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Summary

� Cananga odorata is known as a natural perfume tree of the Annonaceae family in Magno-

liales. However, its phylogenetic position and the molecular mechanisms involved in the bio-

synthesis of the floral volatile organic compounds (VOCs) remain unclear.
� Here, by combining a variety of sequencing platforms, we present a telomere-to-telomere

(T2T) genome of C. odorata with 735.83 Mb, which represents the highest integrity and

assembly quality of genome in magnoliid plants reported to date. Phylogenetic analysis based

on multiple datasets and approaches showed that C. odorata, as a member of magnoliids, is

sister to eudicots, after their divergence from monocots.
� Metabolomic of VOCs in the essential oil and flowers scent showed that sesquiterpenes,

especially b-caryophyllene, were the major compounds. Two CoTPS21 homologues derived

from tandem duplication events were highly expressed during flower development and were

identified as the key sesquiterpene synthases for the production of b-caryophyllene. In addi-

tion, CoSPL3 and CoSPL9 were considered as potential transcription factors for activating the

expression of CoTPS21 homologues.
� Our results shed light on the molecular mechanisms underlying the biosynthesis of the

unique floral fragrance in C. odorata and provide new insights into the phylogenetic position

of magnoliids.

Introduction

Cananga odorata, commonly known as ylang–ylang, is a peren-
nial tropical evergreen tree of the Annonaceae family, native to
Indonesia and widely cultivated in tropical regions of Southeast
Asia. As an important resource plant, C. odorata is popularly
known as the ‘king’ of floral scent and a natural perfume tree,
with important economic value and commercial prospects
(Benini et al., 2012; Tan et al., 2015). Essential oil extracted from
the fresh and mature flowers of C. odorata is a precious natural
flavor essence that is widely used as the most important raw mate-
rial in the cosmetics and perfume industries (Qin et al., 2014).
Previous studies have shown that the volatile organic compounds
(VOCs) in C. odorata mainly consist of volatile sesquiterpenes,
monoterpenes, aromatic benzenoids, ester and ether (Benini

et al., 2012; Chakira et al., 2022). The major volatile components
are b-caryophyllene, D-germacrene, (E,E)-a-farnesene, p-cresyl
methyl ether, benzyl acetate, methyl benzoate, and geranyl acetate
(Qin et al., 2014; Chakira et al., 2022). However, the floral meta-
bolic production and the molecular mechanisms involved in
the regulation of biosynthesis process of the floral VOCs of
C. odorata are not well understood.

Cananga odorata belongs to Magnoliales, which together with
Canellales, Laurales and Piperales constitute the magnoliid clades
(Massoni et al., 2014). The magnoliids is very ancient in plant
evolution, and their phylogenetic position facilitates the resolu-
tion of the evolutionary process of existing flowering plants
(Soltis et al., 2015). However, the phylogenetic position of
magnoliids with respect to monocots and eudicots still remains
confusing despite previous valuable attempts (Chen et al., 2019;
Hu et al., 2019; Lv et al., 2020; Y. C. Chen et al., 2020; Qin
et al., 2021). Genome data has been a powerful means for*These authors contributed equally to this work.
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resolving these uncertainties, with recent successive publications
of the genomes of magnoliid plants. For instance, (1) genome
analysis of some Lauraceae plants (Chaw et al., 2019; Shen
et al., 2022; Y. C. Chen et al., 2020) supports magnoliids as a sis-
ter group to eudicots; (2) analysis of the Aristolochiaceae plant
Aristolochia fimbriata suggests the placement of magnoliids as sis-
ter to monocots (Qin et al., 2021); and (3) the genomes of Mag-
nolia biondii (Magnoliaceae) (Dong et al., 2021), Liriodendron
chinense (Magnoliaceae) (Chen et al., 2019) and Persea americana
(Lauraceae) (Rend�on-Anaya et al., 2019) suggest that magnoliids
are sister to both eudicots and monocots. Therefore, the genome
evolution among magnoliids is an important topic that is
currently popularly studied but is still not fully resolved. As the
second largest family in Magnoliales and one of the most
species-rich pantropical plant families, Annonaceae has only two
represented draft genomes so far (Strijk et al., 2021; Talavera
et al., 2023). Genomic resources with representativeness and high
quality for Annonaceae plants would facilitate the phylogenetic
studies on angiosperm relationships and evolution.

In this study, we report a T2T genome of C. odorata. Com-
parative genomic and phylogenetic analyses with other angios-
perms have contributed to figure out the phylogenetic position of
magnoliids. We determined the major components of floral vola-
tile compounds and their biosynthetic pathways and deciphered
the molecular genetics underlying the biosynthesis of the main
fragrant volatile compound products.

Materials and Methods

Plant material

Fresh leaves and flowers of ylang–ylang (Cananga odorata
(Lamk.) Hook. f. & Thomson.) were collected from an indivi-
dual plant cultivated at Xishuangbanna Tropical Botanical
Garden, Chinese Academy of Sciences (21°55 011 00N,
101°15 027 00E) in April 2021 and May 2022. Fresh leaves were
used to extract DNA for further sequencing. The fresh flowers
were used to extract essential oil and extract RNA for further
transcriptome analysis.

Library construction and sequencing

For Oxford Nanopore Technologies (ONT) ultralong sequen-
cing, genomic DNA (gDNA) was isolated using the CTAB
approach from leaves of C. odorata. DNA purity and quality were
measured using a NanoDropTM One UV–V is spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Approximately
8–10 lg of size-selected (> 50 kb) gDNA fragments were con-
structed and sequenced on the PromethION platform (Oxford
Nanopore Technologies, Oxford, UK) at the Genome Center of
Grandomics (Wuhan, China) (Wang et al., 2021). For HiFi
sequencing, c. 8 lg of gDNA was used for library preparations
followed by size screening. A PacBio Sequel II instrument was
employed for sequencing. For NGS, libraries were constructed
by using the MGIEasy Universal DNA Library Prep Kit v.1.0
protocol with the extracted gDNA. For Hi-C sequencing, fresh

leaves were cross-linked with formaldehyde (2%) and digested
with the restriction endonuclease DpnII for the Hi-C library con-
struction (Rao et al., 2014).

