilongjiang Province was the region with the highest 
destabilization risk of CS, with CS-FP and CS-SR accounting for 44.76% and 52.89% of all regions, respectively; 
(3) a non-linear relationship and the presence of threshold features between socio-ecological factors and the 
prediction of destabilization risk. The study has potential practical value for destabilization risks prevention, 
while also providing a scientific basis for formulating comprehensive carbon management policies and main-
taining ecosystem stability.

1. Introduction

Since the industrial revolution, human activities, especially the 
overconsumption of fossil fuels, have resulted in a rising level of 
greenhouse gases (GHGs) in the atmosphere, triggering global climate 
change characterized by warming (Sun et al., 2022). This change poses a 
wide range of threats to the world in the areas of resources, energy, 
ecology and food security, which seriously challenges the survival and 
development of human beings (Zhao et al., 2022). In response to the 
challenge of global climate change, scientists and policymakers have 
proposed a variety of mitigation pathways to limit global warming to 
less than 1.5 ◦C. These pathways emphasize the need to rapidly increase 
the deployment of land-based solutions, including increased carbon 
sequestration in soil and biomass (Haughey et al., 2023; Smith, 2018). 

The provision of carbon sequestration (CS) by ecosystems to humans can 
mitigate greenhouse gas concentrations through the absorption and 
storage of atmospheric carbon dioxide, resulting in the formation of 
carbon sinks that facilitate above-ground vegetation growth and soil 
development, thereby promoting healthy ecosystem maintenance (Yin 
et al., 2023). Therefore, it is important to strengthen targeted research 
on carbon sequestration and to more fully understand its role and value 
in the ecosystem for achieving climate goals and promoting sustainable 
development.

However, ecosystems also provide a variety of other ecosystem ser-
vices such as food production (FP), soil retention (SR) etc. Widespread 
research has demonstrated that there is a strong link between carbon 
sequestration and other ESs (Gao and Bian, 2019; Wang et al., 2024c; ). 
Increasing the demand for CS may place additional burdens on 
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ecosystems, leading to changes in the relationship between carbon 
sequestration and other ecosystem services. Ecosystem service re-
lationships usually include trade-offs and synergies (Feng et al., 2021). 
Trade-off refers to the state of adversarial relationships between 
ecosystem services, while synergy refers to their cooperation and mutual 
reinforcement (Xue et al., 2023). When the probability of transitioning 
from a synergy to a trade-off relationship between CS and other ESs 
increases, it indicates that the stability of the ecosystem is being chal-
lenged and the capacity to restore equilibrium is weakened, thereby 
intensifying system dynamics and unpredictability (Spyra et al., 2020). 
This process of loss or reduction of equilibrium capacity is known as 
destabilization, and the resulting threat is called the destabilization risk 
(Fernández-Martínez et al., 2023). Despite the considerable attention 
devoted to ecological risks, prevailing studies have predominantly 
assessed and analyzed the complete spectrum of potential threats to 
ecosystems (Gong et al., 2021; Li et al., 2023), and there is a lack of 
targeted research on destabilizing risks. In addition, most studies have 
taken the loss of ecosystem services as a representation of risk in the risk 
assessment process, lacking attention to the dynamics and uncertainty of 
changes in ecosystem service relationships. Therefore, future studies 
should pay more attention to the dynamic interactions of ecosystem 
service relationships and their impacts on system stability. This will 
provide a more comprehensive framework for risk assessment and 
management and facilitate the effective management of the global car-
bon cycle.

The process of risk prediction follows the identification of risks, 
aiming to enhance comprehension and management of potential threats, 
as well as implement early preventive measures for mitigating damages 
caused by such risks. Machine learning (ML) models are effective for risk 
prediction problems and have been used in various fields including 
medicine, ecology and biology, such as disease prediction (Ali et al., 
2021; Kavitha et al., 2022; Khan et al., 2023), accident detection 
(Adewopo et al., 2023; Ahmed et al., 2023), ecological risk (Qiu et al., 
2023; Zhang et al., 2023a) and geologic hazards (Youssef et al., 2023; 
Zhang et al., 2023b). However, ML are often considered “black box” 
models (Mangalathu et al., 2020). This means that it is difficult to 
interpret hidden biases in the data or identify weaknesses in the model 
without fully understanding the process of model output (Prendin et al., 
2023). That is, in risk prediction, it is not clear why certain predictions 
need to be made or how specific features will affect the predictions. So, 
the lack of interpretability has so far limited the further use of more 
powerful ML approaches in risk decision support. As machine learning 
continues to evolve, interpretable machine learning methods have 
emerged. The goal of interpretable machine learning is to understand 
how models make predictions and answer questions, such as the rela-
tionship between inputs and outputs, and which features are most 
important for predictions (Li, 2022). The Shapley additive explanations 
(SHAP) is a useful interpretability tool that can be added to machine 
learning works (Li et al., 2020a), which not only handles local and global 
explanations but also identifies whether the contribution of each input 
feature is positive or negative (Mangalathu et al., 2020). Currently, 
many ML models can be well integrated with SHAP, among which 
extreme gradient boosting (XGBoost), light gradient boosting machine 
(LightGBM), random forest (RF) and support vector machine (SVM) are 
more common. They are widely applied in pollution treatment (Wang 
et al., 2022a), energy fuels (Sharma Timilsina et al., 2024), carbon 
emissions (Luo et al., 2024) and disease occurrence (Lai et al., 2022; Liu 
et al., 2022b). However, relatively few studies have applied it to the 
destabilization risk of ecosystems. The application of interpretable ma-
chine learning methods to risk prediction can both utilize the powerful 
data processing and risk identification functions of machine learning 
and improve the transparency and effectiveness of prognosis interpre-
tation and enhance risk management capabilities.

