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Abstract: The climate and soil properties are major determinants of plant growth and forest com-
munity assembly across diverse biomes. However, the contribution of climate and soil on species
diversity in tropical and subtropical forests remains controversial. Therefore, this study aims to
evaluate the effects of soil and climate on tree species richness using survey data across 495 tropical
and subtropical forest plots in Southern China. The selected predictors were categorized as local plot
characteristics, climate, and soil factors, and their relationship with tree species richness was modeled
using negative binomial generalized linear models. The results revealed that the considering of
the interaction between climate and soil properties considerably improved the goodness−of−fit of
these models. The individual effects of climate and soil factors had weak relationships with species
richness, accounting for 3.61% and 5.77% of the overall 58.9% explained variance in species richness,
respectively. Instead, the interaction between climate and soil properties explained most of the
statistical variation in tree species richness (84.34% of the overall 58.9% explained variance). The
results highlight the importance of soil and climate interactions on tree diversity in tropical and
subtropical mature natural forests and their incorporation into biodiversity assessment models to
enhance the prediction of community change and responses to climate change.

Keywords: species richness; climate; soil; interaction; tropical and subtropical forests; southern China

1. Introduction

Environmental changes are altering the pattern and the assembly processes of bio-
diversity, leaving it unclear whether the persistence of biodiversity patterns would be
impacted positively or negatively by these environmental changes [1–4]. Therefore, clear
understanding of abiotic factors underlying species diversity across communities is vital
for monitoring community stability and structural evolution under changing climate, thus
designing appropriate conservation and management measures [5,6].

Biomes and forest community distribution around the globe match variation in climate
and soil properties. Notably, as the crucial factor that has a direct impact on the survival,
growth, and distribution of plants, climate has always been the primary factor to explain
the diversity patterns of plant species in primary forests [7–9]. Studies undertaken at conti-
nental or global scales revealed the predominant effect of climatic variables in explaining
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species and functional diversity [5,6,10–12], even species distribution patterns and con-
sistent stabilizing effects of plant diversity across spatial scales [13–15]. Additionally, soil
provides nutrients and water to the plant. Therefore, soil physical and chemical properties
such as pollution, salinity change, and pH change play an essential role in the plant growth,
survival, biodiversity, and productivity [16–19]. Soil properties can also affect species
distribution at a local scale [20–23]. At the local scale, spatial variation in soil properties,
which is larger than the variation in climate variables, may have a stronger effect on local
community assembly and turnover [24–26].

Several studies have analyzed the importance of climate and soil properties on species
distribution, diversity, and community assembly [27–29]. However, the interactive contri-
bution of climate and soil properties on species distribution and diversity across subtropical
and tropical forest communities requires further clarification. Plant preference, response,
and adaptation to environmental conditions vary from one species to another. Diversity in
environmental requirements among cohabiting species results in complex interspecific rela-
tionships and a unique community, thus shaping the local species richness. Additionally,
the spatial heterogeneity in environmental factors (e.g., soil nutrients, topography, humid-
ity, temperature, and light conditions) probably affects tree species richness in primary
forests at a local scale.

Additionally, environmental filtering based on the niche theory has been considered
as an important mechanism for determining community assembly. Partitioning the species
diversity characteristics into components explained by the environmental predictors has
been used to identify the niche−based processes of community assembly. However, the
explanatory power largely depends on the quality, quantity, and type of environmental
variables available. Better quality and more comprehensive types of environmental vari-
ables can improve the explanative effects of environmental filtering on tree species [30–34],
even that of interspecific interactions on trees caused by environmental filtering [35–38].

