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a b s t r a c t

Climate change poses a serious long-term threat to biodiversity. To effectively reduce biodiversity loss,
conservationists need to have a thorough understanding of the preferred habitats of species and the
variables that affect their distribution. Therefore, predicting the impact of climate change on species-
appropriate habitats may help mitigate the potential threats to biodiversity distribution. Xerophyta, a
monocotyledonous genus of the family Velloziaceae is native to mainland Africa, Madagascar, and the
Arabian Peninsula. The key drivers of Xerophyta habitat distribution and preference are unknown. Using
308 species occurrence data and eight environmental variables, the MaxEnt model was used to deter-
mine the potential distribution of six Xerophyta species in Africa under past, current and future climate
change scenarios. The results showed that the models had a good predictive ability (Area Under the
Curve and True Skill Statistics values for all SDMs were more than 0.902), indicating high accuracy in
forecasting the potential geographic distribution of Xerophyta species. The main bioclimatic variables
that impacted potential distributions of most Xerophyta species were mean temperature of the driest
quarter (Bio9) and precipitation of the warmest quarter (Bio18). According to our models, tropical Africa
has zones of moderate and high suitability for Xerophyta taxa, which is consistent with the majority of
documented species localities. The habitat suitability of the existing range of the Xerophyta species varied
based on the climate scenario, with most species experiencing a range loss greater than the range gain
regardless of the climate scenario. The projected spatiotemporal patterns of Xerophyta species help guide
recommendations for conservation efforts.

Copyright © 2023 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The potential effects of climate change on biodiversity have
received considerable attention. This is because climate change is
expected to alter the growth and natural distribution of species, as
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well as increase biodiversity loss in natural habitats, resulting in a
loss of species diversity and germplasm resources (Wan et al.,
2021; Ngarega et al., 2021, 2022a). By the year 2050, Africa is
expected to experience a 2.6e3.0 �C increase in average temper-
atures, and large areas of northern and southern Africa are pro-
jected to be > 3.5 �C above pre-industrial levels (Serdeczny et al.,
2017; Lee et al., 2020; Mkala et al., 2022). It is projected that with
the continued increase in global average temperatures and pre-
cipitation, Africa remains extremely vulnerable to climate change
(Sintayehu, 2018).
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Climate variables influence the composition and distribution of
vegetation, which can be a direct reflection of global climate change
(Yan et al., 2021). Accordingly, researchers are focused on the
linkages between biodiversity, ecosystem services, and climate
change. These biological-climate predictions can serve as a foun-
dation for hypothetical studies on species origin, vegetation parti-
tioning, and floristic creation, as well as play a key role in
biotechnology and species introduction and domestication (Zhang
et al., 2020). However, most developing countries lack a compre-
hensive biodiversity inventory, as well as a sufficient grasp of
particular species to identify those in danger (Burke, 2004; Çoban
et al., 2020). The classification of large geographic areas into bi-
omes allows for an evaluation of vegetation types based on the
principal climatic restrictions and related prevalent growth pat-
terns (Burke, 2004; Dar et al., 2020).

Climate change is estimated to be a major factor in the extinc-
tion of many animal and plant species (Nzei et al., 2021; Mkala
et al., 2022). Species near a biome boundary and at the edge of
their distribution ranges are likely to be the first to respond to
climate changes (Thomas, 2010). Thus, we can effectively target
conservation initiatives to offset the effects of climate change by
modeling their distributions (Merow and Jr, 2014). Species distri-
bution models (SDMs) are important for analyzing the spatial and
temporal processes that make up a species’ life cycle. Additionally,
SDMs for historical timelines can also offer ecological and evolu-
tionary data on the historical changes of species distribution over
time (Park et al., 2022). Past models can be used to explain phylo-
geographic patterns and speciation processes, as well as to predict
historical hotspots and potential migration routes (Park et al.,
2022). Additionally, studies on how species have adapted to past
climate change offer important insights into how species will
respond to climate change in the future (Pearson, 2006). Future
distribution models can forecast habitat suitability and provide
information on the likelihood of range shifts or population changes
(Sinclair et al., 2010; Ngarega et al., 2022b). However, for the great
majority of species, occurrence data is generally limited, especially
for uncommon or extremely rare species (Merow and Jr, 2014).
MaxEnt is a popular tool for predicting the distribution of species
based solely on occurrence point information (Merow et al., 2013).
In addition, it can also predict habitat suitability for species in
different habitats based on presence-only data (Elith et al., 2011;
Gomes et al., 2018). Even thoughmodels do not precisely reflect the
mechanisms that lead to observed distributions, they are useful in
describing the relationships between species and environmental
variables at wide spatial scales (Merow and Jr, 2014).