Northeastern China (NEC) is characterized by the largest continuous 
area of forested land in the country, extensive wetlands distributed 
throughout China, and is one of three black soil regions worldwide. The 

region is a crucial carbon sink and storage area and has a substantial 
capacity and rate for carbon sequestration (Cai et al., 2022; Yin et al., 
2022; Zhang and Deng, 2022). CS has the risk of decreasing under the 
double pressure of natural and anthropogenic activities. Lu et al. (2021)
found that wetland carbon pools in NEC decreased by 55–56 % from the 
1980 s to the 2010 s. Long-term irrational farming and agricultural 
management practices have led to a decline in natural fertility, soil 
structure deterioration of black soils, and a decrease in soil organic 
carbon (Zhou et al., 2020). At the same time, the implementation of 
major ecological projects, such as the natural forest conservation and the 
grain to green, has a positive effect on stabilizing the carbon seques-
tration capacity of forests in the NEC (Lu et al., 2018; Mao et al., 2019). 
This coexistence of risks and opportunities leads to complex and variable 
relationships between carbon sequestration and other ESs. Therefore, it 
is necessary to conduct research on the CS of the NEC. By compre-
hending the interplay between CS and multiple ES, elucidating potential 
destabilization risks and system vulnerability, and discerning the un-
derlying driving mechanisms behind these risks. This will not only 
facilitate the management of the dual pressure on CS arising from nat-
ural and anthropogenic activities, but also foster the sustainable devel-
opment of NEC.

This study proposes a framework to assess the destabilization risk of 
changes in ecosystem service relationships based on the dominance of 
CS. First, we assessed six ESs of NEC, determined the ESs most closely 
related to CS, and revealed the relationships among them. Next, we 
identified the destabilization risks of CS and these ESs. Finally, we 
selected the optimal machine learning model for risk prediction and 
conducted a detailed explanatory analysis to explore the impact of socio- 
ecological features on destabilization risk prediction. The objectives of 
this study were to: (1) identify areas at risk of destabilization for CS, (2) 
employ machine learning techniques to enhance the accuracy of risk 
prediction, and (3) analyze significant features and threshold effects that 
influence the prediction of destabilization risk for CS and other ESs in 
order to optimize opportunities for risk intervention. The framework 
helps to better understand the complex relationship between carbon 
sequestration and other ecosystem services, identifies and prevents the 
destabilization risks arising from changes in the demand for ecosystem 
services, and provides an effective means of scientific carbon manage-
ment, which is of great significance for addressing climate change and 
achieving sustainable development.

2. Materials and methods

2.1. Study area

The distribution administrative of NEC includes the four eastern 
leagues of the Inner Mongolia Autonomous Region (Chifeng, Tongliao, 
Hulunbeier City, and Xing’an League), Liaoning, Jilin, and Heilongjiang 
Province (38◦42′N–53◦35′N, 115◦32′E–135◦09′E), with a land area of 
approximately 1.24 × 106 km2 (Fig. 1). Most of the study area has a 
temperate continental monsoon climate characterized by cold winters 
and cool summers, with significant variations in temperature 
throughout the year. The average annual precipitation over many years 
ranges from 250 to 1000 mm (Xiang et al., 2022). The vegetation type is 
dominated by deciduous broad-leaved and coniferous forests, and the 
forest area is the largest in the country. As a result of the dramatic in-
crease in demand and rapid socioeconomic development, the region has 
experienced major anthropogenic environmental changes such as 
deforestation, agricultural expansion, and urbanization, which have 
profoundly altered the landscape pattern and ecosystem functioning, 
exacerbating ecological risks such as soil erosion and vegetation 
degradation, and posing a major challenge to the sustainability of 
ecosystem services (Wang et al., 2022b).
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2.2. Evaluation framework

The aim of this study was to assess the destabilization risk of the 
dynamic interplay between multiple ecosystem services dominated by 
carbon sequestration, to provide a basis for decision makers to develop 
effective climate management measures to realize sustainable develop-
ment in the region. Fig. 2 illustrated the evaluation framework for this 
study, including the theoretical framework and specific analytical 
framework. Based on the loss and probability multiplication paradigm of 
risk assessment, our proposed theoretical framework is based on two 
dimensions − destabilization and probability. Destabilization is defined 
as the imbalance and degradation of ecosystem as manifested by a shift 
from synergies to trade-offs in ecosystem services. In addition to this, 
socio-ecological features are used as indicators of the risk probability. 
And across both the past and future time scales of ecosystems (Fig. 2). 
The analytical framework of this study, which consisted of the following 
three steps. First, we assessed six ecosystem services using the InVEST 
model and the quantitative indicator assessment approach and per-
formed correlation analyses at multiple spatial scales to identify the 
three services most relevant to carbon sequestration, including food 

Fig. 1. Location of the study area.

