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Abstract

Understanding the distribution of rare species is important for

conservation prioritisation. Traditionally, museums and other research

institutions have served as depositories for specimens and biodiversity

information. However, estimating abundance from these sources is

challenging due to spatiotemporally biased collection methods. For

instance, large‐bodied reptiles that are found near research institutions

or in popular, easily accessible sites tend to be overrepresented in

collections compared to smaller species found in remote areas.

Recently, a substantial number of observations have been amassed

through citizen (or community) science initiatives, which are invaluable

for monitoring purposes. Given the unstructured nature of this

sampling, these datasets are often affected by biases, such as

taxonomic, spatial and temporal preferences. Therefore, analysing

data from these two sources can lead to different abundance

estimates. This study compiled data on Brazilian reptile species from

the Global Information Biodiversity Facility (GBIF). It employed a

community‐ecology approach to analyse data from research institu-

tions and citizen science initiatives, separately and collectively, to

assess taxonomic and spatial species coverage and predict species

rarity. Using a 1‐degree hexagonal grid, we analysed the spatial

distribution of reptile communities and calculated rarity indices for 754

reptile species. Our findings reveal that 87 species were exclusively

recorded in the citizen science subset, while 212 were recorded only by

research institutions. The number of observations per species in the

citizen science data followed a Gambin distribution, which aligns with

the expected pattern of abundance in natural communities, unlike the

data from research institutions. This suggests that citizen science data

may be a more accurate source for estimating species abundance and

rarity. The discrepancies in rarity classifications between the datasets

were likely due to differences in sample size and potentially other

sampling parameters. Nevertheless, combining data collected by both

research institutions and citizen science initiatives can help to fill

knowledge gaps in reptile species occurrence, thus enhancing the

foundation for conservation efforts on a national scale.
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Plain language summary

Accurately classifying rare species is essential for guiding conservation

actions. Traditional data collection for biodiversity, often based on

museum specimens originating from expeditions conducted by

professional scientists, does not accurately reflect true patterns of

species abundance. These efforts are frequently limited by financial

constraints and logistical issues that restrict spatial and taxonomic

coverage. Sampling is particularly intensive in areas near profession-

ally employed scientists' home institutions, field bases or museums. In

contrast, citizen science—where members of the public engage in

scientific activities—has revolutionised the way species occurrence

data are collected. Over the past two decades, volunteers have

increasingly contributed observations from locations around the world

that are often overlooked by paid scientists, thereby generating large

occurrence datasets. By combining citizen‐generated observations

with data from research institutions, we can enhance our under-

standing of the distribution of reptile species across Brazil. Our study

reveals differences in the number of observations per species between

the two data subsets, with citizen science providing a more accurate

indication of species rarity. Therefore, citizen science can broaden our

knowledge of species abundance while also supporting more effective

conservation actions on a larger scale.

1 | INTRODUCTION

In the face of the current global biodiversity crisis,

understanding species distributions and population

sizes is increasingly critical (Hortal et al., 2015; Nori

et al., 2023). Data on species distribution can

elucidate the environmental requirements of a

species by examining its fundamental niche

(Kearney, 2019; Takola & Schielzeth, 2022). When a

species is suspected to be declining, these data are

key for informing conservation actions (White et al.,

2023). Many studies have focused on this issue to

inform decision‐making in this area (Kondratyeva

et al., 2019; Loiseau et al., 2020). The need to

systematically assess the condition of wildlife

populations and related threats on a global scale

was first recognised in the 1960s (Mace, 1994),

leading to the publication of the IUCN Red List of

Threatened Species in 1991. This list is based on the

systematic assessment of species extinction risk

(Mace et al., 2008). Currently, taxa are assigned into

one of eight categories (from Least Concern to

Extinct) based on geographic range, population

trend, size and structure, as well as their temporal

trends (IUCN Standards and Petitions Committee,

2022). Several of these criteria are linked to

population size and focus on aspects such as

decline (criterion A), ongoing decline or extreme

fluctuations (B and C), and range, including severe

fragmentation (B) and the extent of occurrence or

area of occupancy (B and C; IUCN Standards and

Petitions Committee, 2022). Nevertheless, a large

number of species worldwide have yet to be

evaluated, particularly in megadiverse countries,

due to the absence of data, restricted data access,

and inaccuracies in datasets concerning population

size and geographic distribution (Hochkirch et al.,

2020). Furthermore, insufficient funding often

drastically limits the rate of such assessments

(Juffe‐Bignoli et al., 2016; Rondinini et al., 2014).

Conservationists need efficient analytical tools to

provide evidence of high extinction risks and to

prioritise actions that reduce the number of Not

Evaluated and Data Deficient species. Species that

are poorly understood are frequently overlooked

when allocating conservation resources (Woinarski

et al., 2021). Considering that species most vulner-

able to extinction are often naturally rare (Harnik

et al., 2012), identifying such species can serve as

an indicator of potential threats and can flag

Practitioner points

• Integrating data from citizen science in-

itiatives with those from research institu-

tions can enhance our understanding of

reptile species distribution and richness.