Genome assembly and gap filling

The first 659 reads from ONT ultralong sequencing were
used to perform the draft assembly with NEXTDENOVO v.2.4.0
(input type = raw; read type = ont; read cut-off = 1 k; seed
cut-off = 99 365) (Hu et al., 2023). Initially assembled
reference genomes were calibrated with HiFi reads and Illumina
reads via NextPolish (task = 55 512 121 212; lgs options =
-min_read_len 1 k -max_depth 60; lgs_minimap2_options = -x
map-ont; sgs_options = -max_depth 100 -bwa) to obtain the
assembled genomes (Hu et al., 2020). Purge_dups v.1.2.5 was
used to remove redundant contigs, producing relatively complete
scaffolds (Guan et al., 2020). For pseudomolecule assembly, raw
Hi-C reads were subjected to adapter removal and trimmed for
low-quality bases using FASTP v.0.20.0 with default parameters
(Chen et al., 2018). Clean reads were mapped to the contig
assembly using BWA-MEM2 v.2.2 (Li & Durbin, 2009). The
deduplicated list of alignments of Hi-C reads to the contig assem-
bly was generated using JUICER v.1.6 (Durand et al., 2016a). The
contig assembly was then fixed to the chromosome length scaf-
fold using 3D-DNA v.201008 (Dudchenko et al., 2017). Heat-
maps of Hi-C interactions were performed by the 3D-DNA
visualization module and manually adjusted for inversion and
misalignment assembly errors with JUICEBOX v.1.11.08 to finally
obtain the chromosome-level genomes of C. odorata (Durand
et al., 2016b).

Genome annotation

De novo repeat identification was conducted using Repeat Mode-
ler. The following tools were used for various repetitive
sequences: LTR_FINDER and LTR harvest for LTR retrotran-
sposons, Mite Hunter for mite repeats, HelitronScanner for heli-
trons, SINE-Finder for short interspersed nuclear elements
(SINEs), and TARGeT for terminal inverted repeats (Price
et al., 2005).

Structural annotation of protein-coding genes was performed
using de novo prediction, homology-based prediction, and
transcriptome-based prediction in BRAKER v.2.1.6 with the
soft-masked genome (Br�una et al., 2021). Query protein sets
were obtained from ORTHODB (v.10), which included sets from
Aristolochia fimbriata Cham. (Aristolochiaceae), Liriodendron chi-
nense (Hemsl.) Sarg. (Magnoliaceae), and Magnolia officinalis
Rehder & E. H. Wilson (Magnoliaceae) (Kriventseva
et al., 2019). RNA-Seq reads were mapped to the genome assem-
bly using HISAT2 (v.2.2.1) (Kim et al., 2019) and MINIMAP2
(v.2.22-r1101) (Li, 2018). PROTHINT (v.2.5.0) was used to
obtain protein hints (Br�una et al., 2020). Finally, gene prediction
was conducted in AUGUSTUS (v.3.3.3) and GENEMARK-ET
(v.4.38) (Br�una et al., 2020).

For functional annotation, BLAST (blastX and blastn;
e-value < 1e�10) analysis was performed to search against
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multiple databases including Clusters of Orthologous Genes
(COG), Protein family (Pfam), Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Swiss-Prot, and
Nonredundant (NR) databases. Blast2GO was used for GO
annotation. The completeness of the assembly and annotation
was evaluated using Benchmarking Universal Single-Copy
Orthologs (BUSCO, v.4.0) analysis (Sim~ao et al., 2015). Further-
more, for Biosynthetic Gene Clusters (BGCs) identification, the
genome data and genome annotation files of C. odorata was
submitter to PlantiSMATH website (http://plantismash.
secondarymetabolites.org/).

Centromere and telomere characterization

Satellite and transposable element positions were extracted from
the output of RepeatMasker. TRF v.4.09.1 (2 7 7 80 10 50 2000
-h) was used to identify tandem repeat sequences in centromere
regions. VSEARCH v.2.22.1 (--clusterout_sort --clusterout_id
--fasta_width 0 --id 0.8 --cluster_size) was used to cluster homo-
logous CRC sequences on chromosomes. LASTZ ((multiple)
--format = general) was used to compare similarities between
candidate sequences and to locate CRCs and centromeric single-
tons on chromosomes. We considered a LASTZ comparison to
have high confidence if both the coverage and recognition rates
were c. 80% in that comparison. The positional schemtic was
generated by PYGENOMETRACKS v.3.8. RECTCHR v.1.35 was used
to display the columnar homology blocks detected between
homologous chromosomes by MUMMER v.4.0.0rc1.

Genome structural comparison analysis

JCVI software was used to identify the shared chromosomal rear-
rangements among C. odorata and other species (Tang
et al., 2008) The comparative synteny module was used to gener-
ate a collinearity point map and to identify syntenic blocks with
the maximum gap between anchor genes set to 30. Then, the
genome rearrangement regions and the connections between
these regions in different species were determined, and the ances-
tral connection mode of the main branches of angiosperms was
constructed to compare with the prediction mode of the com-
mon ancestor of the existing angiosperms.

Phylogenetic analysis

The phylogenetic analyses were conducted using different data-
sets and methods to verify the evolutionary relationships of mag-
noliids with 23 plants, including 5 eudicots, 5 monocots, 6
magnoliids, 3 amborellales nymphaeales austrobaileyales
(ANA)-clade members, 1 Ceratophyllale, 1 Chloranthale, Selagi-
nella moellendorffii Hieron. and an outgroup gymnosperm. Two
methods were used to screen orthologous groups based on
single-copy gene (SSCG) families and mostly single-copy gene
(MSCG) families. To reconstruct the phylogeny, we aligned the
protein sequences of each gene family using MUSCLE v.3.8.31
(Edgar, 2004), and then forced the nucleotide sequences onto the
amino acid alignment using PAL2NAL v.14 (Suyama et al., 2006).

We also forced the nucleotide sequences onto the amino acid
alignment to obtain codon preserving nucleotide sequence align-
ment results. Finally, five different alignments including amino
acid, nucleotide and codon1/2/3 alignments for each gene family
were performed for phylogenetic analyses. The concatenation-
based analyses and coalescent-based analyses were performed as
previously described (Qin et al., 2021).

Genomic synteny analysis and gene duplication
identification

We analyzed the Ks distributions for whole genome duplication
(WGD) events in Cinnamomum micranthum (Hayata) Hayata
(Lauraceae), C. odorata, Chimonanthus salicifolius H. H. Hu
(Calycantaceae), Amborella trichopoda Baill. (Amborellaceae) and
Vitis vinifera L. (Vitaceae). KaKs_calculator was used to calculate
Ks values (Zhang et al., 2006). The covariance between C. micra-
nyhum, C. salicifolius, A. trichopoda and C. odorata was deter-
mined using WGDI after accurate calculation of the longest
protein sequence of each gene (P. Sun et al., 2022). DupGen-
e_finder was used to further classify the duplicate gene pairs in
the C. odorata into different duplication patterns (Qiao
et al., 2019). Calculate_4DTv_correction.pl was used to calculate
fourfold degenerate synonymous site (4DTv) values for ortholo-
gous and paralogous genes between C. odorata and other
indicated species (https://github.com/JinfengChen/Scripts/blob/
master/FFgenome/03.evolution/distance_kaks_4dtv/bin/calculate_
4DTV_correction.pl).