Currently, research on forest species diversity is mainly focused on tropical and tem-
perate forests [39–42]. The subtropics are composed of unique and diverse environmental
conditions and forest communities [43,44]. Many forest ecosystems in subtropical regions
host extraordinarily high plant diversity and 10%–15% of plant species around the world
are found in these regions. The evergreen broad−leaved forests distributed in East Asia,
with the largest area around the world, of which the net carbon exchange rate overtakes that
of tropical rainforests and temperate forests in Asia, are predicted to be one of the regions
with the greatest increase in nitrogen deposition at present and in the future, emphasizing
the significant ecological importance and service functions of evergreen broad−leaved
forests [45,46]. Additionally, complex environmental conditions are commonly found in
the subtropical regions, such as steep altitude gradients, the variation in soil physical and
chemical properties at a small scale, and the protean climatic conditions. Large variations
in environmental condition and species composition provide favorable conditions for inves-
tigating climatic and edaphic backgrounds of tree species diversity in subtropical regions.

This study aims to assess the effects of different types of environmental factors on
the local species richness of trees in primary tropical and subtropical forests at a regional
scale in Southern China. We expect that the environmental filtering would be the main
mechanism underlying community assembly and species diversity. Based on the census
data of 495 plots distributed in Guangxi Zhuang Autonomous Region (hereafter, Guangxi),
we used negative binomial generalized linear regression to analyze the individual and
joint contribution of climate and soil properties on the variation in tree species richness
across plots. We hypothesized that the joint effect of different types of environmental
predictors mainly explains the variation in the tree species richness in mature natural
forests in this region.
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2. Materials and Methods
2.1. Study Area and Data Source

This study was undertaken in multiple vegetation types across Guangxi, China (Figure 1).
The forest survey data of 495 plots in mature natural forests were collected from two major
databases including “The vegetation of Guangxi [47]” and “Vegetation of Guangxi (2 vol-
umes) [48]”. These survey data included the geographic name, latitude, longitude, elevation,
area, species composition, and abundance (or relative abundance) of each plant species within
each plot. The latitude and longitude of 13 plots (2.62%) without precise geographic coordinates
were approximated from the locality name (village) using Google Earth [49]. The area of the
plots ranged from 100 to 1500 m2 with 96.57% being smaller than 1000 m2, and of which 47.47%
were 400 m2 and 27.47% were 600 m2, respectively.
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Figure 1. The distribution map of the 495 plots in Guangxi Zhuang Autonomous Region, China. The
color background represents the elevation distribution.

2.2. Environmental Predictors

Environmental predictors used were divided into three categories including local plot
characteristics, climate variables, and soil variables. The local plot characteristics included
the area of the plot, longitude, latitude, elevation, forest type, and habitat type. Due to the
power function relationship between species richness and area, the area of the plot was
transformed into a logarithmic form for facilitating the regression [50,51]. The elevation
data were extracted from the SRTM (Shuttle Radar Topography Mission) elevation map
that has been downloaded from the Worldclim website (https://www.worldclim.org/
(accessed on 9 September 2019)), at a 30 arc−second resolution (about 1 km at the equator).
The forest types of the plots were categorized into seven forest types based on the World
Widelife Fund for Nature (WWF) forest classification standards and the types reported
by the survey operator, namely tropical forest (TF), evergreen broad−leaved forest (EBF),
deciduous and evergreen broad−leaved mixed forest (DEBMF), deciduous broad−leaved
forest (DBF), coniferous and broad−leaved mixed forest (CBMF), and evergreen coniferous
forest (ECF). Additionally, the habitat type of each plot was identified as karst or non−karst
landscapes based on the karst spatial distribution map obtained from the National Earth
System Science Data Center (https://www.geodata.cn/main/ (accessed on 9 April 2018).