• Citizen science data can be used to deter-

mine patterns of species abundance and

rarity for Brazilian reptiles.

• Reptiles that are classified as Data Defi-

cient or Not Evaluated and show high

rarity values should be prioritised for

assessment by the International Union

for Conservation of Nature (IUCN).
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species as conservation priorities (Gauthier et al.,

2010; Veach et al., 2017).

Although rarity is often intuitively interpreted as a

species having few individuals, it is, in reality, a

complex, multidimensional concept. To address this

complexity, Rabinowitz (1981) proposed seven types

of rarity based on three properties: (1) geographic

distribution (widespread vs. narrow‐ranged species),

(2) habitat specificity and (3) local population size

(abundance‐based rarity), along with their various

combinations. For instance, a rare species might be

characterised by a small population that is widely

dispersed geographically or by an abundant popula-

tion restricted to a limited habitat area (Rabinowitz,

1986). This classification framework is still frequently

used, for instance, for plants at regional (Quiroga &

Souto, 2022) and national levels (Choe et al., 2019)

and for deep‐sea bivalves (McClain, 2021), serving as

a base for further theoretical work (Maciel, 2021).

Under nonexperimental conditions, the uneven

distribution of individuals among species is a

common pattern observed in biological communities

(Magurran, 2004). Typically, a few species are

dominant while many others are rare, causing the

abundance distribution curve for communities to fit a

near‐logarithmic shape (McGill et al., 2007). This

abundance distribution pattern can be considered a

natural power law for biodiversity datasets and can

be explained by the different abilities of species to

access resources in a given space (Marquet et al.,

2007). However, inaccurate or incomplete knowledge

of species rarity can lead to erroneous allocation of

resources or impede conservation actions (Dibner

et al., 2017; Katzner et al., 2011). This is particularly

concerning in countries with high biodiversity that

are often poorly inventoried. Therefore, there is a

growing demand for increased biodiversity survey-

ing, especially in nations that harbour global bio-

diversity hotspots facing threats from escalating

deforestation pressure and the effects of climate

change (Habel et al., 2019; Kong et al., 2021). In

response to this urgent demand, more efficient

methods need to be adapted to aid in the under-

standing of biodiversity distribution and trends

across extensive geographic scales. Data produced

by citizen science have been making substantial

contributions to biodiversity monitoring at the global

scale (Chandler et al., 2017; Johnston et al., 2023;

Mesaglio et al., 2023). These efforts have also

influenced public policy (Fritz et al., 2019; Roger

et al., 2023) and raised awareness among both the

public and policymakers (Danielsen et al., 2014). With

the widespread adoption of internet‐enabled smart-

phones and the development of user‐friendly appli-

cations to record biodiversity, members of the public,

working in a nonprofessional and unpaid capacity,

have been documenting the location of species

worldwide (Deacon et al., 2023; Pocock et al., 2024;

Tulloch, Possingham, et al., 2013). These records are

often accompanied by photographic and video

documentation, providing valuable secondary infor-

mation (Klinger et al., 2023; Pernat et al., 2024).

Nevertheless, the spatial adequacy (Backstrom et al.,

2024) and overall quality of citizen‐science data are

highly variable, influenced by the heterogeneous

behaviour of the observers (Callaghan, Poore,

Hofmann et al., 2021; Pocock et al., 2023) and the

accuracy of observations (Gorleri & Areta, 2022;

Gorleri et al., 2023). Spatiotemporal biases, particu-

larly those related to observer behaviour, can be

identified by comparing unstructured (or semi‐
structured) data with results from structured surveys

(Balázs et al., 2021; Szabo et al., 2012). This compari-

son facilitates the calibration of different datasets,

making them suitable for trend analysis and enhan-

cing their reliability (Forti et al., 2024; Hertzog

et al., 2021). In fact, the integration of citizen‐
science data and structured surveys has been shown

to offer effective complementary insights (Dimson

et al., 2023; Robinson et al., 2020; Tulloch, Mustin,

et al., 2013).

The Global Biodiversity Information Facility

(GBIF) collates georeferenced species occurrence

data from a variety of sources or research institu-

tions, including academic institutions, government

research facilities, museums, herbaria, as well as

various fauna and flora inventories (henceforth

referred to as RI data). A second stream of data

originates from citizen‐science initiatives (hence-

forth referred to as CS data). GBIF currently hosts

over 1.5 billion records for taxa from around the

globe (gbif.org). Despite this extensive database,

GBIF data are not without limitations, some of

which are inherent to the database itself (i.e. biases

originating from the amalgamation of datasets

collected through different methods), and others

that stem from the incoming data, such as taxo-

nomic bias, identification errors and incorrect or

missing geographic coordinates (Petersen et al.,

2021; Troudet et al., 2017). For smaller datasets,

some of these issues can be mitigated by manual

data cleaning, while for larger ones, automated

filtering techniques are applied (Zizka et al., 2020).