Karyotype analysis

The AAK and AEK were downloaded from public websites
(https://github.com/SunPengChuan/Angiosperm-karyotype-
evolution/tree/master/Karyotype). WGDI (https://github.com/
SunPengChuan/wgdi) was used to conduct the collinearity rela-
tionship between the ancestral karyotype and species with the -icl
and mg = 25,25 parameters (P. Sun et al., 2022). Then, collinear
fragments were obtained by -bi, filtered by -c. -km, used to
obtain the distribution of relevant ancestral karyotypes in the spe-
cies, and visualized them using the -ak parameter with default
parameters (Murat et al., 2017).

Extraction and analysis of essential oil

Flowers at five flower developmental stages, including S1 (Bud
stage), S2 (display petal stage), S3 (initial flowering stage), S4
(full flowering stage) and S5 (end flowering stage), were har-
vested. The essential oil was extracted using a hydrodistillation
approach as previously described (Chakira et al., 2022) with
improvement. Briefly, c. 200 g of frozen fresh flowers was ground
in liquid nitrogen and then dissolved in 2000 ml of distilled
water. The mixture was kept boiling for distillation for 4 h. The
refrigeration tube was cooled to receive the hot hydrosol vapor
and oil. Then, the harvested cooled oil was further extracted with
800 ll of hexane, filtered, and stored in an amber bottle at 4°C
until GC-MS analysis.
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Flower volatile compound analysis

The volatile compounds of flowers at the five developmental
stages were analyzed by headspace solid-phase microextraction
coupled to gas chromatography mass spectrometry (HS-SPME-
GC-MS) as previously described (J. G. Li et al., 2021; Xia
et al., 2021), with improvement. Briefly, each sample of fresh
flowers (c. 3–5 flowers) was quickly put into a wet glass headspace
bottle (50 ml) and sealed with paraffin film. The SPME fiber
(50/30 lm DVB/CAR/PDMS) was placed upon the exposed
flowers to extract the volatile components for 30 min at
25°C � 3°C. Then, the fiber was inserted into the heated injec-
tor port of the GC instrument and desorbed at 250°C for 1 min
for further GC-MS analysis.

GC-MS analysis

The volatile compounds were further analyzed using an Agilent
7890 gas chromatograph/5975 mass selective detector with a
30 m DB-5MS capillary column. Helium (He) was used as the
carrier gas at a constant flow of 1.2 ml min�1. GC-MS was per-
formed with the following program: initial temperature of 80°C,
4°C min�1 to 180°C, and 12°C min�1 to 200°C for a 2 min
bakeout. The inlet temperature was increased and kept at 250°C,
and the MS transfer line was set at 290°C. The MS acquisition
parameters included scanning from m/z 50 to 600 in electron
impact (EI) mode for routine analysis. An empty sample and a
n-hexane (solvent) were run as the control to exclude instrumen-
tal and solvent background interferences, and ‘Subtract Back-
ground (BSB)’ were selected to exclude background interferences.
The NIST98 database was used to auto-match the mass spectra
of the volatile compounds with retention index through
Chem-Station (Agilent). All peak identities at each retention
index were verified using EI mass spectral auto-matches to the
authentic reference standards in NIST library combing match
index. The Kovats retention index (KRI or RI) of each com-
pound was calculated as previously described (Lu et al., 2022),
and then we compared the RI values via the known RI values
(https://webbook.nist.gov/chemistry/name-ser/). For relative
content analysis, the normalized peak area measurements were
used to calculate the percentage of each flower volatile compo-
nent. For absolute content analysis, n-pentadecane was served as
an internal standard, and the peak areas of the compounds were
corrected by that of the internal standard.

Transcriptome sequencing and analysis

For transcriptome sequencing, samples with each 2 g from three
fresh leaves and 2 g from three flowers were used for total RNA
isolation by the Eastep® Super Total RNA Extraction Kit (Pro-
mega). For each sample, three biological replicates were harvested
at the same time. The qualified RNA was used to construct an
RNA-Seq library according to the library construction protocol
of the VAHTS Universal V6 RNA-Seq Library Prep Kit for Illu-
mina® (NR604-01/02). A NovaSeq 6000 S4 platform by Bena-
gen Co. (Wuhan, China) was used for sequencing. The

RNA-Seq clean reads were mapped to the reference genome
by HISAT2 (--very-sensitive-dta) (Kim et al., 2019). The raw
count of each transcript was tallied using FEATURECOUNTS v.2.0.3
and normalized using Transcripts per kilobase of exon model per
million mapped reads (TPM) values using an R script (Liao
et al., 2019). The heatmap was made with TBTOOLS based on the
gene transcript levels at different flower developmental stages
(C. J. Chen et al., 2020).

Candidate gene identification

The terpene and phenylpropanoid biosynthesis pathway genes in
C. odorata and 22 other species were identified using protein
sequence similarity by BLASTP with the known homologues in
Arabidopsis from TAIR (https://www.arabidopsis.org/). To iden-
tify the putative TPS gene families, two Pfam domains (PF01397
and PF03036) were used to search against the proteome using
HMMER in TBTOOLS (C. J. Chen et al., 2020), with an E-value
cut-off of 10�5.

The sequence alignment of TPS gene families from C. odorata
and other representative species was performed using MAFFT v.7
software online (https://mafft.cbrc.jp/alignment/software/) (Katoh
et al., 2002). The phylogenetic tree was constructed by MEGA X
software using the maximum-likelihood method and bootstrap-
ping with 1000 replicates. Further annotation of the tree was
performed using the online tool ITOL (https://itol.embl.de/).