https://www.worldclim.org/
https://www.geodata.cn/main/
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The data on soil characteristics in Guangxi are obtained from the land–atmosphere
interaction research group at Sun Yat-sen University [52] (http://globalchange.bnu.edu.
cn/research/data/ (accessed on 8 November 2023)) based on a 30 arc−second resolution
map, like the elevation data. The dataset includes 27 soil physical and chemical attributes:
the pH value (PH); soil organic matter fraction (SOM); cation exchange capacity (CEC);
root abundance (R); total nitrogen (TN); total phosphorus (TP); total potassium (TK);
alkali−hydrolysable N (AN); available P (AP); available K (AK); exchangeable H+ (H);
Al3+ (AL); Ca2+ (CA); Mg2+ (MG); K+ (K); Na+ (NA); soil horizon thickness (LDEP and
LNUM); soil profile depth (PDEP); sand (SA), silt (SI), and clay (CL) fractions; rock fragment
(GRAV); bulk density (BD); porosity (POR); structure (S1, SW1, and RS); consistency
(C1, CW1, and RC); and soil color (Unh, Unc, Dh, Dc, Wh, and Wc) [52]. This dataset
includes the soil characteristics across 8 layers from 0 to 2.3 m depths (i.e., 0–0.045 m,
0.045–0.091 m, 0.091–0.166 m, 0.166–0.289 m, 0.289–0.493 m, 0.493–0.829 m, 0.829–1.383 m,
and 1.383–2.296 m). Considering the thin soil layer resulting from a large area of karst
landscape in Guangxi, the data of the first soil layer (0–0.045 m) were selected for use in
this study.

The climatic data were obtained from the China ground−based average dataset
of daily meteorological records from 1981 to 2010, recorded by 2160 base, standard,
and ordinary ground−based meteorological observatories, which can be downloaded
from the China Meteorological Data Service Center (https://data.cma.cn/ (accessed on
8 March 2019)). The dataset included six daily variables: average temperature, average
maximum temperature, average minimum temperature, average vapor pressure, average
precipitation, and average wind speed [53].

To generate more biologically meaningful variables, we calculated 19 bioclimatic
variables and the potential evapotranspiration (PET) for each plot as the climate variables.
First, we extracted the meteorological data of the 75 observatories distributed in Guangxi.
Then, 19 bioclimatic variables and PET of observatories were calculated according to
the descriptions of bioclimatic variables on the website of Global Climate Data (https:
//worldclim.org/ (accessed on 9 September 2019)) and the Penman–Monteith equation
recommended by the Food and Agriculture Organization of the United Nations (FAO),
respectively. After detrending these 19 bioclimatic variables and PET of observatories
using a quadratic polynomial, we sequentially applied 8 kriging models to computerize
the semi−variogram of residual distribution for these detrended variables. By visual
inspection and parameter assessment, the spherical kriging model with the smallest sum
of squared residuals is selected as the optimal one. Finally, we calculated the values
of the 19 bioclimatic variables and PET at each location of 495 plots by this spherical
regression–kriging approach using the “mgcv” and “gstat” packages in R [53] (see Table S1
in Supplementary Materials for more details). These variables are widely used in species
distribution modeling and related ecological modeling [39,41,51,54,55].

Many intercorrelations were observed between the 20 climate variables and 27 soil
variables, respectively. Therefore, we excluded the variables with a correlation coefficient
greater than 0.6 using a canonical correlation test. Finally, 6 of 20 climate variables (Bio3,
Bio7, Bio8, Bio12, Bio15, PET) and 15 of 27 soil variables (AN, BD, CA, CEC, CL, DH,
H, K, MG, POR, SW1, TK, TN, TP, WH) were retained. All variables used in this study
were standardized by the z−scored method (mean−centered and divided by the standard
deviation).

2.3. Modeling Procedure

The negative binomial generalized linear model with a log link function has been
used in this study because the species richness values of all plots showed a negative
binomial distribution (see Figure S1 in Supplementary Materials). The species richness is the
dependent variable, and local plot characteristics, climate, and soil variables are predictors.
Our interest here is to explore the individual effects of local plot characteristics, climate,
soil, and the joint effects of climate and soil variables on shaping the species diversity

http://globalchange.bnu.edu.cn/research/data/
http://globalchange.bnu.edu.cn/research/data/
https://data.cma.cn/
https://worldclim.org/
https://worldclim.org/
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pattern of trees in tropical and subtropical forests. The quality of models was based on
five combinations of predictors including (1) only the local plot characteristics; (2) local
plot characteristics and climate variables; (3) local plot characteristics and soil variables;
(4) local plot characteristics, climate, and soil variables; (5) local plot characteristics, climate,
soil variables, and the interactions between climate and soil variables. After constructing
the full models of all combinations of predictors, the stepwise model selection method was
used to simplify the model based on the Akaike Information Criterion (AIC).