Additionally, the quality of different taxonomic and

geographical subsets varies significantly (Szabo

et al., 2023). In spite of these limitations, GBIF

provides a viable alternative to conducting surveys

of ecological communities at large spatial scales,

particularly in biodiverse countries with limited

scientific knowledge and resources (Heberling

et al., 2021; Ivanova & Shashkov, 2021).

In regions, such as Europe, the United States and

Australia, the volume of data generated through

citizen science has significantly contributed to the

assessment of population trends across various taxa,

including snakes (Santos et al., 2022), bats (Barlow

et al., 2015) and birds (Fink et al., 2020; Szabo et al.,

2010). On the other hand, in Brazil, the integration of

citizen science into biodiversity research is still

relatively nascent. Despite this, certain taxonomic

groups, particularly birds and amphibians, have been

receiving disproportionately high interest (Forti &

Szabo, 2023). Citizen science has notably advanced

our understanding of reptile distribution in Brazil,
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discovering previously unknown areas of occurrence

(Oliveira et al., 2023). Yet, in spite of these advances,

citizen science data have not been formally incorpo-

rated into decision‐making processes in the country.

An important initial step in leveraging these data for

conservation and policy‐making is to evaluate

whether observations from citizen science can accu-

rately reflect population sizes and species distribu-

tions and whether they can reliably classify species

as ‘rare’ or ‘common’.

Reptiles represent one of the most diverse animal

groups on the planet, and Brazil stands as a

significant biodiversity hotspot, holding the third‐
highest diversity of reptiles globally with 856

species; a number that continues to rise as new

species are described each year (Guedes, Entiauspe‐
Neto, et al., 2023). Within these species, there is a

broad range of environmental tolerances. Some

species exhibit wide environmental tolerance, en-

abling them to coexist in diverse habitats, while

others, with specialised habits, can only survive

within narrowly defined environmental conditions

and thus have restricted distributions (Birskis‐Barros
et al., 2019). In spite of their diverse adaptations,

reptiles are threatened worldwide due to habitat loss

caused by expanding agriculture, deforestation and

urban development, as well as illegal exploitation

(Böhm et al., 2013). Consequently, 23.5% of reptile

species are at some risk of extinction globally, with

the figure standing at 14.4% in Brazil (IUCN, 2024). A

high proportion (73%) of Near Threatened and

threatened Brazilian species are classified under

Criterion B concerning geographical range and

population trends (IUCN, 2024).

Reptiles are integral to diverse trophic interac-

tions within ecosystems. Through their activities as

grazers, browsers, apex predators and scavengers,

they play important roles in trophic networks,

facilitating the balance and functioning of these

systems (Pinto‐Coelho et al., 2021). Beyond these

roles, reptiles also contribute to other ecological

processes, including seed dispersal, pollination,

nutrient cycling and ecosystem engineering by

creating habitats such as burrows and pools, which

serve other species (Miranda, 2017). The socio-

economic importance of reptiles is equally notable.

They contribute to tourism (Cohen, 2019), their

bioactive compounds are used in pharmacological

research (Mishra et al., 2020), and in Brazil, they

also serve as a protein source for rural communities

(Cajaiba et al., 2015). Considering their ecological

and socioeconomic roles, coupled with the threats

they face, the conservation of reptiles should be

prioritised, particularly in tropical countries where

biodiversity is rich, and the impacts of biodiversity

loss can be profound (Miranda, 2017).

Data deposited in research institutions often

originate from localised studies that focus on one

particular species or on a small number of related

species. Due to variations in the design and aims of

these studies, certain species may be overrepre-

sented, while many others remain neglected,

leading to potential biases in the data collected

(Meineke & Daru, 2021). In contrast, citizen science

initiatives often employ gamified apps to motivate

volunteers to collect observations of a diverse

array of species across larger geographic scales

(Callaghan, Poore, Mesaglio, et al., 2021; Sandbrook

et al., 2015). As representation often reflects availa-

bility, rare or less detectable species will have fewer

observations than dominant and conspicuous spe-

cies (Johnston et al., 2018). Considering that RI and

CS biodiversity data are generally collected using

differing methodologies (aims, design, and scale),

we hypothesised that the two datasets would yield

different relative species abundance estimates. In

particular, we predict that CS data can provide more

accurate estimations of species relative abundance

than data contributed by research institutions. We

test this hypothesis through a community ecology

approach, using the number of observations

(records) as a proxy for species abundance in local

communities to compare species abundance and

rarity estimates based on reptile occurrence data

from Brazil, as presented in GBIF, contributed by CS

versus RI. We also discuss the limitations of GBIF

data, particularly in relation to the biases associated

with these two types of data contribution.

