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Abstract

Monitoring human pressure on biodiversity within protected areas

(PAs) remains a challenging task due to the vast number of PAs

worldwide (>250,000) and the fact that we lack basic information for

most of them. Consequently, researchers are increasingly relying on

remote sensing techniques to overcome this challenge. However,

remote assessments of human pressure on biodiversity may miss

crucial threats, such as hunting and invasive species, which are often

best documented through in situ field surveys. Here, we use a unique

European Union dataset documenting human threats within 8210 PAs

through field surveys to assess the relationship between those threats

and three commonly used indices of human pressure that are largely

derived using remote‐sensing methods—the Human Footprint and

Human Modification indices and the LandScan Global Population

Database. We find that the indices are not always related to the threats

recorded within PAs through field surveys. The indices seem to best

capture threats associated with urbanization, agriculture, and pollution

but not necessarily others. Although remote assessments of human

pressure on biodiversity are crucial for conservation, researchers and

practitioners must be aware of their limitations and must complement

such assessments with information collected in the field whenever

possible.
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1 | INTRODUCTION

Humans are modifying natural systems on an

unprecedented scale (Corlett, 2015). As a result,

more than one million species are now threatened

with extinction (Tollefson, 2019). Protected areas

(PAs) represent a key strategy for halting bio-

diversity loss. The number of PAs has increased

exponentially over the last few decades (Guan

et al., 2021), now covering approximately 17%

of the planet's terrestrial area (UNEP‐WCMC,

IUCN, 2021). In December 2022, the Parties to the

Convention on Biological Diversity are expected to

agree to a further increase in PAs, covering 30%

of the planet by 2030. Yet, for biodiversity to be

conserved, PAs must also be effective (Geldmann

et al., 2019). Recent studies have shown that many

of the world's PAs continue to be impacted by

human activities (Anderson & Mammides, 2020;

Jones et al., 2018), putting the biodiversity in those

areas at risk. To further improve effectiveness, we

must develop the right tools to assess human

pressure within PAs in its entirety (Schulze et al.,

2018). This remains a challenging task considering

the vast number of PAs worldwide (>250,000;

UNEP‐WCMC, IUCN, 2021) and the fact that we

often lack basic information regarding many of the

human activities occurring in them.

To overcome this challenge, researchers are

increasingly relying on remote sensing information
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to quantify human threats within PAs. Recent

advancements in computing power and remote

sensing technology have made such data exceed-

ingly useful for assessing human pressure on

biodiversity (Luque et al., 2018; Petrou et al.,

2015). Remote sensing datasets are now often

available on a global scale and are being updated

regularly to the extent that, in some cases, we are

provided with near real‐time information (Radočaj
et al., 2020; Ye et al., 2021). Importantly, remote

sensing data are standardized and comparable

across countries and regions and can capture a

range of human activities impacting biodiversity

(Pricope et al., 2019; Radočaj et al., 2020). Such

activities include, for example, agriculture and

urbanization. Combined with other pressures, they

can be used to estimate the cumulative human

pressure on natural systems (Kennedy et al., 2019).

Consequently, it is not surprising that remote

sensing information now plays a central role in our

efforts to assess human threats within PAs. Results

from remote assessments have proven exceedingly

informative, revealing regions in which PAs have

failed to mitigate human impact (Geldmann et al.,

2019; Jones et al., 2018; Mammides, 2020) and

drivers of human pressure within PAs (Elleason

et al., 2021; Guan et al., 2021).

Two global datasets that have been used

extensively to assess human pressure on natural

systems—and which are largely based on remote

sensing techniques (Supporting Information:

Appendix A)—are the human footprint (HFP) and

the human modification (HM) indices (Kennedy

et al., 2019; Venter et al., 2016). Both these indices

map human pressure on a global level using 8 and

13 threats, respectively; these include built‐up
areas, road networks, agriculture, human popula-

tion densities, and others (Supporting Information:

Appendix A). The majority of the threats are based

on data derived using remotely sensed imagery,

although a few are derived from ground‐based
inventories, for example, the threats based on data

retrieved from the OpenStreetMap platform

(Kennedy et al., 2019; Venter et al., 2016). The

threats are quantified and combined to provide a

cumulative human pressure score ranging from 0

to 50 in the case of HFP and 0–1 in the case of HM.

The higher the score, the greater the potential

impact of humans on biodiversity. Studies have

successfully linked HFP to biodiversity impacts

(Watson & Venter, 2019), such as increased extinc-

tion risk (Di Marco et al., 2018) and reduced animal

movements (Tucker et al., 2018).