Fig. 2. Framework for destabilization risk assessment based on ecosystem service relationships.
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production (FP), soil retention (SR), and habitat quality (HQ). We also 
determined the trade-offs and synergies between them and identified 
areas at destabilization risk. Then, we used three machine learning 
models (random forest, extreme gradient boosting, and support vector 
machine) and selected 12 socio-ecological variables as input features for 
machine learning to determine the best model for destabilization risk 
prediction. Finally, we conducted a detailed interpretive analysis of the 
risk prediction results based on the optimal machine learning model and 
the SHAP interpretable method to explore the impact of socio-ecological 
characteristics on destabilization risk prediction.

2.3. Data and processing

Multisource datasets were used to evaluate the ESs and important 
factors (Table 1). All the raster data with different spatial resolutions 
were resampled to a consistent spatial resolution of 1 km × 1 km.

2.4. Identification of destabilization risks

2.4.1. Ecosystem services assessment
Based on previous studies, we first quantitatively estimated six 

ecosystem services that are common in the study area (carbon seques-
tration, soil retention, food production, habitat quality, water yield, and 
wind erosion prevention services) (Wang et al., 2024b; Xiang et al., 
2022). Three types of services that maintained a significant effect on CS 
were selected based on the results of the correlation analysis among the 
ecosystem services: food production (FP), soil retention (SR), and 
habitat quality (HQ) (Table 2). The specific estimation methods, pa-
rameters, results of correlation analysis and precision tests of ESs used in 
this study are presented in the supplementary material (Table A1-A3 and 
Fig. A1-A4).

2.4.2. Quantification of trade-off/synergy between ecosystem services
Differences in spatial scales affect the quantification of the re-

lationships between ecosystem services. Therefore, we extracted 
ecosystem service values at 10 km × 10 km, 20 km × 20 km, and 30 km 
× 30 km pixel scales using the “zonal statistics” in ESRI ArcGIS software 

version 10.8. Before correlation analysis, the variables were standard-
ized to eliminate size differences between the variables. Correlation 
analysis was performed using R software version 4.3.2 with the “corr-
plot” package. The spatiotemporal difference comparison method was 
applied to determine the trade-off/synergy relationships among ESs 
over a specific period (Zhao and Li, 2022). As ecosystem services were 
significantly correlated at all spatial scales, subsequent studies were 
quantified at a pixel scale of 20 km × 20 km to ensure a moderate 
number of cells. Correlation analyses were performed for all spatial 
scales in the supplementary material (Fig. A2-A4). The details of the 
different comparison methods were as follows.

The synergy/trade-off degree (TSD) was calculated with Equation 
(1). If the value of TSD was greater than 0 (zero), there was a synergy. 
Otherwise, it indicated the existence of a trade-off relationship, and the 
absolute value indicated the magnitude of the relationship between the 
two ecosystem services. 

TSD =

⎧
⎪⎪⎨

⎪⎪⎩

0 (ESi,t2 − t1 × ESj,t2 − t1 = 0)
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2
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√
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−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

((ESi,t2 − t1 )
2
+ (ESj,t2 − t1 )

2
)/2

√

(ESi,t2 − t1 × ESj,t2 − t1 < 0)

(1) 

where ESi, t2− t1 and ESj, t2− t1 are the relative changes in the ESs of the ith 
and jth type during the period t2-t1, respectively, and were calculated as 
follows: 

ESi,t2-t1 =
(
ESi,t2 -ESi,t1

)
/ESi,t1 (2) 

ESj,t2-t1 =
(
ESj,t2 -ESj,t1

)
/ESj,t1 (3) 

After identifying relationships between CS and other ecosystem services, 
we defined areas where synergies shifted into trade-offs as destabiliza-
tion risk areas and used them as risk sample data for subsequent risk 
prediction analyses.

2.5. Prediction of destabilization risks

The selection of models was critical for predicting the occurrence and 
progression of risk in the destabilization. We used R software version 
4.3.2 and PyCharm software version 2021.3.3 to build three machine 
learning models: XGBoost, RF and SVM. The XGBoost was optimized 
distributed gradient boosting algorithms. It can effectively explore the 
nonlinear relationship between the dependent variable and each inde-
pendent variable, while maintaining high prediction accuracy and 
calculating and ranking the relative importance of the predictor vari-
ables (Liu et al., 2024; Zhang et al., 2019). The RF was one of the widely 
used multi-class tree algorithms, which combined a decision tree 
through majority voting and ultimately exhibits high accuracy on 
different datasets and fast independent characteristics of learning 
(Breiman, 2001). It performed well in handling nonlinear and unbal-
anced data with good generalization and noise immunity (Fan et al., 
2024; Wang et al., 2024a).The SVM was a popular machine learning 
algorithm that projects the input data by mapping a kernel function to a 
higher dimensional feature space that was easier to classify than the 
original feature space (Burges, 1998). Our research was dedicated to the 
problem of classification of data with unbalanced and multidimensional 
characteristics. In addition, many studies had shown that there was not a 
simple linear relationship between socio-ecological characteristics and 
risk occurrence (Guo et al., 2024; Li et al., 2023). Therefore, these three 
models, with their respective strengths and characteristics, accommo-
dated different data characteristics and met the needs of this study. 
Moreover, they were often combined with SHAP and were widely used 
in studies (Lai et al., 2022). However, the differences in data sets can 
lead to variability in the performance capabilities of the three models. 
Therefore, in the risk prediction process, we compared the three models 
to determine the model with the best performance capability. In this 

Table 1 
Description of data used in the study.