2 | METHODS

2.1 | Data collection and organisation

We downloaded data on reptile occurrences in

Brazil from GBIF (https://doi.org/10.15468/dl.j7ajhx)

on 30 October 2023. Following the taxonomy and

species distribution in the Reptile Database (http://

www.reptile-database.org/), we conferred species

names and their classification as native or exotic to

Brazil, considering them exotic if the country was

not listed in their native distribution. To ensure data

accuracy, we removed observations that displayed

taxonomic inconsistencies (e.g. non‐recognisable
synonymy). We also eliminated duplicate observa-

tions of the same species that occurred at the same

geographic location on the same day using the

distinct function of the dplyr package (Wickham

et al., 2022) in R version 4.2.1 (R Core Development

Team, 2022).

We classified observations as originating from

CS when the institutional code was (1) BioDiversi-

ty4All, (2) Diveboard, (3) iNaturalist and (4) nat-

urgucker. All other observations were designated as

RI data. To organise the data spatially, we used the

geographical coordinates of each observation and

aggregated them using a hexagonal grid generated

over the extent of Brazil (in angular geographic

coordinates—EPSG 4674). The grid was configured

with a horizontal and vertical spacing of 1 degree

each, resulting in 1188 grid cells. We overlapped

reptile records from GBIF with the grid using QGIS

v. 3.28.5 (QGIS Development Team, 2021). Using

these spatial units, we assigned a unique grid cell
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ID to each reptile observation. We adopted a

community ecology approach, defining each grid

cell as a local community based on observations

submitted from the same grid cell. Within this

framework, the number of observations per species

in each community was used as a proxy for the

relative abundance of a particular species

(Callaghan et al., 2024). After this spatial organisa-

tion, we excluded non‐continental observations (i.e.
those submitted from oceanic locations or from

oceanic islands) when calculating rarity indices.

Therefore, we did not calculate rarity indices for

three island endemic species (Amphisbaena ridleyi,

Bothrops insularis and Bothrops sazimai). Finally,

to assess the representativeness of observations

across different biomes, we overlaid species

occurrence data with a layer representing the six

major Brazilian biomes: Amazonia, Atlantic Forest,

Caatinga, Cerrado, Pampa and Pantanal, according

to the Brazilian Institute of Geography and Statistics

(IBGE, 2019). This analysis enabled us to determine

the frequency of each species within these biomes.

We prepared the data for analysis by compiling

three ecological matrices, with species represented

as columns and grid cell IDs (local communities) as

rows. We created separate tables for the two

subsets: one comprising observations from citizen

science initiatives and another containing observa-

tions from professional researchers only. We also

prepared a combined table using the full data set.

We estimated the probability of each species being

classified as common or rare based on the species

abundance and number of grid cells occupied.

Typically, a rare species is expected to have a low

number of observations (low abundance) and to be

absent from most local communities. We used the

fuzzy clustering algorithm from the FuzzyQ package

to quantify community‐level coherence in the

classification of species into common and rare

clusters (Balbuena et al., 2021). This method

simultaneously evaluates the dissimilarities in

occupancy and abundance, producing indices of

commonness (Ci) and rarity (Ri). These indices are

derived from dissimilarity indices that reflect the

probability of a given species, denoted as species i,

being categorised as common and rare, respec-

tively (Gower, 1971).

Having obtained fuzzy quantification for each

species present in each subset, we proceeded to

identify species that were allocated to different

clusters. Next, using cell ID, species name, geo-

graphical coordinates, biome and abundance per

grid cell, we calculated four Rabinowitz rarity

indices (GRI, HSI, PSI and RR) for each species

across the two subsets and the full data set. These

calculations were conducted using the rrindex

package (Maciel, 2021). These indices are based

on three dimensions of rarity: geographic range

index (GRI), habitat specificity index (HSI) and

population size index (PSI). We considered the

number of biomes occupied by each species as a

measure of habitat specificity and the absolute

number of observations per grid cell as an indicator

of species abundance. The fourth index calculated

using this package was the rarity index (RR), which

is the central axis of these dimensions, represent-

ing a synthesis of the three other indices calculated

as RR = med(GRI+HSI+PSI) (Maciel, 2021).

We compiled data on global threat status (IUCN,

2024) using the rredlist package (Chamberlain,

2020). We cross‐referenced these data with entries

in the GBIF database and directly consulted the

IUCN Red List website for taxa the package could

not categorise (https://www.iucnredlist.org/). The

five criteria used by IUCN are based on geographi-

cal range and population size (IUCN Standards and

Petitions Committee, 2022). Generally, species that

are more threatened are also rarer than those

classified as Least Concern. For the purpose of this

study, we classified the threat status of each species

as (1) non‐threatened (i.e. Least Concern) or (2)

Near Threatened and threatened (Vulnerable, En-

dangered, and Critically Endangered). We included

four species classified as Lower Risk/Near Threa-

tened and two Lower Risk/Conservation Dependent

species in the second category. Unfortunately, we

were unable to find information for 177 species,

and 21 were categorised as Data Deficient. These

species were excluded from the threat category

calculations. To represent the relationship between

rarity and commonness visually, we plotted rarity‐
commonness indices on a scatterplot using the full

data set. We computed species completeness

based on the latest list of Brazilian reptiles (Guedes,

Entiauspe‐Neto, et al., 2023).