To avoid the overfitting, only one plot was randomly selected from each 30 arc−second
grid, so that 293 of all 495 plots were left for modeling. The relative independence of the
distribution of plots could reduce the bias caused by the spatial autocorrelation of an
aggregated distribution of plots [56–58]. Plot selection and model fitting were repeated
999 times, and then the average and standard deviation of the model coefficients were
calculated based on the 999 repeats. The relative importance of the predictors was calculated
based on the percentage of variance explained by variables explained using the ratio
between the absolute values of their standardized regression coefficients and the sum of all
standardized regression coefficients from the predictors [59]. This method is similar to a
variance partitioning analysis [59–61].

The data processing was performed in ArcGIS (version 10.2) and R software (version 4.3.2;
https://www.r-project.org/ (accessed on 11 December 2023)). The negative binomial general-
ized linear model was constructed using the function “glm. nb” in the “MASS” R package.

3. Results
3.1. Performance of Five Combinations of Predictors

The prediction of the best selected model for each combination of predictors is shown
in Figure 2. The frequency distributions (left panel in Figure 2) and distribution maps (right
panel in Figure 2) of observed and predicted species richness of trees among 293 plots both
showed that the individual effects of local plot characteristics, climate, and soil factors
had weak relationships with species richness. The local plot characteristics only explained
22.6% of the total variation in species richness among plots. The independent consideration
of climate (Figure 2C,D) and soil variables (Figure 2E,F) increased the model power (R2)
by 3.7% and 9.2%, respectively. The addition of both climate and soil variables into the
model (Figure 2G,H) increased the model power by 11.1%. The species richness predicted
from the above models was significantly different from the observed value. However, the
consideration of the climate, soil variables, and their interactions in the model significantly
improved the power of the model with a total R2 of 58.9%, which was 36.3% higher than
the model using the local plot characteristics only, thus representing the best fitting model
among all the combinations of predictors (Figure 2I,J). Furthermore, when considering the
interaction between climate and soil properties, the predicted species richness (the radius of
the circle in the right panel in Figure 2) exhibited a wider range of variation. Although the
joint effects of individual climate and soil variables may be complex, the overall prediction
results are consistent.

The specific contribution of each variable to the variation in local species richness
could be quantified by comparing the difference in the ratio between the absolute values
of their standardized regression coefficients and the sum of all standardized regression
coefficients from the predictors. Based on the best fit model, the individual effects of local
plot characteristics, climate, and soil variables were 6.28%, 3.61%, and 5.77%, respectively
(Figure 3). However, the interactions between climate and soil variables explained 84.34%
of the overall 58.9% explained variance in species richness among plots.