Expression of CoTPS21 homologues in E. coli and in vitro
enzymatic assay

The CDS of CoTPS21.2 (Codo51071) and CoTPS21.3
(Codo51075) were cloned and inserted into the pET28a
vector after the codon optimization and then transformed into E.
coli Rosetta strain (DE3; Tsingke, Beijing, China). Single right
colonies with OD600 of 0.6–0.8 were induced with 0.1 mM
Isopropyl-b-D-Galactopyranoside (IPTG) at 28°C for 3 h. Then,
the crude recombinant protein was purified using Ni-NTA 6FF
Sefinose (TM) Resin Kit (C600332, BBI) following the product
protocol. In the enzyme assay, total of 10 ng recombinant pro-
tein was incubated with 10 ng FPP as substrate in reaction buffer
at 30°C for 2 h. The volatiles products of enzyme assay were ana-
lyzed using SPME-GC-MS. The primers used are listed in Sup-
porting Information Table S1.

Expression of CoTPS21 homologues in Nicotiana
benthamiana for functional analysis

The coding sequence (CDS) of CoTPS21.1, CoTPS21.2,
CoTPS21.3, AtHMGR1 (AT1G76490) and AtFPPS1
(AT3G14530) was cloned and inserted into the PRI101-Flag vec-
tor to generate overexpression vectors. These recombinant con-
structs were transferred into Agrobacterium tumefaciens strain
LBA4404. The functional confirmation of CoTPS21 genes by
transient expression in N. benthamiana was conducted as pre-
viously described (Forestier et al., 2021). The primers used are
listed in Table S1.
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Prediction of promoter cis-elements and transcription
factors of CoTPS21 homologues

The cis-elements of CoTPS21 promoters were predicted using the
PlantCARE database (https://bioinformatics.psb.ugent.be/
webtools/plantcare/html/). The upstream transcription factors of
CoTPS21 promoters were predicted using the PlantPAN2.0 data-
base (http://plantpan2.itps.ncku.edu.tw/TFsearch.php).

Transcriptional activity assays

Transcriptional activity assays were conducted by luciferase lumi-
nescence as previously described (Zheng et al., 2021). Three
2000-bp CoTPS21 promoters were cloned and fused with the
PRI101-LUC vector as reporters. The CDS of TF was cloned and
inserted into the PRI101-Flag vector as effectors. Equal amounts
of A. tumefaciens cells containing the reporter and effector were
mixed and injected into tobacco leaves for fluorescence signal
detection. The fluorescence intensity was analyzed using IMAGEJ.
The primers used are listed in Table S1.

Yeast One-Hybrid assay

The CDS of CoSPL3.1, CoSPL9.1 and CoSPL9.2 was cloned and
inserted into the pGADT7-Rec2 vector, and the promoter of
CoTPS21.1, CoTPS21.2 and CoTPS21.3 was cloned and inserted
into the pHIS2 vector. Then the AD and pHIS2 recombinant
plasmids were co-transformed into the Y187 yeast strain for

interaction validation following the product protocol Y187-
pHis2 Yeast One-Hybrid interaction proving kit (YH1011-
10 T; Coolaber, Beijing, China). The primers used are listed in
Table S1.

Results

A near-complete T2T reference genome for C. odorata

Ylang–ylang planted in the Xishuangbanna Tropical Botanical
Garden was selected for genome assembly. The genome size was
estimated to be 776.04 Mb, with a heterozygosity rate of 0.49%
based on K-mer analysis (K = 21) (Supporting Information
Fig. S1; Table S2). Multiple sequencing platforms were used for
the high-quality genome assembly of C. odorata. We first gener-
ated 45.45 Gb ONT ultralong reads (659 coverage) using the
PromethION platform and 25.28 Gb (37 9 coverage) HiFi
reads using the PacBio Sequel II platform (Table S3). After
assembly polishing and redundancy elimination, the final gen-
ome size was 735.83 Mb, with 19 contigs, an N50 length of
70.99 Mb and a GC content of 33.16% (Fig. 1a; Tables 1, S4).
We further used the Hi-C-Pro program to produce chromosomal
interaction maps with Hi-C reads mapped to the preliminary
assembly, and 19 contigs anchored to 8 pseudochromosomes,
which covered 95.66% of the Illumina short reads and 99.43%
of the Hi-C clean reads (Figs 1b, S2; Table S5). Finally, four gap-
less chromosomes of C. odorata were assembled, and the other
chromosomes had only five gaps (Table S6).

Fig. 1 Telomere-to-telomere (T2T) genome assembly of Cananga odorata. (a) Genome information, comprising chromosome pseudomolecule information
(A), gene density (B), repeat sequence density (C), Gypsy density (D), Copia density (E), GC content (F), and intragenomic collinearity (G). (b) Telomere
and centromere detection map. The red circles represent telomeres of the assembled chromosomes. The color gradient indicates the gene density. Chr,
Chromosome; rRNA, ribosomal RNA.
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Based on the occurrence of the characteristic telomere repeats
(CCCTAAA at the 5 0 end or TTTAGGG at the 3 0 end) (Fu
et al., 2023), we identified 16 telomeres at the terminus of 8
pseudochromosome (Table S7). The centromeric regions were
predicted with the length ranging from 1.00 to 2.86 Mb on each
8 pseudochromosome (Table S8). We further assessed the com-
pleteness and accuracy of the assembly using various approaches.
Analysis with BUSCO showed that a total of 1586 complete con-
served genes were detected, with a high completeness rate of
98.3% (Fig. S3; Table S9). Furthermore, c. 97.34% RNA-Seq
data mapped to the assembled genome (Table S10). These results
suggested that the genome assembly of C. odorata was nearly
complete, and this is the first T2T genome in magnoliids.

Genome annotation

Based on homology prediction, de novo prediction and transcrip-
tome prediction approaches, a total of 26 449 protein-coding
genes were identified in C. odorata genome with an average gene
length of 4756.32 bp and an average of 4.52 exons per
gene (Tables S11, S12). The number of genes was smaller than
that in Magnolia biondii (Magnoliaceae), larger than that in Aris-
tolochia fimbriata (Aristolochiaceae), and similar to that in Cinna-
momum kanehirae (Lauraceae) (Table S12). Functional
annotation was performed using COG, Pfam, GO, KEGG,
Swiss-Prot, and NR databases, and 78.88% (20 863) of the pre-
dicted protein-coding genes had been annotated (Table S13). We
also identified the noncoding RNAs in the C. odorata genome,
including 356 tRNAs, 133 microRNAs and 705 rRNAs
(Table S11). Meanwhile, the repeated sequences, accounting for
61.71% of the genome, were further identified, including
45.72% of long terminal repeats (LTRs), which consisted of
29.10% Gypsy, 12.58% Copia, and 4.04% other unknown
sequences (Table S14). We further performed a genome-wide
investigation of BGCs in C. odorata using the plantiSMASH gen-
ome mining algorithm. A total of 18 BGCs were identified in C.
odorata genome, including terpene, putative, saccharide, alkaloid,
lignan, saccharide-polyketide and saccharide-terpene biosynthesis
pathway (Table S15).