Data used Data format Spatial resolution

Land use Raster (30 m 
× 30 m)

Earth System Science Data (https://essd. 
copernicus.org/articles/13/3907/2021/)

Meteorological data Raster (1 km 
× 1 km)

National Tibetan Plateau Science Data 
Center (https://data.tpdc.ac.cn)

Soil organic matter 
(Som)

Raster (1 km 
× 1 km)

National Tibetan Plateau Science Data 
Center (precipitation, temperature, and 
evapotranspiration dataset) (https://data. 
tpdc.ac.cn)

NDVI Raster (250 
m × 250 m)

MOD13Q1 (https://modis.gsfc.nasa.gov/)

Net Primary 
Productivity (NPP)

Raster (500 
m × 500 m)

MOD17A3(https://modis.gsfc.nasa.gov/)

Digital Elevation 
Model (DEM)

Raster (30 m 
× 30 m)

National Geospatial Data Cloud (https 
://www.gscloud.cn/)

Gross Domestic 
Product (GDP)

Raster (1 km 
× 1 km)

China’s GDP at the pixel level by nighttime 
lights time series and population images 
based on Zhao et al. (2017)

Human footprint 
(hfp)

Raster (1 km 
× 1 km)

An index compounded by different human 
pressures (built environments, croplands, 
population density, nightlights, railways, 
major roadways, and navigable 
waterways) based on Mu et al.(2022)

Slope Raster (30 m 
× 30 m)

Obtained based on ArcGIS slope analysis 
tool

Socio-economic data Tabular 
format

Statistical yearbooks and statistical 
bulletin of national economic and social 
development, including meat and food 
production, etc.
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study, the classification of trade-off/synergy shifts in ESs for 2000–2010 
and 2010–2020 was considered as the response variable (synergy shifted 
to trade-off as 1 and trade-off shifted to synergy as 0), and socio- 
ecological factors, including 12 factors, namely, temperature (Tmp), 
precipitation (Pre), potential evapotranspiration (Pet), elevation, slope, 
soil organic matter (Som), normalized difference vegetation index 
(NDVI), forest cover, cropland cover, impervious surface cover, human 
footprint (hfp), and gross domestic product (GDP), were chosen as 
explanatory variables. All samples were randomly divided into training 
(70 %) and validation (30 %) sets. The predictive performance of these 
machine learning models was evaluated using accuracy, kappa, recall 
value, precision, F1, and the area under the receiver operating charac-
teristic curve (AUC). Furthermore, a grid search approach was used to 
tune the hyperparameters of the three models. The grid search used an 
algorithm to specify several combinations of hyperparameters, used 
cross-validation to compute the model for each combination, and pro-
posed the best combination with the highest training accuracy (Iban and 
Sekertekin, 2022). The results of the optimization and comparison of the 
machine learning models in this study are presented in the supplemen-
tary material (Table A4 and Fig. A5).

2.6. Driving mechanism analysis of destabilization risks

Understanding the mechanisms driving, including the important 
features and threshold effects that influence the prediction of destabi-
lization risk, is essential for risk prevention and risk management in 
advance. For this reason, the interpretability of the model was consid-
ered key. Model interpretability is the process of understanding how a 
machine learning model makes its predictions by examining the re-
lationships it has learned between input factors and outputs. Shapley 
additive explanations (SHAP) based on shape values from game theory 
can provide good explanations for both local and global models 
(Mangalathu et al., 2020). In this study, SHAP importance assessments 
were used to interpret the models globally, revealing which features 
play a key role in destabilization risk prediction. In addition to this, we 
used ten-fold cross validation for recursive feature elimination to filter 
the optimal number of variables (Fig. A6). Although the characteristic 
importance map depicted the input features that had the greatest impact 
on the destabilization risk, we could not elucidate how the input features 
affected this change. Thus, we used the SHAP dependency analysis to 
describe how a single feature influenced the outcome of the predictive 
model.

3. Results

3.1. Spatio-temporal distribution of destabilization risk areas

The largest areas that maintained an unchanged trade-off relation-
ship between CS-SR and CS-FP from 2000 to 2010 to 2010–2020 were 
35.31 × 104 km2 and 46.39 × 104 km2, respectively. The area of CS-HQ 
that maintained unchanged synergy was the largest at 70.49 × 104 km2. 
This was followed by the area of synergy to trade-off, which was 33.85 

× 104 km2, 37.68 × 104 km2 and 23.67 × 104 km2 for CS-SR, CS-FP and 
CS-HQ, respectively (Fig. 3b). In terms of different administrative re-
gions, CS-SR and CS-FP had the highest proportion of synergy shifting to 
trade-off in Heilongjiang Province, with CS-SR accounting for 52.89 %, 
and CS-FP accounting for 44.76 %. In CS-HQ, the four eastern leagues of 
Inner Mongolia exhibited the highest proportions of synergy shifting to 
trade-off, accounting for 50.09 % of the total (Fig. 3a and 3c).