https://www.r-project.org/
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Figure 2. The frequency distributions (left panel) and distribution maps (right panel) of observed and
predicted species richness of trees among 293 plots by the negative binomial generalized linear model for
999 replicates under different combinations of predictors. The combinations of predictors in the figure are
(1) only local plot characteristics (A,B); (2) local plot characteristics and climate variables (C,D); (3) local plot
characteristics and soil variables (E,F); (4) local plot characteristics, climate, and soil variables (G,H);
(5) local plot characteristics, climate, soil variables, and the interactions between climate and soil
variables (I,J). In the left panel, the error bars on the red curves are the standard deviation of predicted
species richness among 999 replicates. In the right panel, for each point, the x coordinate of the center of the
circle is the observed species richness, the y coordinate of the center of the circle is the average value of the
predicted species richness of 999 replicates, the radius of the circle is the standard deviation of the predicted
species richness of 999 replicates, and the legend is the abbreviation of the forest type. The values of R2 are
all adjusted R2. If the model predicted species richness perfectly, the points would fall on the diagonal lines
(right panel). CBMF: coniferous and broad−leaved mixed forest; DBF: deciduous broad−leaved forest;
DEBMF: deciduous and evergreen broad−leaved mixed forest; EBF: evergreen broad−leaved forest; ECF:
evergreen coniferous forest; TF: tropical forest.
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Figure 3. Importances of five combinations of predictors to explain the variance in species richness
among plots for 999 replicates. All predictors were standardized to interpret parameter estimates on
a comparable scale.

3.2. Effects of Predictors

The trend of species richness was positively correlated with the longitudinal gradient
(β̂ = 0.52, p = 7.4 × 10−4), but was not significant with the latitudinal gradient (Figure 4
and Table S2 in the Supplementary Materials). The plot area (β̂ = 0.21, p = 9.1 × 10−13)
and habitat type (β̂ = −0.55, p = 0.05) significantly influenced the species richness across
different plots. The effect of specific climate variables on local species richness may differ.
The temperature annual range (Bio7, β̂ = −0.41, p = 0.02) and the mean temperature of the
wettest quarter (Bio8, β̂ = −0.38, p = 0.02) were negatively associated with local species
richness. Moreover, CEC (β̂ = 0.49, p = 1.1 × 10−4), H (β̂ = −0.23, p = 0.04), MG (β̂ = −0.27,
p = 4.7 × 10−3), and TK (β̂ = 0.26, p = 0.05) within soil variables also significantly affected
the regional variation of local species richness of trees. The potential evapotranspiration
(PET) did not emerge as a significant independent variable in our study although this
variable was associated with species richness in some research. The individual effects of
climate and soil variables were weak, but almost (98.89%) all interactions between climate
and soil variables significantly affected the local species richness.
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4. Discussion

Our research suggests that a complex combination of climate, soil, and geographic
variables significantly affected local species richness in the present region with high habitat
heterogeneity. In this study, the individual effects of soil and climate variables were unable
to explain the variation in species richness of trees. However, the interaction of soil and cli-
mate variables had a significant impact on the variation of species richness, which made the
explanation rate increase by 25.2% relative to the independent effects of predictors. This is in
line with previous studies that indicate that the diversity pattern is affected by both climate
and soil factors, especially the interaction between climate and soil, which may dominate
the composition and structural characteristics of local forests [10,29,62–64]. There is ample
evidence to suggest that environmental factors such as climate and soil play a significant
role in driving the patterns of species geographical distribution, species and functional
diversity, and large−scale variation in plant traits across spatial scales, in which the joint
effects of factors dominate the variation compared to individual effects [13,14,29,65–68].
These findings could be interpreted as evidence highlighting the importance of both joint
and individual effects of climate and soil variables in shaping and maintaining the plant
species diversity patterns across regional and global scales.

In recent years, the effects of climate and soil factors on diversity patterns of plants
have received increasing attention [66,69]. The effects of the interactions of climate and soil
on species diversity patterns remains a complex puzzle. It is well known that climate is
an important driver of forest structure and composition and can affect the soil property as
well [29,70,71]. Climate determines the amount of water and temperature associated with
the soil weathering and the nutrient release. Under warm and humid climate conditions,
soil microbial activity is faster than those under cool and dry climate conditions, stimulating
the soil organic matter decomposition, thus facilitating the coexistence and growth of
more plant species [72–74]. Therefore, the interdependence between climate and soil can
significantly alter species composition and diversity in natural ecosystems [75,76]. For
example, Palpurina et al. showed that the relationship between the species richness and
soil pH value in dry steppes in eight regions of northern Eurasia was indirectly influenced
by the precipitation [77]. Ding and Eldridge suggested that climate and plants regulate the
spatial variation in soil multifunctionality in eastern Australia [78]. Moreover, the physical
and chemical properties of soil also affect micro−climate at fine scales. Moist or dense soil
is more likely to reduce the heat dissipation and thus stabilize the ambient temperature [79].
Complex interdependent relationships exist between soil, climate, and species diversity.
Advances in multivariate analyses such as structural equation modeling (SEM) may help
with explaining these interactions.