The phylogenetic position of magnoliids within
angiosperms

Numerous phylogenetic and genome sequencing studies have
proposed discordant relationships for the magnoliid, monocot
and eudicot groups of angiosperms (Y. C. Chen et al., 2020; H.

T. Li et al., 2021; Qin et al., 2021). To explore these phyloge-
netic discrepancies, we first analyzed the chromosomal rearrange-
ments shared among some major groups including C. odorata
and other angiosperms (2 ANA-clade, 8 Magnoliids, 5 monocots
and 6 eudicots). A collinearity point map among these genomes
was constructed and was related to chromosomes 1, 2, 4 and 5 of
C. odorata, containing the A1-A2 (chr1), B1-B2 (chr2), C1-C2
(chr4), D1-D2 (chr5) collinearity modules (Fig. S4). We found
that A1 and A2 modules was fused in eudicots, but there is no
consistency in magnoliids and monocots, similar results appeared
in C1 and C2 module (Fig. S5). It seemed that the phylogenetic
relationships between magnoliids, eudicots, and monocots were
still unresolved by genome structural comparisons analysis.

We further performed phylogenetic analyses based on different
sampling datasets and used OrthoMCL to verify the evolutionary
relationships of magnoliids with 23 plants, including 5 eudicots,
5 monocots, 6 magnoliids, 3 ANA-clade members, 1 Ceratophyl-
lale, 1 Chloranthale, Selaginella moellendorffii (Selaginellaceae)
and an outgroup gymnosperm (Ginkgo biloba L.) (Table S16). A
total of 45 SSCG families and 267 MSCG families were identi-
fied among the 23 representative species (Table S17). We first
constructed a multi-species maximum-likelihood (ML) phyloge-
nomic tree by the concatenation method with nucleotides,
amino acids and three codon position sequences. The
concatenation-based phylogenetic trees of MSCGs supported
the T2 hypothesis (magnoliids and eudicots are sister clades after
their divergence from monocots) (Figs 2a–c, S6). The
concatenation-based phylogenetic trees of SSCGs also supported
the T2 hypothesis (Figs S7, S8).

Furthermore, we constructed gene trees using a coalescent-
based method, and the trees were then input into ASTRAL for
species tree inference. The phylogenetic trees based on MSCGs
showed that C. odorata closely clustered with the other two mag-
noliids, and the phylogenetic trees strongly supported the T2
hypothesis that magnoliids are a sister clade to eudicots (q2:
50.98% of nucleotides, 56.79% of proteins, 47.06% of codon3)
(Figs 2d, S6). In addition, the phylogenetic trees based on SSCGs
also significantly supported T2 as the main topology (Figs S7,
S8). Together, our estimated gene trees of both concatenation
and coalescent analyses produced an identical strongly supported
topology (Tables S17, S18), suggesting that the magnoliids are
likely to be sister to eudicots rather than sister to monocots or sis-
ter to the clade of eudicots and monocots.

We also constructed a phylogenetic tree using 1393 single-
copy gene families and calibrated it by fossil evidence. The results
showed that the divergence time of Annonaceae and Magnolia-
ceae species was c. 72.11 (50.71–94.02) million years ago (Ma)
and C. odorata and Annona muricata diverged c. 27.54 (12.11–
45.02) Ma (Fig. S9).

Comparative genomic analysis, WGD and karyotype
analysis

To analyze gene family evolution, we compared the C. odorata
genome with 8 other plant genomes using ORTHOFINDER

(Emms & Kelly, 2015) and identified 751 expanded and 935

Table 1 Genomic feature of Cananga odorata.

Total size of assembled contigs (Mb) 735.83
Number of contigs (gaps) 8 (5)
GC content (%) 33.16
Contig N50 (Mb) 93.52
Number of transcripts 119 566
Number of non-transposable element transcripts loci 744 132
Total size of TEs (Mb) 454.08
BUSCO (%) 98.30%
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contracted gene families in the C. odorata genome (Fig. 3a;
Table S19). Expanded gene families might facilitate better adap-
tation to the environment in plants due to their new functions
acquired during the evolutionary process (Moore & Purugga-
nan, 2005; Cui et al., 2022; Li et al., 2022). Further GO
enrichment analysis revealed that the expanded gene families
were mainly enriched in the pathways of catalytic activity, sec-
ondary metabolite biosynthetic process, farnesyl diphosphate
metabolic process, and sesquiterpene synthase activity (Fig. 3b;
Table S20). Notably, the significant enrichment of sesquiter-
pene biosynthesis-related pathways suggested that the expansion
of these gene families possibly played roles in the synthesis of
fragrant substances in C. odorata.

Further comparative analysis of the distribution of pairwise
synonymous substitutions (Ks) values of paralogs of a range of
species with C. odorata showed that C. odorata was absent of a
lineage-specific WGD but did experience the ancestral WGD
event (Ks, c. 1.78) commonly shared among magnoliids
(Fig. 3c). In addition, we performed the Fourfold synonymous
third-codon transversion position (4dTV) analysis, and the
results was consistent with those of Ks analysis (Fig. S10).

Collinearity and synteny analyses revealed that the syntenic depth
ratio between C. odorata and Aristolochia fimbriata and between
C. odorata and Cinnamomum micranthum were 2 : 1 and 1 : 2,
respectively (Figs 3c, S11; Table S21). These results confirmed
that only single ancient WGD event occurred in C. odorata. We
also inferred the chromosome evolution of C. odorata, an evalua-
tion of the ancestral eudicot karyotype (AEK) and ancestral
angiosperm karyotype (AAK) was used to examine how the
ancestral chromosomes have undergone rearrangements to gener-
ate the current C. odorata genome. The results showed that all 8
chromosomes of C. odorata underwent rearrangement events,
and 31.85% and 24.68% of all the genes in C. odorata corre-
sponded to AEK genes and AAK genes, respectively (Figs 3d,
S12; Table S22).