2.2 | Data analysis

We compared the proportion of common species in

the two (CS and RI) subsets using a χ2‐test through
the chisq.test function in R. To assess the consist-

ency of species classification between the two

subsets and the full data set (see Table S1), we

performed multiple correlation analyses. We used

the Spearman method through the cor.test function

in R to evaluate the relationships between the two

subsets and the full data set, focusing on the

commonness index and the four Rabinowitz rarity

indices.

As an alternative evaluation of the quality of the

two subsets for patterns of species abundance, we

tested their Gambin model distribution fit. Gambin

is a stochastic model that mixes gamma distribu-

tion with a binomial sampling method (Matthews

et al., 2014). According to empirical tests, Gambin

distribution provides a superior fit to species

abundance distributions when compared to other

classic models (Ugland et al., 2007). Therefore,

Gambin distribution is very useful in describing

ecological communities with species abundance

curves represented by common species and a long

tail of rare species, a pattern frequently observed in

nature. We used the fit_abundances function of the
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gambin package (Matthews et al., 2014) to test the

fit of species abundance patterns to the Gambin

model for both subsets. This method provides an

α‐value, a parameter also used as a diversity metric

reflecting the complexity of a community's interac-

tions with its environment (Ugland et al., 2007).

Based on the logic that threatened and Near

Threatened species are rarer than Least Concern

species, we used two generalised linear models

(GLM) to test whether the indices of commonness

differ between Least Concern versus Near Threa-

tened and threatened species for citizen‐ versus

professional‐collected data. This was done by apply-

ing the glm function with Gamma distribution as a

link function after assessing data distribution.

We checked spatial bias in the two subsets by

calculating the number of observations (considering

all reptile species) per subset. We then analysed the

difference in observation counts between the two

subsets for each grid cell. We tested for spatial bias

by calculating the expected number of observations

per biome based on the proportional size (in km2) of

the biome. We compared the expected counts to the

observed numbers using the chisq.test function in R.

To analyse species diversity within the identified

communities, we constructed rarefaction curves

based on the two subsets and the full data set.

These curves were generated using the specaccum

function and employing the rarefaction method

provided by the vegan package in R (Oksanen et al.,

2020). We used these curves to define whether

species diversity had satisfactory coverage at the

national scale, given that a clear asymptote (an

identifiable trend line with no change in direction)

indicates that further sampling is unlikely to yield

additional species, thereby affirming satisfactory

species coverage at the national scale. We corre-

lated species diversity based on the two subsets

among grid cells using Spearman correlation im-

plemented through the cor.test function in R. We

produced graphs using the R base plot function and

the ggplot2 package (Wickham, 2016).

3 | RESULTS

3.1 | Overview of reptile GBIF data from
Brazil

Based on GBIF data, we identified 754 reptile species

within Brazil's geographical boundaries. After the

exclusion of duplicates and potential misidentifica-

tions, these species were represented by 42,580

observations, covering 82.6% of the total species

recognised as native to Brazil. Among the 43 families

recorded in the database, Colubridae had the highest

representation (13,879 observations), while non-

native families (Acrochordidae, Boyeriidae, Chamae-

leonidae, Phrynosomatidae, Platysternidae, Psam-

mophiidae and Varanidae) were represented by a

single observation each. The database was mainly

composed of Squamata (91%), while Testudines

and Crocodylia accounted for only 5% and 4%,

respectively.

The number of observations has increased

substantially since the 1980s, particularly in the last

20 years, reaching a peak in 2022 (Figure 1).

Historical data revealed the oldest observation from

a research institute dates back to 1880, featuring a

South American ground lizard (Ameiva ameiva) in

the city of São Paulo. The earliest record from

citizen science was a House gecko (Hemidactylus

mabouia) logged in 1970 in the city of Rio de

Janeiro.

There were 24,828 observations (58.3%) and

17,756 observations (41.7%) in the RI and CS

subsets, respectively. iNaturalist was the largest

source of citizen‐science data (99.2%). The Argen-

tine black and white tegu (Salvator merianae) was

the most observed species within the CS dataset

(1464 observations), while the Amazon lava lizard

(Tropidurus torquatus) had the most (1388) RI

observations.

Native species accounted for 35,199 observa-

tions, including 5683 observations of 316 species

endemic to Brazil. Among these endemic species,

the Neotropical lava lizard (Tropidus hispidus) had

the highest number of observations (644). We also

identified 66 exotic species in the database, repre-

sented by 1702 observations. The most common

exotic species was the House gecko, with 1324

observations.