Xerophyta Juss., is a monocotyledonous genus of the Vellozia-
ceae family that is found on the African mainland, Madagascar, and
the Arabian Peninsula (Beentje,1994; Elith et al., 2011; Farrant et al.,
2015; Gomes et al., 2018). In mainland Africa, there are approxi-
mately 45 species, one species is found on the Arabian Peninsula,
and 25 species are found in Madagascar (Behnke et al., 2013). The
closest relative of Xerophyta is the genus Vellozia found in South
America, primarily Brazil (Mcpherson et al., 1997; Mello-Silva et al.,
2005; Alcantara et al., 2015; Wanga et al., 2021). The family Vel-
loziaceae has been shown to have a Gondwanan origin, with the
separation between African and South American species corre-
sponding to the continents dividing roughly 100 million years ago
(Mello-Silva et al., 2011). All African species are desiccation
tolerant, i.e., resurrection plants (Alcantara et al., 2018). Most of the
Xerophyta spp., except Xerophyta elegans, are poikilochlorophyllous,
i.e., they lose their chlorophyll during desiccation, having protective
mechanisms that are fully activated in the leaves (Mello-Silva et al.,
2011; Behnke et al., 2013; Farrant et al., 2015). Most research on the
genus has focused on the whole genome and the mechanisms that
underlie desiccation tolerance in these species (Farrant et al., 2015;
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Costa et al., 2017; Radermacher et al., 2019; Wanga et al., 2020;
2021), which can be key in tackling food security amidst the global
warming threats. Recent reports indicating the high frequency of
fire occurrence and human exploitation (i.e., brooms or brushes),
medicinal products and fuelwood have been recorded to impact the
habitat of Xerophyta species, necessitating urgent conservation
actions (Goodman, 2021; IUCN, 2023). To date, there have been no
studies that have simulated or projected the distribution of Xero-
phyta species. This lack of attention may be attributed to the fact
that these species grow in inaccessible areas, hence they are
botanically unexploited (Behnke et al., 2013). As a result, examining
the factors that impact the distribution and evolution of Xerophyta
in Africa could offer valuable insights into how xerophytic species
respond to changes in climate.

In this study, we explored the potential distribution of six
Xerophyta species under past, current and future climates using the
MaxEnt model. We utilized two Representative Concentration
Pathway (RCPs) scenarios representing moderate (RCP 4.5) and
extreme greenhouse gas emissions (RCP 8.5) to model the potential
distribution of Xerophyta species in the 2070s. The past climate was
represented by the Last Glacial Maximum (LGM, 22,000 ya) and the
Mid-Holocene (MH, 6000 ya). The goals of the study were to (1)
understand the geographical distribution patterns and future
changes of Xerophyta spp. in Africa, (2) determine the dominant
bioclimatic variables that limit the habitat distribution of Xerophyta
spp., and (3) model suitable habitat of Xerophyta spp. under past,
current and future climate change scenarios and provide a scientific
basis for the protection of Xerophyta spp. resources.