Floral metabolic profiling during flower development in C.
odorata

To identify the main compounds of floral VOCs in the essential
oil and floral scent of C. odorata, we performed GC-MS analysis
on the floral VOCs at five flower developmental stages, from

Fig. 2 Phylogenetic relationships between Cananga odorata and other angiosperms. (a–c) Phylogenetic tree based on nucleotide sequences (a), amino acid
sequences (b) and codon 3 sequences (c) of 267 mostly single-copy gene (MSCG) families obtained using concatenation (left) and coalescent (right)
methods. Different colors represent different plant groups, from upper panel to lower panel are eudicots clade (Arabidopsis thaliana, Populus trichocarpa,
Vitis vinifera, Tetracentron sinense and Buxus sinica), Chloranthales and Ceratophyllales clade (Ceratophyllum demersum, Chloranthus spicatus),
magnoliids clade (Liriodendron chinense,Magnolia officinalis, Cananga odorata, Cinnamomum micranthum, Chimonanthus salicifolius and Aristolochia

fimbriata), monocots clade (Oryza sativa, Sorghum bicolor, Asparagus officinalis, Spirodela polyrhiza and Acorus tatarinowii), amborellales nymphaeales
austrobaileyales clade (Euryale ferox, Nymphaea colorata and Amborella trichopoda) and outgroup clade (Ginkgo biloba). The number appeared at
branches indicates the supporting rate of the phylogenetic tree. (d) Proportions of the 267 MSCG gene trees with different topologies. The dashed line
refers to the mean proportion of 33%. q1, magnoliids as sister to both eudicots and monocots (T1 hypothesis); q2, magnoliids as a sister group to eudicots
(T2 hypothesis); q3, magnoliids as sister to monocots (T3 hypothesis).
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green flower buds to fully mature yellow flowers (Fig. 4a). A total
of 44 and 75 volatile compounds in the essential oil and floral
scent were identified, respectively.

In the essential oil, 9, 25, 30, 23 and 20 volatile compounds in
essential oil were detected in stages 1–5, respectively (Figs 4b,c,
S13). The content of dominant VOCs at different developmental
stages were different. By analyzing the relative and absolute
content of the VOCs, we found that stages 1 and 2 were charac-
terized mainly by sesquiterpenes including b-caryophyllene,
a-caryophyllene and b-cubebene. Stage 3 was dominant in ses-
quiterpenes with little aromatic ester, which belong to the benze-
noid/phenylpropanoid group, such as geranyl acetate and benzyl
benzoate. The last two mature stages, stages 4 and 5, during
which the flower gradually turns yellow and emits a pleasing
aroma, were dominated by sesquiterpenes and more aromatic
ester (Tables S23, S24). Principal component analysis (PCA) per-
formed using the absolute content of volatile compounds in
essential oil at stages 1–5 also showed that the volatile com-
pounds with high positive scores on both PC1 and PC2 included
b-caryophyllene, a-caryophyllene and b-cubebene (Fig. 4d;
Table S25). Notably, b-caryophyllene was the most abundant
component in essential oil at the mature stages of flowering
(Fig. 4b).

In the VOCs of flower scent, sesquiterpenes and benzenoid-
s/phenylpropanoids (aromatic esters and ether-oxides) were also
the main compounds observed. The highest contents were sesqui-
terpenes (64.19 and 58.14%) and esters (23.45 and 32.33%) at
the last two mature stages (Fig. S14; Table S26). b-caryophyllene
with significantly high yield was detected at the last two maturity
stages (28.76 and 25.13%), which was consistent with that in the
essential oil. Our results showed that sesquiterpenes and benze-
noids/phenylpropanoids are the two most abundant groups of
chemicals in C. odorata flowers, and the last two developmental
stages of flowers that are most suitable for C. odorata flower har-
vest were characterized by most abundant sesquiterpenes and aro-
matic esters.

Terpenoid and benzenoid/phenylpropanoid biosynthesis

To understand the genetic basis of terpenoid biosynthesis in C.
odorata flowers, a total of 34 genes related to the terpene skeleton
synthesis of two canonical terpene biosynthesis pathways (methy-
lerythritol phosphate pathway and mevalonate pathway) were
identified (Fig. 5a; Table S27). Based on our BGCs analysis,
these genes didn’t form BGCs (Table S15). Further comparative
genomics analysis among 23 species showed that most of the

Fig. 3 Comparative genomic analysis and genome evolution of Cananga odorata. (a) The expanded and contracted gene families in C. odorata and 8
other species. Included are the numbers of expanded gene families (red color), contracted gene families (blue color) and unchanged gene families (green
color). (b) Gene ontology enrichment analysis of the most significantly expanded gene families in C. odorata. (c) Ks values for orthologous and paralogous
genes between C. odorata and other indicated species and Chromosome syntenic comparison between C. odorata and Cinnamomum micranthum and
between C. odorata and Aristolochia fimbriata. The gray lines indicate the syntenic regions spanning the genomes, and the red lines indicate the examples.
(d) Karyotype analysis of C. odorata (2n = 16) based on the Ancestral Eudicot Karyotype (AEK) of modern eudicots. The number in the tree indicates the
divergence time with unit of Million years ago (Ma). Atri, Amborella trichopoda; Ncol, Nymphaea colorata; Vvin, Vitis vinifera; Atha, Arabidopsis
thaliana; Ayan, Acer yangbiense; Ptri, Populus trichocarpa; Afim, Aristolochia fimbriata; Csal, Chimonanthus salicifolius; Moff,Magnolia officinalis;
Ache, Annona cherimola; Codo, Cananga odorata.
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genes involved in the first stage were present as one copy
(Table S28), while the TPS genes, which are the synthases
responsible for the last catalytic reaction to generate terpenoid
compounds (Chen et al., 2011; Jiang et al., 2019), were found to
expand in the C. odorata genome. We identified 56 putative TPS
genes in C. odorata, and phylogenetic analysis further divided
them into 6 subfamilies of the TPS-a, TPS-b, TPS-c, TPS-e/f and
TPS-g clades (Figs 5b, S15; Table S29). Comparative genomics
analysis revealed that the TPS-a and TPS-b genes significantly
expanded in C. odorata, compared to that in the other 5 magno-
liid plants (Table S30). We found that proximal
duplication events (involving 20 TPS homologues) and tandem
duplication events (involving 22 TPS homologues) majorly
impacted TPS gene expansion, which possibly contributed to the
abundance and diversity of volatile terpenoids in C. odorata
(Fig. 5c; Table S31). We also identified 75 genes encoding the
key enzymes in the two main pathways (Shikimate pathway and
phenylalanine pathway) of benzenoid/phenylpropanoid bio-
synthesis in the C. odorata genome (Fig. S16; Tables S32, S33),

and the tandem duplication events and proximal duplication
events (involving 39 genes) significantly affected both the
upstream and downstream genes involved in the biosynthesis of
some specific benzenoids (Table S34).