Considering the full data set (i.e. 436 species that

were reported in both subsets), we classified 279

species as rare (Table S1). Ridley's worm lizard

(Amphisbaena ridleyi), Noronha skink (Trachylepis

atlantica) and the Endangered Calango (Tropidurus

psammonastes) had the highest rarity values with

regard to geographical range criteria (GRI), while

the general values of rarity (RR) were highest for

the Endangered Dumeril's worm lizard (Leposter-

non octostegum), and two other lizard species:

F IGURE 1 Number of reptile observations in Brazil in the

Global Biodiversity Information Facility between 1800 and 2023,

comparing the amount of citizen science data (green) and

observations by professional scientists (orange).
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Caparaonia itaiquara and Tropidurus pinima.

Ameivula mumbuca, a species of teiid lizard, had

the lowest commonness index (Ci).

3.2 | Comparing species rarity between
the two subsets

Among the 1188 hexagonal units of the grid, 308

contained no recorded reptile observations in the

GBIF database. We identified a strong negative

correlation between rarity and commonness indi-

ces across the full data set (ρ = –0.7564968,

p‐value < 2.2 ∗ 10−16). While most threatened and

Near Threatened species had higher RR and lower

Ci values, some Near Threatened or threatened

species were still classified as common based on

the evaluation of the full data set (Figure 2a).

Although the proportion of common species did

not significantly differ between the two subsets (28%

and 34%, respectively; χ2 = 1.7603, p‐value = 0.1859),

81 species were classified differently based on the

two subsets (Table S1). Furthermore, the coefficients

for both the correlation of the rarity index and the

commonness index between the two subsets were

<0.70, and the index values differed for many

species between the subsets (Figure 2b–f). Addition-

ally, correlation analyses of the indices that made

up the Rabinowitz rareness dimensions (GRI, HSI,

PSI and RR) between the subsets showed that

the highest disparity was related to the population

size index, which had the lowest correlation

coefficient (ρ = 0.3324617; p‐value = 9.626 ∗ 10−12),
followed by the commonness index (ρ = 0.6491;

p‐value ≤ 2.2 ∗ 10−16), rarity index (ρ = 0.6656551;

p‐value ≤ 2.2e ∗ 10−16), habitat specificity index (ρ =
0.7155195; p‐value ≤ 2.2 ∗ 10−16) and geographic

range index (0.7700875; p‐value ≤ 2.2 ∗ 10−16).
While RI data did not fit the Gambin distribution

(AIC = 2837.02; α = 1.250859 to 5.550947; χ2 = 17.344;

df = 5; p‐value = 0.004), CS data had a good fit

(AIC = 2224.811; α = 1.836133 to 4.833614; χ2 = 8.594;

df = 5; p‐value = 0.126). The commonness index (Ci)

for threatened and Near Threatened species was

consistently lower than for Least Concern species in

both subsets, with statistical significance in both

the CS (AIC = –226.1, t‐value = –2.246, p = 0.0252,

n = 406) and RI data (AIC = –72.722, t‐value = –3.083,

p = 0.00219, n = 406).

3.3 | Spatial bias and species
completeness in the two subsets

Data contributed by RI contained 81% of the total

number of species reported from Brazil, while CS

data contained only 63%. The former provided

more observations, particularly from the south

and southeast of the country, while the latter had

a larger contribution in the northeast (Figure 3).

Both subsets provided good species coverage

from the central‐western region. Species richness

calculated from the two subsets did not show a

significant correlation at the grid cell level

(ρ = 0.069; p‐value = 0.086).

The Atlantic Forest was the best‐represented
biome, with 15,543 observations, while the Panta-

nal only had 2109 observations. A total of 3929

observations were submitted from oceanic islands.

The distribution of observations per biome differed

significantly from the expected values, which

were calculated based on the size of the area

(χ2 = 318,459, df = 5, p‐value < 2.2 ∗ 10−16). The Ama-

zon, Caatinga and Cerrado were underrepresented,

with standardised residues of –178.71847, –11.72771

and –36.50577, respectively, while the Atlantic

Forest, Pampa and Pantanal were overrepresented,

with standardised residues of 536.59507, 149.28487

and 51.20920, respectively.

Considering the two subsets, 212 species were

exclusively observed in the RI subset, while 87

species were unique to the CS subset. Thus, with

695 species, species richness was estimated to be

higher in the professional scientist subset com-

pared to the citizen scientist subset (542 species).

Neither of the rarefaction curves for the two subsets

nor that of the full data set presented a well‐defined
asymptote (Figure 4).