In addition, one potential reason of the high relative effect of the interaction of climate
and soil variables on species richness in primary forests may be the positive correlation
between species diversity of plants and soil organic carbon (SOC) storage [80–83]. The litter
production and decomposition rate determine SOC storage and both are affected by air tem-
perature and soil moisture [84,85]. Although SOC−related variables were not used in this
study, there are complex interactions between SOC and nitrogen and phosphorus, which
are two abundant elements in soil [86,87]. For example, soil nitrogen fixation can further
affect the associated carbon–nitrogen cycling processes, including mycorrhizal symbiosis
and litter decomposition [88]. Under the high-phosphorus condition, the phosphatase
released by soil microorganisms may be mainly used for the purpose of obtaining carbon
sources [89]. Soil is an important part of the carbon cycling processes. Differences in local
soil physical and chemical properties can affect the emission of carbon−containing gasses
by the soil at a small scale. This “climate–soil microenvironment” plays an important role
in the growth and reproduction of local tree species [63]. However, there is a two−way
interaction between soil organic matter and plants. Higher plant diversity also directly
increases the rhizosphere carbon input of the microbial community, thereby increasing
microbial activity and carbon storage [90].
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The reason for selecting the data of the first soil layer in this study is the barrenness of
the soil formed by the unique geological characteristics and hydrological structure in the
karst areas. The physical and chemical properties of soil in karst areas are more variable and
directly affected by bedrock types and complex topography because of the underdeveloped
soil texture and shallower soil depths of karst areas [91,92]. Karst habitats exhibit strong
spatial heterogeneity in soil nutrients, soil properties, and water availability across the
topographic position [93]. Therefore, the large variation in soil nutrients can strengthen the
correlation between vegetation and habitat conditions in karst areas. Forest survey and
soil property measurement in Guangxi and other tropical karst forests revealed significant
correlations between species diversity and soil nutrient contents [94–96]. However, the
low soil phosphorus content and high soil pH in karst areas led to a decrease in the
bioavailability of phosphorus [97]. This may be a potential reason why the individual effect
of total soil phosphorus concentration on species richness is not significant in this study.

The species richness of forest trees also varies due to the unique historical and ge-
ographical characteristics of continental regions, independent of local climate and soil
conditions. Qian et al. pointed out that species and phylogenetic diversity in East Asia
are significantly greater than in eastern North America, and fewer species are contained
in these forest plots in North America than that expected based on the statistical relation-
ship between diversity and current local climate [98]. The local species diversity of trees
in primary tropical and subtropical forests is the result of large−scale and local−scale
assembly processes. If the speciation and extinction would be affected by the specific
historical and biogeographic events at a regional scale, then the traces of these specific
events on the regional pattern of local species richness might be detected [51,99]. Due to the
continuous uplift of the Himalaya Mountains and the continuous occurrence of subsequent
orogeny, the Hengduan Mountains and the Qinling Mountains in East Asia have formed
an “Г” shape, forming the stable environment conditions conducive to the growth and
reproduction of plants [98,100]. We believe that the geo−historical processes potentially
shape the geo−biological and diversity patterns of Guangxi.