3.2. Identification of importance features for destabilization risk 
prediction

Potential evapotranspiration, temperature, precipitation, and 
elevation were significant factors affecting the destabilization risk of 
ecosystem service in the CS-SR, and potential evapotranspiration, tem-
perature, precipitation, cropland cover, NDVI and forest cover in the CS- 
FP (Fig. 4a). The predicted outputs of potential evapotranspiration, 
temperature, and elevation in the CS-SR were negatively influenced, 
whereas precipitation was positively influenced (Fig. 4b). The predicted 
outputs of potential evapotranspiration, temperature, NDVI and crop-
land cover on the CS-FP were negatively influenced, whereas precipi-
tation and forest cover were positively affected.

3.3. Threshold effects of importance features

Considering the relative importance of the independent variables 
and the stability of the model predictions, we combined different models 
and feature quantification methods to select several variables and 
explore the nonlinear relationship between the independent and 
dependent variables, as shown in Fig. 5. Based on the prediction model, 
SHAP values for characteristic variables exceeding zero in the SHAP 
dependence plot, represent an increase in the probability of destabili-
zation risks. The higher the SHAP value of a variable, the more likely it is 
that destabilization risks will occur for CS-SR and CS-FP. Specifically, 
the probability of CS-SR and CS-FP destabilization risks increased with 
the growth of potential evapotranspiration when potential evapotrans-
piration was less than 800 mm. Their probability of destabilization risk 
increased when the temperature was less than 4 ◦C. The probability of 
the CS-FP destabilization risks increased with precipitation when the 
precipitation ranged from 500 to 800 mm. When the elevation ranged 
from 250 to 750 m, the CS-SR destabilization risks decreased with 
elevation. CS-FP was more likely to be at destabilization risk when 
cropland cover was less than 0.2, NDVI was between 0.7 and 0.85, and 
forest cover was more than 0.9. The remaining factors had a more 
diffuse effect on the CS-SR and CS-FP.

Precipitation was more dispersed in CS-SR, so the high-risk areas in 
CS-SR went into consideration of potential evapotranspiration, tem-
perature, and elevation. In CS-FP, since the high-risk areas were less and 
more dispersed after considering six important factors at the same time, 
we only considered the three factors of climate (Fig. 6). These regions 
are primarily concentrated in the northern part of northeastern China, 
including Heilongjiang province and Hulunbeier city in the Inner 
Mongolia Autonomous Region.

Table 2 
Overview of ESs assessed in this study.

Ecosystem 
service type

Abbreviation Description Unit Methodology

carbon 
sequestration

CS Amount of carbon sequestered by 
terrestrial ecosystems

t InVEST model

Soil retention SR Amount of soil retained by ecosystems t InVEST model
Habitat quality HQ Availability of suitable habitats for 

individuals and populations
/ InVEST model

Food production FP The yield of grain crop, meat 
production and aquaculture 
production

t FPn =
∑i

i=1
Ani × Pni 

Where FPn denotes the production of farmland, grassland, and water area respectively (t); 
Ani denotes the area of the n land-use types in the raster cell, respectively (km2); Pni denotes 
the yield per unit area of the main product (t/km2).
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Fig. 3. Transfer of ecosystem service trade-off/synergy in the NEC. (a) Spatial distribution of trade-off/synergy shifts from 2000-2010 and 2010-2020. (b) Area of 
ecosystem service trade-off/synergy shift (× 104 km 2). (c) Area proportion of ecosystem service trade-off/synergy shift in different provinces (%). HLJ, LN, JL, and 
NMG in Heilongjiang, Liaoning, Jilin, and the four eastern leagues of the Inner Mongolia Autonomous Region, respectively.

L. Zuo et al.                                                                                                                                                                                                                                      Ecological Indicators 167 (2024) 112593 

6 



4. Discussion

4.1. Applicability of the framework for destabilization risk assessment

To enhance the assessment and management of destabilization risk, 
we established a framework for destabilization risk assessment that 
closely links human well-being to ecosystems, taking the ecosystem 
service relationship as the assessment endpoint. The utilization of this 
framework enables us to more effectively evaluate the risks associated 
with fluctuations in demand for a specific ecosystem service and 
implement strategic interventions to achieve a mutually beneficial 
outcome for all stakeholders. The framework’s flexibility also enables it 
to function as a universal tool for evaluating the potential risk of 
destabilization associated with shifts in demand for specific ecosystem 
services across different regions.