2. Materials and methods

2.1. Species occurrence data

There are ca. 70 Xerophyta species native to tropical Africa and
Madagascar (Wanga et al., 2021). However, several species lack
adequate distribution data to allow for successful modeling
(Stockwell and Peterson, 2002). In this study, six species with
adequate and validated occurrences were studied. We obtained
species occurrence points from the Global Biodiversity Information
Facility (GBIF, http://www.gbif.org/; accessed in March 2021).
Because some of these occurrences lacked geographical informa-
tion, Google Earth was utilized to supplement the latitude and
longitude information. Spatial thinning of occurrence data is a
simple and easy-to-implement strategy for mitigating the impacts
of sampling bias (Aiello-Lammens et al., 2015). We used the spThin
package (Aiello-Lammens et al., 2015) in the R environment to
ensure that only one occurrence record per grid cell at a resolution
of 2.5 arc-min. After spatial thinning of occurrences, points ob-
tainedwere used formodeling; 69 for Xerophyta dasylirioides, 33 for
X. elegans, 63 for X. humilis, 30 for X. pectinata, 92 for X. viscosa, and
21 for X. villosa (Table S1; Fig. 1). ArcGIS 10.5 (Esri, Redlands, CA,
USA, http://www.esri.com) was then used to create maps of the
remaining species occurrences (Fig. 1).

2.2. Environmental variables

We employed ‘bioclimatic’ characteristics from the World-
Clim2.1 database (https://www.worldclim.org/data/worldclim21.-
html) to characterize climatic conditions relevant to biological
species (Table S2; Fick and Hijmans, 2017). This data set is based on
monthly consensus climatologies spanning 1970 to 2000. The data
set was obtained at a spatial resolution of 2.5 arc-min or 5 km2,
which roughly corresponds to the uncertainty inherent in the
occurrence data. We removed nine data layers (described in
Table S3) because they contained artifacts that would otherwise
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http://www.esri.com
https://www.worldclim.org/data/worldclim21.-html
https://www.worldclim.org/data/worldclim21.-html


Fig. 1. Locality and occurrence records of Xerophyta species employed in the modelling.
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cause sharp variances and multicollinearity between neighboring
pixels. We excluded the variables with correlation coefficients of
more than 0.7. This analysis was achieved through the Variance
Importance Factor (VIF) procedure in the usdm package available in
R platform v.3.6.2 (R Core Team, 2022). Data for the past and future
scenarios were obtained from WorldClim1.4 and WorldClim2.1,
respectively, with a spatial resolution of 2.5 arc-min (Hijmans et al.,
2005; Fick and Hijmans, 2017). We utilized one global climate
model (GCM), the Community Climate System Model version 4
(CCSM4; Gent et al., 2011), to download the climate data for the
future (2070s) and for the past. Climate data for the past came from
22,000 years ago, reflecting the LGM, and 6000 years ago, reflecting
the MH. This GCM (CCSM) has been recognized as one of the most
appropriate GCMs for the African region (Nzei et al., 2021; Ngarega
et al., 2022a). The RCP scenarios consist of four pathways, including
RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 (Remya et al., 2015). RCP 4.5
and RCP 6.0 are both moderate greenhouse gas emission scenarios,
with RCP 4.5 representing a scenario in which a higher priority is
given to mitigation than in RCP 6.0 (Wei et al., 2018). RCP 8.5 im-
plies that no climate policies would be implemented in the future
or the present, and it reflects very high emissions scenarios (1370-
ppm CO2 equivalent by 2100; Van Vuuren et al., 2011). Therefore,
we chose RCP 4.5 (moderate scenario) and RCP 8.5 (extreme sce-
nario) to simulate the suitable habitat distribution of Xerophyta spp.
for the future time frame.