In addition to the above two indices, researchers

have been also evaluating the effectiveness of PAs

using other broad‐scale datasets largely built using

remote sensing techniques, such as human settle-

ments (Guan et al., 2021) and human population

densities (Gillespie et al., 2019) as measured, for

example, by LandScan Global (Rose et al., 2021).

LandScan Global disaggregates subnational popula-

tion censuses into 1 km2 grids using a multivariable

dasymetric modeling approach and high‐resolution
satellite imagery (Rose et al., 2021).

Although such data are undeniably crucial for

evaluating human pressure on biodiversity, it

should be recognized that they are, for the most

part, limited to human threats and activities that

can be observed remotely. Consequently, they

often exclude other key threats, common in PAs

and known to affect biodiversity, which can only be

recorded through in situ field surveys. Examples of

such threats include hunting (Benítez‐López et al.,

2019; Schulze et al., 2018), which can result in

species extirpations (Sreekar et al., 2015), and

invasive species (Hulme, 2018).

An underlying assumption is that higher human

pressure, as documented and quantified remotely,

represents a good proxy for these other threats that

are best captured through field surveys. This is a

reasonable assumption, especially considering that

studies have already documented such relation-

ships. For example, researchers have long shown

that road expansion facilitates the spread of inva-

sive species (Mortensen et al., 2009) and that higher

human population densities within PAs correlate

with higher species richness of invasive species

(Spear et al., 2013). However, the extent to which

this assumption is entirely valid has not been

investigated in detail. Consequently, this remains

a key knowledge gap, potentially biasing our policy

decisions and conservation efforts.

In this study, we address this gap using a unique

European Union (EU) dataset, which documents

human threats in more than 27,000 PAs (known as

Natura 2000 sites) through field surveys. The

threats are reported by the EU Member States

responsible for surveying their Natura 2000 sites

using a standardized typology (Supporting Infor-

mation: Appendix B) similar to that used in other

international initiatives (Salafsky et al., 2008;

Stolton et al., 2019). Threats are classified into

multiple broad categories (Supporting Information:

Appendix B), including categories that can also be

captured remotely, such as agriculture and urban-

ization, and categories that are better recorded

using field surveys, such as the use of biological

resources and invasive species.

2 | INDICES OF HUMAN
PRESSURE DEVELOPED LARGELY
BASED ON REMOTE SENSING
TECHNIQUES

We focused our analysis on three indices used often

to assess human pressure on natural systems: (a)

HFP (Williams et al., 2020), (b) HM (Kennedy et al.,

2019), and (c) human population densities, as

measured by LandScan Global (Rose et al., 2021).

We first quantified the three indices within each

Natura 2000 site and then compared them to the

threats in each site reported in the EU's database.

Since the spatial resolution of the three indices is
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1 km2, we only included in our analysis Natura 2000

sites that are ≥5 km2 to avoid spatial discrepancies.

We also excluded sites for which information has

not been updated since 2012 to reduce temporal

mismatches (Supporting Information: Appendix A).

In total, we analyzed 8210 PAs situated in 25 EU

Member States.

First, we assessed the relationships between the

various threat categories using the Phi coefficient—

a statistical test suitable for measuring pairwise

relationships between dichotomous variables. Phi

values can range from −1 to 1, indicating a strong

negative and positive relationship; values close to

zero suggest no relationship. Second, we evaluated

whether a larger number of threats, as reported in

the EU's database, is associated with higher HFP

and HM values and higher human population

densities. Third, we evaluated whether the pres-

ence of each threat category is reflected by higher

values of the indices examined.

3 | RELATIONSHIPS BETWEEN
THE THREAT CATEGORIES AND
THE THREE INDICES

We found that agriculture‐related threats were the

most common, occurring in 65% of the Natura 2000

sites (n = 5299; Supporting Information: Appendix C).

Conversely, mining‐related threats were the least

common, occurring in 21% of the sites (n = 1723). Phi

coefficients ranged from 0.07 to 0.31, suggesting that

most of the threats did not often co‐occur with each

other (Figure 1). Some threats, such as those

associated with urbanization and transportation

(recorded in 34% and 45% of sites, respectively),

were expectedly more related than others. Still, even

in those cases, relationships were, at best moderate

(Figure 1). Other threats, such as those related to

agriculture and forestry, were only weakly associated

(0.14) despite being observed in most sites (65% and

51%, respectively).