To establish and validate a framework for assessing the risk of 
destabilization, we employ an interpretable machine learning approach. 
This approach can unveil the driving mechanisms influencing destabi-
lization risk and facilitate our comprehension of the socio-ecological 
features that impact its occurrence, as well as elucidate their respec-
tive roles. Although many studies have demonstrated the prognostic 
capacity of socio-ecological features for ecological risk (Li et al., 2023; 
Xing et al., 2020), this study further identifies important features that 
affect the prediction of destabilization risk for CS-FP and CS-SR. By using 
SHAP values, we found that climate, land use, and topographic factors 
are important features that are essential to provide the best risk 
assessment. This is consistent with the results of previous studies(Dai 
and Wang, 2024; Wu et al., 2021; Zhang et al., 2020a; Zhao et al., 2023). 
We further validate the results of the SHAP analysis using other 
importance indicators at the same time, and the validation results show 
a high degree of consistency (see Supplementary Material Fig. A7 for 

details). Furthermore, it demonstrates that the ML approach can account 
for key characteristics and build a highly accurate predictive model of 
destabilization risk caused by socio-ecological factors. This finding 
provides an important reference for future risk management and 
decision-making. By understanding this destabilization, governments 
and researchers can take precautionary measures to both ensure a bal-
ance between CS and other ESs, and to better respond to climate change 
in the wake of increased CS demand. However, the risk prediction of CS- 
HQ shows not so excellent results in all machine learning. On the one 
hand there are fewer destabilizing risk regions between CS-HQ. On the 
other hand, the selected features may not be sufficient to fully charac-
terize the target variables. Therefore, the study of destabilizing risk for 
CS-HQ needs to be further explored in depth.

4.2. Relevant tasks derived from risks linked to destabilization

The interactions among ESs have been widely acknowledged. In our 
study, we specifically focused on three ESs − soil retention, food pro-
duction, and habitat quality − which are closely associated with carbon 
sequestration. We aimed to identify the trade-offs or synergies existing 
among these services. Previous studies also demonstrated a robust cor-
relation between CS and these services (Huang et al., 2023; Li et al., 
2020b; Qiao et al., 2019). The findings of our study unveil a significant 
area of potential destabilization risk in the NEC, where synergies 
transform trade-offs between carbon sequestration and crucial 
ecosystem services such as soil retention, food production, and habitat 
quality. The expansion of social development has led to modifications in 
the structure and function of ecosystems through human activities 
(Felipe-Lucia et al., 2020). This phenomenon disrupts not only the 
equilibrium among diverse ecosystems but also undermines their ca-
pacity to provide essential ecosystem services, thereby increasing the 

Fig. 4. Feature importance analysis using the SHAP method for the RF model. (a) Absolute importance scores, indicating the average impact of each factor on the on 
the classification. (b) SHAP summary plot. These values represent the local contribution of each factor in the destabilization risks prediction in training the model and 
are arranged in the order of their importance. The x-axis displays the SHAP values, while the y-axis displays the features. Each dot represents a sample from the input 
dataset, and the color of the dot indicates the value of the features. The horizontal position of the point indicates whether the features have a positive or negative 
effect on the prediction.
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Fig. 5. SHAP dependence plot of the RF model. (a)The SHAP dependency plots of variables that rank higher in relative importance at RF results for CS-SR. (b) The 
SHAP dependency plots of variables that rank higher in relative importance at RF results for CS-FP. The SHAP dependence plots show how a variable’s value impacts 
the prediction (y-axis) of every observation in the dataset.

Fig. 6. Risk areas under the control of major factors. Risk areas extracted by CS-SR (Pet < 800 mm, Tmp < 4◦C, 250 m < elevation ≤ 750 m). Risk areas extracted by 
CS-FP (Pet < 800 mm, Tmp< 4◦C, 500 mm < Pre ≤ 800 mm).
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likelihood of conflicts arising from competition for these services. The 
aforementioned transformations may lead to the emergence of increas-
ingly intricate and irreversible ecosystems. Therefore, early identifica-
tion of areas prone to destabilization and the implementation of 
appropriate management strategies are imperative in order to mitigate 
further degradation of ecosystems. The destabilization risk between 
carbon sequestration and food production is most pronounced in the 
NEC. This highlights the importance of addressing the trade-offs be-
tween increased demand for carbon storage and ensuring food produc-
tion in response to climate change.

Heilongjiang Province is a typical high prevalence area of destabi-
lization risk for CS-FP and CS-SR. This is particularly noticeable in major 
ecosystems such as farmland and forests. It accounts for more than half 
of the cultivated area in the typical black soil areas of the study area, and 
its grain production ranks first in the country (Tang et al., 2024). 
Compared with other provinces, Heilongjiang boasts a larger expanse of 
arable land, a more extensive distribution of fertile black soil, and 
heightened agricultural productivity. However, it also has more 
frequent agricultural activities (Lu et al., 2022). Agro-ecosystems are 
anthropogenic in nature, and the provision of agro-ecosystem services is 
a co-production between natural ecosystems and human activities 
(Zabala et al., 2021). The intricate nature of the agro-landscape itself, 
coupled with the frequent human interventions in land-use allocation 
and their preferences, engenders a trade-off between provisioning ser-
vices provided by agro-ecosystems and other associated services (Aryal 
et al., 2022; Cao et al., 2020). In addition to this, this risk is not only 
closely related to land-use change but is also strongly influenced by 
changes in agricultural practices and management measures. For 
example, introducing new irrigation systems can significantly heighten 
the trade-off between carbon storage and soil conservation (Zhong et al., 
2020). Therefore, prioritizing the adjustment of CS-FP and CS-SR trade- 
offs to address the destabilization risk is an important strategy for Hei-
longjiang Province to ensure long-term sustainable development. The 
government should devise policies that not only uphold its status as 
China’s primary agricultural production hub, but also mitigate envi-
ronmental impacts and bolster carbon sequestration and soil conserva-
tion capabilities through land use optimization and agricultural 
efficiency improvements, thereby fostering economically viable and 
ecologically sustainable development. In order to effectively achieve 
climate objectives, it is imperative to consider the potential risks of 
destabilization associated with carbon sequestration and embrace a 
comprehensive and well-balanced approach. This ensures that carbon 
storage strategies not only efficiently capture carbon but also uphold or 
enhance ecosystem stability.