Further transcriptome analysis showed that the expression pat-
tern of some genes involved in benzenoid/phenylpropanoid bio-
synthesis was consistent the emission pattern of metabolism
(Table S35). Furthermore, in the mevalonate pathway, which is
responsible for sesquiterpenoid biosynthesis, the expression levels
of the key genes in the first step of sesquiterpene biosynthesis
were abundant in the early stages of flower development. The
genes involved in the second step were mainly highly expressed in
stages 3 and 4 (Fig. 5a). As for TPS homologues, notably, three
TPS-a genes TPS21.1 (Codo51068), TPS21.2 (Codo51071) and
TPS21.3 (Codo51075), which originated from tandem duplica-
tion events and were the homologues of TPS21 in Arabidopsis,
were specifically activated in flowers at stage 2 and remained at
significantly high levels into the mature stages (Fig. 5c). These
results were consistent with the emission trends of the main

Fig. 4 Metabolic analysis of volatile organic compounds (VOCs) in the essential oil of Cananga odorata flowers. (a) The morphological characteristics of C.
odorata flowers at five different developmental stages. (S1) Bud stage; (S2) display petal stage; (S3) initial flowering stage; (S4) full flowering stage; (S5)
end flowering stage. Bar, 1.5 cm. (b) GC traces of floral VOCs in essential oils extracted from flowers at S5. The arrow indicates internal standard (n-
pentadecane) used in the assay. The number beside the peak indicates the compounds which were identical to that in Supporting Information Table S23. EI
mass spectrum of b-caryophyllene is shown upper right. (c) Relative amounts of VOCs in the essential oil of C. odorata flowers. The measurements were
independently conducted at 3 times with similar results. (d) PCA of the VOCs in the essential oil of C. odorata flowers at stages 1–5. The PCA biplot shows
the loadings of variables and the Principal Component (PC) scores of samples. The compounds of number are listed in Table S25.
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sesquiterpenes in the floral VOCs of C. odorata, indicating that
the high levels of expression of these three TPS-a genes might
play important roles in sesquiterpene biosynthesis.

The genetic basis of sesquiterpenoid biosynthesis

To better determine the roles of TPS genes in sesquiterpene bio-
synthesis in C. odorata, we cloned three CoTPS-a genes
(TPS21.1, TPS21.2 and TPS21.3) with specific high expression
to determine their functions. These TPS21 homologues were
inserted into the pET28a vector and then transformed into the E.
coli Rosetta strain for prokaryotic expression and further in vitro
enzyme assays. The results of SPME-GC-MS showed that puri-
fied CoTPS21.2 and CoTPS21.3 recombinant protein specifically
catalyzed the biosynthesis of b-caryophyllene, which is the main
sesquiterpene of the floral VOCs in C. odorata, using FPP as a
substrate (Figs 6a–d, S17). Furthermore, the results of transient
expression analysis in N. benthamiana showed that when co-
expressed CoTPS21.2 or CoTPS21.3 with AtHMGR1 and
AtFPPS1 genes, which were previously identified to increase het-
erologous sesquiterpene production in plants (Green et al., 2012;
Song et al., 2012; Jin et al., 2015), one specific peak was clearly
detected and identified as b-caryophyllene by GC-MS analysis

(Fig. S18). These results suggested that CoTPS21.2 and
CoTPS21.3 were the key synthases that catalyze the biosynthesis
of b-caryophyllene in C. odorata.

In addition, our results showed that the Codo13515 and
Codo21750 genes, which belong to the TPS-e/f subfamily
and were significantly activated at stage 4–5, catalyzed the bio-
synthesis of a-Farnesene when co-expressing them with
AtHMGR1 and AtFPPS1 in N. benthamiana (Fig. S19). a-
Farnesene is also a kind of sesquiterpene widely used in perfume
industry and is rich in the last two stage of floral development in
C. odorata. Together, these results suggested that after the expan-
sion events of the TPS gene family in C. odorata, the specially-
activated TPS genes during mid- to late-flower development play
important roles in the sesquiterpenes biosynthesis, which are the
major compounds of floral VOCs in C. odorata.

The transcriptional control of genes encoding synthases for ter-
pene biosynthesis is related to the cis-elements distributed in their
promoter regions (M. Sun et al., 2022). To investigate the poten-
tial TF to activate the transcription of the TPS21 genes, we
further screened the cis-elements in the 2000-bp regions
upstream of the coding region of the TPS21 genes (Fig. S20).
We found that SBP and MYB-binding elements were the poten-
tial upstream TFs of these three TPS21 genes. To further verify

Fig. 5 Terpene biosynthesis pathway in Cananga odorata. (a) Diagram of the terpene biosynthetic pathways and expression profiles of genes encoding
enzymes involved in the mevalonate and methylerythritol phosphate pathways in C. odorata. The key synthases and intermediates are shown in red and
black. The five different colored boxes next to each gene indicated the gene expression levels at the five developmental stages. (b) Phylogenetic tree of
TPSs in C. odorata and other representative species. TPSs from different species are indicated with different colors. (c) Gene expression levels of TPS genes
from flowers at different stages in C. odorata by RNA-Seq. The upper panel is the phylogenetic tree of TPS protein; the red color indicates TPS-a
subfamilies, the green color indicates TPS-b subfamilies, the orange color indicates TPS-c subfamilies, the blue color indicates TPS-e/f subfamilies and the
purple color indicates TPS-g subfamilies. Different shapes in the lower panel indicate different duplication event origins of the TPS genes. Expression values
were scaled by log2 (TPM + 1). S, Stage of C. odorata flower. TPM, Transcripts per kilobase per million mapped reads in RNA-Seq.

New Phytologist (2024) 243: 2279–2294
www.newphytologist.com

� 2024 The Author(s).

New Phytologist� 2024 New Phytologist Foundation.

Research

New
Phytologist2288

 14698137, 2024, 6, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19977 by X

ishuangbanna T
ropical B

otanical G
arden, W

iley O
nline L

ibrary on [18/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



whether these TFs can activate the TPS21 promoters, we per-
formed a transcriptional activity assay by co-infiltrating the
reporter (pTPS21:LUC series) and the effector (35S:TF series)
into tobacco leaves. Our results showed that a strong LUC signal
was detected when co-transformation of pTPS-21:LUC with
CoSPL3 (Codo33137), CoSPL9.1 (Codo13415) and CoSPL9.2
(Codo81486), which belong to the SBP elements (Fig. 6e,f).
Further results of yeast one-hybrid assays showed that CoSPL3,
CoSPL9.1 and CoSPL9.1 could bind to the TPS21 promoters
(Fig. S21). However, we did not detect the activation signal when
co-transformation of some TFs belonging to the MYB-binding
elements, such as CoMYC2.1 (Codo12352) and MYC2.2
(Codo31189) (Fig. S22). Taken together, these results indicated
that CoSPL3 and CoSPL9 homologues may be the key upstream
TFs activating CoTPS21 genes in C. odorata.