4 | DISCUSSION

While traditional surveys conducted by experts are

indispensable for advancing knowledge of taxon-

omy, biology and geographical coverage of species,

RI data, such as those available in natural history

collections, usually do not suffice to determine

species abundance patterns or rarity at larger

scales. This limitation largely stems from inherent

biases associated with particular research objec-

tives of professional researchers or logistical con-

straints (Isaac & Pocock, 2015). For example, many

taxonomists go to remote places to describe new

species from poorly studied regions (Brito

et al., 2021; Kennedy et al., 2019), focusing predom-

inantly on collecting potentially new taxa. Similarly,

population ecologists may concentrate on monitor-

ing and sampling specific species, often overlook-

ing others present at the study site. Such biases in

RI data can lead to an overrepresentation of certain

species while neglecting others. In the context of

Brazilian reptiles, research attention is often skewed

towards larger species, particularly those whose

geographic ranges coincide with the locations of

institutions housing experts (Guedes, Moura,

et al., 2023). As a result, observations of specific

species disproportionately contribute to natural

history collections, independent of the actual

abundance or distribution range of these species.

In contrast, CS data, despite being known to

have spatiotemporal (Bowler et al., 2022; Di Cecco

et al., 2021) and species traits biases (Callaghan,

Poore, Mesaglio, et al., 2021; Marcenò et al., 2021),

typically provide a more comprehensive picture of
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F IGURE 2 (a) Relationship between rarity and commonness indices for Brazilian reptile species based on the Global Biodiversity

Information Facility database; black dots represent Least Concern species, red dots represent Near Threatened and threatened (VU, EN

and CR) species, and grey dots are nonclassified species. The other figures correlate indices calculated from citizen science (on the x

axis) and professional‐collected datasets (on the y axis) for (b) habitat specificity index (HSI), (c) geographic range index (GRI); (d)

population size index (PSI); (e) rarity index (RR) and (f) commonness index (Ci) values. The red dashed isoclines at 0.5 on the last graph

delimitate rare (<0.5) and common (>0.5) species.
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species abundance and distribution range. These

factors significantly influence species detectability

among observers, affecting the number of observa-

tions each species may have (Szabo et al., 2012).

Our findings suggest that CS data provide more

accurate estimates of species abundance or rarity

than RI data. Nevertheless, neither data set reflects

“real” abundances perfectly. The disparity in rarity

classification between the two subsets is likely due

to the limited capability of RI data to estimate

population sizes accurately. This conclusion is

supported by the observation that, unlike CS data,

RI data did not fit the Gambin distribution, which

represents the expected natural pattern for species

abundance (Matthews et al., 2019). While geo-

graphic range data are well‐documented for most

terrestrial vertebrates, obtaining accurate popula-

tion size data remains challenging for many reptile

species (Ficetola et al., 2018). This issue is reflected

in the relatively high number of reptile species

classified under criterion B and in the relatively high

correlation between the two datasets with regard to

the geographic range index but not for the popula-

tion size index.

Although the use of observations from CS appears

to offer fewer constraints for inferring species abun-

dance compared to data from RI, we need to highlight

the potential risk of false negatives (species that were

present but remained undetected) and false positives

(misidentifications or recording species that were in

fact absent) related to data from citizen science

initiatives (Gorleri et al., 2023; McDonald & Hodgson,

2021). Despite these challenges, integrating data from

various sources is known to improve data quality

(Brown & Williams, 2019; McDonald & Hodgson,

2021). Nevertheless, more evidence from empirical

tests using robust estimators of population size

among species is necessary to validate whether

F IGURE 3 Spatial distribution of reptile observations in Brazil based on the number of observations from citizen science and

traditional survey data subsets of the Global Information Biodiversity Facility (GBIF) database.

F IGURE 4 Comparison of species richness interpolation

curves of reptiles in Brazil considering the full Global Biodiversity

Information Facility data set (in purple), and the two subsets,

traditional survey (in orange) and citizen science data (in green).
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integrating data sources can improve abundance data

for Brazilian reptiles.

The integration of different data sources has

improved our understanding of species richness

and taxonomic coverage in our data set, high-

lighting the benefits of spatial complementarity.

Despite these advances, the rarefaction curve for

the full data set did not reach a satisfactory

asymptote. The RI data set provided a more

extensive list of species, with 212 (28% of all

Brazilian reptile species in GBIF) species that were

exclusive to this data set. For instance, the only

records of the colubrid Zonateres lanei were seven

museum specimens. Among these 212 species,

only six were classified as common: the Spotted

ground‐snake (Adelphostigma occipitalis), Yellow

head mussurana (Boiruna maculata), Keeled sepia

snake (Dryophylax hypoconia), Amazon coastal

house snake (Dryophylax nattereri), Dark blind

snake (Liotyphlops beui) and Coastal house snake

(Mesotes strigatus). Among the 203 rare species, 18

were classified as threatened and three as Near

Threatened (Table S1).

Conversely, 87 reptile species (12% of the total

species in GBIF) were only present in the CS subset,

making it highly valuable. All of these species were

classified as rare, with nine of them listed as

globally threatened and one as Near Threatened.