4.3. The critical role of threshold effects in early intervention for 
destabilizing risk

To acquire a more profound comprehension of this intricate non- 
linear association and the existence of thresholds, we conduct further 
analysis on the intricate interplay between socio-ecological character-
istics and destabilizing risks. Crops and plants are frequently exposed to 
a combination of climatic stressors, which exert an impact on their 
growth and development, consequently influencing ecosystem services 
and relationships through the intricate interplay of multiple climatic 
variables (Zhang et al., 2020b). The findings of our study indicated an 
increased risk of destabilization for both CS-SR and CS-FP when po-
tential evapotranspiration is below 800 mm, and the mean annual 
temperature was less than 4 ◦C. The destabilization risk for CS-FP was 
likely to increase as precipitation levels rose from 500 to 800 mm. The 
likelihood of destabilization risk for the CS-SR is heightened when the 
elevation ranged from 250 and 750 m. The distribution areas of these 
regions highly coincide with those of forests. Forests in the NEC region 
play a pivotal role as primary ecosystems, providing indispensable ser-
vices such as carbon sequestration and soil retention. In the 21st cen-
tury, NEC has undergone a series of structural and environmental 

landscape changes, with forest ecosystems exhibiting distinct temporal 
variations influenced by anthropogenic activities (e.g., deforestation, 
implementation of ecological restoration projects, and expansion of 
cropland) and climate change (Shi et al., 2017). This instability leads to 
the possibility of increased trade-offs in the services provided by eco-
systems. For instance, most NEC regions have experienced a consistent 
warming trend since 1982 (Li et al., 2021; Liu et al., 2022a), with 
elevated temperatures enhancing photosynthesis via metabolic pro-
cesses and augmenting nutrient availability through accelerated 
decomposition rates, thereby promoting CS. In 2020, precipitation 
increased in the northern region of NEC compared to previous years. 
Consequently, this increase results in localized soil erosion, which is not 
conducive to enhanced soil retention (Ran et al., 2020). The imple-
mentation of the Natural Forest Conservation Project (NFCP) and Grain 
to Green Project (GTGP) policies has resulted in an augmentation of 
vegetation cover, leading to enhanced evapotranspiration, reduced 
water yield, and increased soil retention (Mao et al., 2019; Wang et al., 
2022b). However, an increase in vegetation cover results in a reduction 
in the local average temperature, which subsequently weakens photo-
synthesis and slows down decomposition rates. This phenomenon is not 
conducive to enhancing the CS (Cao et al., 2023; Massaro et al., 2023). 
Furthermore, the detrimental impacts on natural forests and the pro-
tracted and delayed processes of ecological restoration also contribute to 
a decline in carbon sequestration, posing challenges for short-term re-
covery (Yu et al., 2011). While natural factors play a pivotal role in 
influencing the risk, it is imperative to acknowledge the significant 
impacts of anthropogenic activities, particularly those associated with 
land-use change. Land-use change alters the structure and function of 
ecosystems and directly affects ecosystem services and their trade-offs 
(Zheng et al., 2022). For instance, the destabilization risk of CS-FP is 
enhanced in areas with less than 20 % cropland area. Forests are widely 
distributed throughout these regions. In NEC, cropland expansion shows 
a strong negative correlation with forest expansion (Shi et al., 2017). As 
forest coverage declines, there is a corresponding reduction in carbon 
sequestration, whereas food production increases. By understanding the 
key features that influence the prediction of destabilization risks, man-
agers can better identify and prioritize areas for observation based on 
thresholds, thereby mitigating risk and increasing the likelihood of 
achieving synergies between carbon sequestration, food production and 
soil protection.

5. Conclusion

We identified three ESs (SR, HQ, and FP) that exhibited strong as-
sociations with carbon sequestration services in NEC and the trade-off/ 
synergy among them, thereby elucidating the destabilization risk areas 
between them and CS. The destabilization risk prediction model was 
constructed using machine learning and SHAP methods, exploring the 
risk prediction mechanism and threshold effect, and providing a clear 
explanation for personalized risk prediction. Our findings demonstrate a 
discernible upward trajectory in the trade-off dynamics among SR, HQ, 
FP, and CS within the NEC region. It is particularly noteworthy that the 
destabilization risk between CS and FP is significant. The distribution of 
the trade-off between CS-SR and CS-FP is significant in Heilongjiang 
Province, which is also a major area of destabilizing risk. There are 
nonlinear and threshold effects between socio-ecological factors and 
destabilization risk. Among them, natural factors, especially climatic 
factors, have a greater impact than socio-economic factors. This study 
offers valuable insights for enhancing the management of ecosystem 
services, safeguarding carbon pools within ecosystems, and optimizing 
carbon sequestration to achieve the harmonious integration of social, 
economic, and environmental benefits. At the same time, it provides a 
positive methodological reference for the prediction and interpretation 
of destabilizing risk.