Discussion

Cananga odorata is not only one of the most popular raw materi-
als for fragrances world-wide but also considered a potentially
useful plant in the agriculture and medicine industries (Burdock
& Carabin, 2008). C. odorata belongs to the Annonaceae family
Magnoliids, and the flower of C. odorata is the main organ that
produces aromatic essential oil (Nurhayani et al., 2019). High-
quality and representative genomic resources will facilitate floral
fragrance biosynthesis and evolutionary studies of C. odorata as
well as other members of Annonaceae. Here, we generated a
high-quality T2T genome of C. odorata by combining a variety
of sequencing platforms. This nearly complete genome assembly
of C. odorata will undoubtedly be regarded as a benchmark for
genetic research on C. odorata and Annonaceae plants. The C.

odorata genome will contribute to figuring out the phylogenetic
placement of magnoliids through a phylogenomic approach and
shed light on the genome evolution relationships of angiosperms.

The phylogenetic position of magnoliids is still unclear,
although numerous attempts at phylogenomic analysis according
to c. 20 genomes of magnoliid plants have been performed
(Dong et al., 2021; Qin et al., 2021; Shen et al., 2022). This phy-
logenetic discordance in the position of magnoliids is probably
due to ILS, ancient hybridization, the use of different and sparse
taxon samples, and parallel evolution that occurred during plant
evolution (Leebens-Mack et al., 2005; Rend�on-Anaya
et al., 2019; Yang et al., 2020; Qin et al., 2021). In this study, we
used two complementary tools to extract the nucleotide
sequences, amino acids and partitioned codons of SSCGs and
MSCGs to reconstruct the phylogeny with concatenation- and
coalescent-based analysis. In addition, we also improved taxon
sampling by selecting key lineages in the magnoliids, monocots
and eudicots, ANA-clade members, and additional lineages to
cover key representative clades (Table S16). Finally, all the phylo-
genetic analyses performed most parsimoniously implied that C.
odorata was more closely related to eudicots than to monocots,
suggesting that magnoliids is sister to eudicots after the common
ancestor of magnoliids and eudicots diverged from monocots.

Cananga odorata is widely used in the perfume and essential
oil industries due to its unique floral scent. The qualities and
quantities of VOCs in essential oils and floral scents depend on
genetic background, geographical climate environment and culti-
vation methods during adaptation and domestication of C. odor-
ata (Benini et al., 2012; Qin et al., 2014). The VOCs of essential
oils of C. odorata populations from different region are quite dif-
ferent (Benini et al., 2012). Some populations have higher ester

Fig. 6 Functional characterization of the CoTPS21 homologues of Cananga odorata in sesquiterpene biosynthesis. (a) Total ion chromatogram (TIC)
diagram of reaction products of control with FPP. (b) TIC diagram of b-caryophyllene standard. (c, d) TIC diagram of volatile terpenes products of
overexpressing CoTPS21.2 (c) and CoTPS21.3 (d) genes with FPP as a substrate obtained from in vitro enzyme assay. Recombinant proteins were purified
using Ni-NTA 6FF SefinoseTM Resin Kit (C600332, BBI). The volatile terpenes products were analyzed using solid-phase microextraction (SPME)-GC-MS. (e)
Transcription activity analysis showing the activation activity of three effectors (CoSPL3, CoSPL9.1 and CoSPL9.2) at the reporters containing the CoTPS21
promoters. (f) Relative LUC activity of effector with corresponding reporter construct. Data are mean � SD, n = 5. ***, P < 0.01 compared with the
control (Student’s t-test).m/z, mass charge ratio. The red dashed line refers to the retention time of b-caryophyllene production.
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compounds, while some populations have more than half of the
terpene compounds (Jin et al., 2015). Our results showed that
the complex, rich aroma of C. odorata flowers is a mixture of che-
mical compounds, mainly sesquiterpenes and aromatic esters,
especially b-caryophyllene, indicating that these main com-
pounds potentially contributed to the distinct floral scent in
C. odorata.

Previous studies have demonstrated that the functional diver-
gence of TPS genes caused by expansion or duplication events
could contribute to the differences in terpene concentration and
production among different species (H. Chen et al., 2020; Zhang
et al., 2020; Chen et al., 2023). In this study, we found remarkable
duplication and expansion of TPS-a genes, which are involved in
the production of major sesquiterpene components. Some TPSs
can catalyze several products, while most of TPSs can synthesize
one or two compounds dominantly as the major products (Shi-
mada et al., 2004; F€ahnrich et al., 2011; D. S. Li et al., 2021). In
this study, functional experiments showed that CoTPS21.2 and
CoTPS21.3, which likely encode a kind of sesqui-TPSs, can spe-
cially generate only one major product, b-caryophyllene, which is
the main compound of sesquiterpenes in C. odorata flowers. Some
TPS genes show high overlapping functions in regulating floral fra-
grance (Wang et al., 2023). Our results indicated that these two
CoTPS21 genes, which are homologous genes and have similar
functions, may have co-evolved and both have been retained to
contribute to the floral metabolism of C. odorata. Previous studies
have shown that the transcription factors ERF, NAC, MYB, and
bHLH are participated in regulating the expression of genes
involved in the floral volatiles synthesis in Petunia hybrida and
Cymbidium goeringii (Spitzer-Rimon et al., 2012; Liu et al., 2017;
Ramya et al., 2019). In this study, we identified CoSPL3 and
CoSPL9 belonging to SBP families were the potential upstream
TFs for the CoTPS21 genes expression.

Taken together, in this study, we generated a high-quality
chromosome-level assembly for C. odorata. This is the first T2T
genome in magnoliids and provides a valuable genomic basis for
obtaining insights into the phylogenetic position of magnoliids. In
this study, we identified the components of VOCs in C. odorata
and revealed the molecular relationship between the fragrance of
C. odorata and TPS genes, which provide important genetic infor-
mation for enhancing the yield potential of sesquiterpenoids in C.
odorata. The high-quality reference genome of C. odorata would
contribute to identify potential genes involved in key agronomic
trait, such as higher and better essential oil production, which
might facilitate for the potential commercial values of C. odorata.
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