The present study contains some limitations and we advise readers to take precautions
when interpreting the results. For instance, most of the 495 plots used in this study were
surveyed in the 1980s and 1990s, and a small number of plots were surveyed in the first
decade of the 21st century. At that time, disturbance such as wildfire and over−logging
may have affected the vegetation integrity and species composition within the dataset.
Indeed, forest structure and species composition strongly differ over time and space [101],
but we failed to consider the level of temporal variation in the analysis. Now, after decades
of succession, the species composition of forest communities in different plots may have
changed to varying degrees. Additionally, inequal plot size can result in some statistical
issues. Indeed, the plot size varied from 100 to 1500 m2, of which nearly half of the plots
were 400 m2, and more than 95% of the plots were less than 1000 m2. Rare species can hardly
be inventoried using small plots, underestimating the species richness and weakening the
correlation between the diversity pattern and environmental factors.

The potential evapotranspiration (PET) was retained in this study due to the significant
correlation between local species richness and the interaction of PET and soil variables.
However, the individual effect of PET did not show a significant correlation with local
species richness. The role of variables such as PET in explaining the variation in diversity
patterns varies across different studies. The specific evaluation of the role of certain vari-
ables at different scales is still necessary. For instance, PET was found to be more indicative
of the effect of heat on local plant diversity than temperature in southern Africa [102], and
it had a positive effect on explaining the phylogenetic beta diversity within 30 1 ha plots in
Guangxi at a regional scale [53]. However, it did not show a significant correlation when
evaluating the impact of region effects on local species diversity within 47 forest plots
worldwide [51].

Most environmental factors from a field survey always have complex, strong collinear-
ity relationships, including the bioclimatic and soil factors [103,104]. The generalized linear
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model that theoretically requires weak correlations among these factors is unrealistic. There-
fore, the threshold of the Pearson correlation coefficient has become an important parameter
that determines the number of associated predictor variables, which would be defined and
excluded to adjust the number of used variables and their contribution. If fewer associated
predictor variables are excluded because of the high threshold, the average contribution of
a single variable would be relatively small, which in turn reduces the statistical significance
of the model. This threshold is generally recommended to be 0.70 [105]. In this study, after
repeated evaluations, we found that the model with a threshold of 0.6 performed relatively
well in both realistic and statistical terms.

Scale dependence plays a very important role in diversity research [40]. Ecolo-
gists generally agree that the species diversity pattern at the small and medium scales
is a balance between adaptation to environmental conditions and competition for re-
sources [20,32,106,107]. Many arguments on environmental filtering assume that the abiotic
and biotic drivers of community assembly can be seen as independent effects, representing
environmental filtering and interspecific/intraspecific interactions as the successive steps
during the assembly processes [31,108–110]. However, in practice, these two factors interact
concurrently and dynamically to drive community assembly [37,111]. The intensity and di-
rection of interspecific/intraspecific interactions could be strongly influenced by the abiotic
conditions [112], even by the abiotic filtering at different life stages [113,114]. Therefore, the
effects of the interactions between climate and soil variables in this study probably include
a general effect of abiotic processes and biotic processes that potentially affect by abiotic
processes at the local scale. Consequently, this study advances our understanding of the
patterns of plant species diversity at regional scales.

5. Conclusions

We modeled the relationship between local species richness and the predictors in-
cluding the local plot characteristics, climate, and soil variables at a regional scale by the
negative binomial generalized linear model. The results showed that the species richness of
trees in natural mature forests was mainly affected by the interaction between climate and
soil variables, but the individual effects of climate and soil variables were relatively low.
We highlighted individual and joint effects of climate and soil on species richness of trees,
which have been neglected so far. We claim that more accurate and informative census
datasets are still needed to improve ecological analysis and modeling assessments, and to
further understand the role of the abiotic filtering in shaping the diversity patterns of plant
communities.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f15081441/s1, Table S1: Meanings of the 19 bioclimatic variables;
Table S2: The output of the negative binomial generalized linear model for the local species richness
at a regional scale; Figure S1: The frequency distributions of observed species richness of trees among
293 plots for 999 random selections and the fitted negative binomial distributions (red curves).
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