L. Zuo et al.                                                                                                                                                                                                                                      Ecological Indicators 167 (2024) 112593 

9 



CRediT authorship contribution statement

Lingli Zuo: Writing – review & editing, Writing – original draft, 
Software, Methodology, Investigation, Data curation, Conceptualiza-
tion. Guohua Liu: Visualization, Validation, Supervision, Conceptuali-
zation. Zhou Fang: Resources. Junyan Zhao: Data curation. Jiajia Li: 
Data curation. Shuyuan Zheng: Data curation. Xukun Su: Visualiza-
tion, Validation, Supervision, Resources, Funding acquisition, Formal 
analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

We thank all people for helping us to complete the research. This 
study was supported by the Strategic Priority Research Program of 
Chinese Academy of Sciences, Grant No. XDA28020402.

Appendix A. . Supplementary data

The following are Supplementary data to this article:

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecolind.2024.112593.

References

Adewopo, V.A., Elsayed, N., ElSayed, Z., Ozer, M., Abdelgawad, A., Bayoumi, M., 2023. 
A review on action recognition for accident detection in smart city transportation 
systems. J. Electr. Syst. Inf. Technol. 10, 57. https://doi.org/10.1186/s43067-023- 
00124-y.

Ahmed, S., Hossain, M.A., Ray, S.K., Bhuiyan, M.M.I., Sabuj, S.R., 2023. A study on road 
accident prediction and contributing factors using explainable machine learning 
models: analysis and performance. Transp. Res. Interdiscip. Perspect. 19, 100814 
https://doi.org/10.1016/j.trip.2023.100814.

Ali, M.M., Paul, B.K., Ahmed, K., Bui, F.M., Quinn, J.M.W., Moni, M.A., 2021. Heart 
disease prediction using supervised machine learning algorithms: Performance 
analysis and comparison. Comput. Biol. Med. 136, 104672 https://doi.org/10.1016/ 
j.compbiomed.2021.104672.

Aryal, K., Maraseni, T., Apan, A., 2022. How much do we know about trade-offs in 
ecosystem services? A systematic review of empirical research observations. Sci. 
Total Environ. 806, 151229 https://doi.org/10.1016/j.scitotenv.2021.151229.

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A: 
1010933404324.

Burges, C.J.C., 1998. A Tutorial on Support Vector Machines for Pattern Recognition. 
Data Min. Knowl. Discov. 2, 121–167. https://doi.org/10.1023/A:1009715923555.

Cai, W., He, N., Li, M., Xu, L., Wang, L., Zhu, J., Zeng, N., Yan, P., Si, G., Zhang, X., 
Cen, X., Yu, G., Sun, O.J., 2022. Carbon sequestration of Chinese forests from 2010 
to 2060: spatiotemporal dynamics and its regulatory strategies. Sci. Bull. 67, 
836–843. https://doi.org/10.1016/j.scib.2021.12.012.

Cao, Y., Cao, Y., Li, G., Tian, Y., Fang, X., Li, Y., Tan, Y., 2020. Linking ecosystem services 
trade-offs, bundles and hotspot identification with cropland management in the 
coastal Hangzhou Bay area of China. Land Use Policy 97, 104689. https://doi.org/ 
10.1016/j.landusepol.2020.104689.

Cao, Y., Guo, W., Ge, J., Liu, Y., Chen, C., Luo, X., Yang, L., 2023. Greening vegetation 
cools mean and extreme near-surface air temperature in China. Environ. Res. Lett. 
19, 014040 https://doi.org/10.1088/1748-9326/ad122b.

Dai, E., Wang, Y., 2024. Identifying driving factors of ecosystem service trade-offs in 
mountainous region of southwestern China across geomorphic and climatic types. 
Ecol. Indic. 158, 111520 https://doi.org/10.1016/j.ecolind.2023.111520.

Fan, D., Xue, K., Zhang, R., Zhu, W., Zhang, H., Qi, J., Zhu, Z., Wang, Y., Cui, P., 2024. 
Application of interpretable machine learning models to improve the prediction 
performance of ionic liquids toxicity. Sci. Total Environ. 908, 168168 https://doi. 
org/10.1016/j.scitotenv.2023.168168.

Felipe-Lucia, M.R., Soliveres, S., Penone, C., Fischer, M., Ammer, C., Boch, S., 
Boeddinghaus, R.S., Bonkowski, M., Buscot, F., Fiore-Donno, A.M., Frank, K., 
Goldmann, K., Gossner, M.M., Hölzel, N., Jochum, M., Kandeler, E., Klaus, V.H., 
Kleinebecker, T., Leimer, S., Manning, P., Oelmann, Y., Saiz, H., Schall, P., 
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