The total number of threat categories recorded

in each site was only weakly related to the three

indices examined (Figure 2). Although Natura 2000

sites with no threats tended to have lower HFP and

HM values and human densities, the rest of the

sites had, on average, similar values regardless of

the total number of threats recorded in the field

(Figure 2). When each category was analyzed

separately, our results indicated that the indices

reflected mostly the threats associated with urban-

ization, agriculture, and pollution but not others

(Figure 3). Natura 2000 sites in which these three

threat categories were recorded tended to have,

on average, higher HFP and HM values and

human densities compared to sites in which those

threats were absent (Figure 3). In addition, sites

impacted by “human intrusions and disturbances”

(e.g., those resulting from recreational activities;

F IGURE 1 Phi coefficients between the threat categories reported in the EU's database showing that most threats are only weakly

related
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(a)

(b)

(c)

F IGURE 2 Relationships between the total number of threats recorded within each Natura 2000 site and the three indices

examined: (a) human footprint, (b) human modification, (c) human population densities. Gray dots represent the individual sites.
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F IGURE 3 Relationships between the presence of each threat category in Natura 2000 sites and the three indices examined: (a)

human footprint, (b) human modification, (c) human population densities, as opposed to sites in which the specific threat was absent.

Grey dots represent the individual sites.
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Supporting Information: Appendix B) tended to

have higher human densities but not higher HFP

or HM values (Figure 3). In the case of the other

threat categories, such as those related to forestry

and silvicultural activities, Natura 2000 sites tended

to have lower and not higher HFP and HM values

and human densities (Figure 3). This is not surpris-

ing since silvicultural activities are likely taking

place in remote sites with larger forest expanses

and lower human presence. Collectively, these

findings suggest that remote assessments of

human pressure on biodiversity may be missing

important human activities and threats.

4 | ADVANTAGES AND
DISADVANTAGES OF FIELD
SURVEYS VERSUS REMOTE
ASSESSMENTS

One could counterargue that remote assessments

can be complemented with further information,

potentially capturing additional threats, such as

deforestation (Hansen et al., 2013). However, even

in those cases, studies have shown that remotely

sensed forest loss may miss smaller‐scale log-

ging, which could still significantly impact local

biodiversity (Mammides, 2018; Peres et al., 2006).

In general, it is not uncommon for various types of

human threats to go undetected when using

remote‐sensing methods (Peres et al., 2006;

Schulze et al., 2018). This could explain, for

example, why numerous Natura 2000 sites in our

dataset had relatively low HFP, HM values, and low

human population densities but were still threa-

tened by multiple types of human activities

according to the field surveys (Figures 2 and 3).

Another important distinction between the two

approaches is that field data tend to reflect actual

biodiversity impacts, as confirmed by the experts

during the surveys. For example, when it comes to

agriculture‐related threats, field experts can dis-

tinguish between agricultural activities that are

harmful to local biodiversity versus those that are

not. On the contrary, analyses based on remotely

sensed information must assume that the

observed agricultural category (e.g., irrigated

croplands) is equally impactful across all sites.

Moreover, experts in the field can record more

subtle impacts that cannot be captured remotely,

such as those related to the use of pesticides

(Supporting Information: Appendix B). However, a

major drawback of field surveys is that they are

incredibly expensive and time‐consuming

(Rhodes et al., 2015). Moreover, they often involve

multiple experts with varying expertise and ex-

perience, leading to interobserver biases and

errors (Brown & Williams, 2016). Perhaps more

importantly, field data are extremely difficult to

update frequently. For example, in our analysis,

we had to exclude hundreds of Natura 2000 sites

for which information was outdated (>10 years

old). Such constraints seriously limit the utility of

field data for conservation purposes.

Consequently, data collected remotely will

rightly remain crucial for evaluating human

pressure on biodiversity. However, researchers

and practitioners must be aware of their limita-

tions, particularly concerning the fact that (a)

they do not necessarily represent an actual impact

on local biodiversity (since this needs to be

assessed in conjunction with biodiversity obser-

vations on the ground) and (b) they often exclude

key threats that cannot be observed remotely but

can be equally detrimental to biodiversity (Schulze

et al., 2018).

5 | CONCLUSIONS

With the above in mind, we argue that more

research is needed to better understand the exact

relationships between the various threats within

PAs and the limitations of using mostly remote

information to assess their effectiveness (Schulze

et al., 2018). We focused our analysis on Natura

2000 sites for which data were available for

thousands of PAs. However, the patterns we report

may differ for other parts of the world with

dissimilar socioeconomic conditions and in which

PAs are managed differently. We hope that our

preliminary findings will encourage researchers to

explore these patterns further. We also hope that

researchers and practitioners will recognize the

need to complement information collected

remotely with field surveys whenever feasible. This

is particularly important for threats that are difficult

to observe remotely and are unrelated to those that

can be observed. Importantly, field efforts could be

aided by advancing technologies, such as camera

traps (Buxton et al., 2018) and acoustic sensors

(Cretois et al., 2022). Moreover, international efforts

such as the Protected Area Management Effective-

ness Tracking Tool (MEET) could play an important

role in encouraging and supporting field surveys

(Stolton et al., 2019).
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