This underscores the significant role that volunteer

observations can play in capturing data on rare and

globally threatened species (Báthori et al., 2022;

Fontaine et al., 2022; Tiralongo et al., 2020). Our

study identified certain grid cells that had a larger

contribution from the CS subset than from the RI

subset, especially in the Northeast (Figure 3). While

the combination of RI and CS data improved the

total coverage of reptile species at the national

scale (GBIF includes information on 82.6% of the

reptile species in Brazil), there is still potential for

improvement. The rarefaction curve has not yet

reached a plateau, suggesting the species count

could increase with further sampling efforts, espe-

cially in understudied regions. Spatial gaps are

primarily located in the Amazon Basin, where

increased research effort is required to improve

our understanding of species abundance and

distribution patterns. These regions should be

prioritised for attention by academic experts, and

the involvement of organised citizen‐science initia-

tives could contribute to filling these gaps (Brooks

et al., 2023). An integrated approach that combines

the efforts of professionals and volunteers in

structured projects (including a programme for

training citizens) could result in a highly effective

strategy for increasing data availability in these

under‐researched regions (Callaghan et al., 2019).

Citizen science initiatives typically produce more

observations in urban landscapes (Tulloch &

Szabo, 2012) and our results indicate that such

sources are currently the main contributors of

occurrence data on reptiles in Brazil, proportionally

surpassing the representativeness of RI data since

2019 (Figure 1). The spatiotemporal differences in RI

and CS data were also reflected in differences in the

most observed species. We can also infer the

distribution of exotic species, as the GBIF contains

data on 61 exotic species. Exotic species can affect

native biodiversity negatively, and citizen science is

considered an effective tool to monitor their

distribution and trends (Encarnação et al., 2021;

Johnson et al., 2020; Phillips et al., 2021). The

abundance of CS data supports macroecological

research (Altwegg & Nichols, 2019). For example,

many studies have used citizen science data to

build species distribution models, particularly for

birds and mammals (Feldman et al., 2021). In spite

of the data available, other vertebrate groups have

received less attention (Feldman et al., 2021). Based

on GBIF data, citizen science can contribute to more

accurate distribution models for some species

(Robinson et al., 2020), such as the House gecko,

which has over 1000 observations in Brazil.

The unprecedented global biodiversity crisis

underscores the urgency of identifying and catalo-

guing (Tilker et al., 2020), a task made more

challenging by the widespread lack of information

on population sizes for most species (Kindsvater

et al., 2018). In this context, our study has provided

valuable information on biases present in large‐
scale public data concerning species abundance,

which can inform their use for ecological science

and informed conservation decision‐making

(Johnston et al., 2023). We have demonstrated that

CS data can be an important source for obtaining

reptile species abundance patterns and rarity in

Brazil. Nevertheless, biases need to be recognised

and accounted for. CS and RI data differ in

estimating population size, which can affect the

accuracy of classifying rare species. In spite of

these challenges, we recommend the integration of

these two types of data to study spatial and

taxonomic coverage.

5 | IMPLICATIONS AND
RECOMMENDATIONS

While rare species are not necessarily threatened, a

detailed evaluation of data sources and the under-

lying causes of rarity can serve as an early warning

to trigger conservation actions. For example, the teiid

lizard Glaucomastix cyanura, which displays high

values across all rarity indices in both RI and CS data,

is currently classified as Data Deficient by the IUCN.

This classification positions it as a potential candi-

date for evaluation, with a high chance of being

recognised as threatened. More concerning is the

case of the Pantanal coral snake (Micrurus tricolor),

currently evaluated as Least Concern. Yet, this

species has reached the maximum values for all

rarity indices in both subsets. The convergence of

these rarity dimensions strongly suggests that

this species needs to have its threat status revised,

given its endemicity to the Pantanal, its limited
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geographical range, and appearently low densities.

Furthermore, the populational trend of this species is

currently unknown (https://www.iucnredlist.org/

species/15202936/15202939). Given the ongoing

large‐scale land conversion and extreme fires in the

Pantanal (Garcia et al., 2021) and future predicted

threats (Lima et al., 2020), these environmental

pressures intensify the urgency for reassessment.

Another similar example is the Black‐headed coral

snake Micrurus averyi, also classified as Least

Concern, yet exhibiting concerningly low rarity

indices. Restricted to the northern Amazonia and a

small area in Guyana (http://www.reptile-database.

org/), its limited observations and small geographical

range are cause for concern. Similarly, other

species like the colubrid snake Helicops tapajoni-

cus and the tropidurid lizard Tropidurus insulanus

should also have their global threat status care-

fully re‐evaluated. Despite certain limitations, our

results indicate that CS data have reached a

threshold, having accumulated a sufficient amount

of data to inform species conservation in Brazil.

This approach could also benefit other countries,

particularly those that have traditionally lacked

extensive population data but are currently experi-

encing increased volunteer activity. This method-

ology aids in filling critical data gaps, while also

empowering local communities to actively partake

in biodiversity conservation.
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