2.3. Model calibration and development

We utilized MaxEnt 3.4.4 (Elith et al., 2011; Phillips and Dudík,
2008) to predict the distribution of Xerophyta species. MaxEnt
was firstly used to build a model, and then the predict functionwas
used in conjunctionwith a specified set of independent variables to
calculate the likelihood of occurrence. The potential distribution of
our focal taxa was predicted using the climatic variables and
occurrence localities described in the earlier steps. For model
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calibration and development, 25% of the occurrence data were
chosen at random as test sets and 75% as training sets. Following
the ‘Subsample’ strategy, the model was duplicated ten times. The
background region represents accessible space that can be colo-
nized or has previously been inhabited by the species being
modeled (Barve et al., 2011). Like prior studies, we used 10,000
random background points (Nzei et al., 2021). The output format
was set to ‘Logistic’, with a maximum iteration of 5000. The default
settings for the rest of the parameters were kept. The area under
the receiver operating characteristic (ROC) curve (AUC; Area under
the ROC Curve) and True Skill Statistics (TSS) were used to assess
the accuracy of the MaxEnt models (Allouche et al., 2006; Warren
and Seifert, 2011; Ngarega et al., 2022b). AUC values vary from
0 to 1, and the closer value is to 1, the better the model’s perfor-
mance. The accuracy of the model is rated in five categories: Fail
(0.5e0.6), Poor (0.6e0.7), Fair (0.7e0.8), Good (0.8e0.9), and
Excellent (0.9e1.0), with a value less than 0.5 equaling randomness
(Swets, 1988). The jackknife test was also used to assess the impact
of variables on the Xerophyta species. Results of jackknife tests
show the weight of different environmental factors affecting the
habitat suitability of Xerophyta species. The final outputs were
continuous suitability layers made up of the mean of the pre-
dictions from the ten model runs. To illustrate the differences and
convergences between each model, the average continuous logistic
output predictions were transformed into binary maps using the
Maximum sum of training sensitivity and specificity (MTSS)
threshold value that maximizes sensitivity and specificity
(Table S4; Liu et al., 2016).

2.4. Changes in habitat suitability and niche overlap analysis

Weused the Python-based GIS toolkit SDMtoolbox (Brown et al.,
2017) in ArcGIS v.10.5, to investigate the differences between the
current (baseline) and past or future climate distribution areas. We
imported the binary maps of suitability described in the previous
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steps into ArcGIS v.10.5 and used the SDMtoolbox to analyze and
map the spatial range changes of the suitable habitat area of
Xerophyta spp.

The examination of niche overlap allows Xerophyta species to
estimate the niche they share. The logistic output maps for the six
Xerophyta species pairwise pairings were compared to analyze the
niche overlap between the species using Schoener’s D metrics
(Warren et al., 2008). This analysis was implemented in ENM tools
v.1.4.4 (Warren et al., 2010). With values ranging from 0 to 1, this
metric assesses the niche overlap of two species, with 1 indicating
similarities in the two niches and 0 indicating no overlap (Warren
et al., 2008).

2.5. Multivariate environmental similarity surface (MESS) analysis

When creating models to determine how climate change af-
fects species' suitable areas, a common challenge is understanding
to what extent future climatic conditions differ from contempo-
rary climatic variables used in the model. One method to measure
this is by using multivariate environmental similarity surface
(MESS), as outlined by Elith et al. (2010). The MESS method in-
volves identifying a reference layer of environmental variables
and calculating the similarity (S) between the point set of envi-
ronmental variables in the reference layer and those under
different climatic conditions. A positive S value indicates a climate
difference at the point, with a smaller S value indicating a more
significant difference. Conversely a negative S value shows that at
least one environmental variable at that point is outside the
reference range, indicating a considerable environmental change.
We applied the MESS procedure by utilizing the ‘density.-
tools.novel’ tool in the maxent.jar file and plotted the results for
the past and future climate scenarios.

3. Results

3.1. Performance of the model and variable contribution

After correlation analyses, the remaining variables included the
mean diurnal range (Bio2), isothermality (Bio3), mean temperature
of wettest quarter (Bio8), mean temperature of driest quarter
(Bio9), precipitation of wettest month (Bio13), precipitation of
driest month (Bio14), precipitation of warmest quarter (Bio18), and
precipitation of driest quarter (Bio19) (Tables S2 and S3). The
modeling of the current distribution of Xerophyta species yielded
strong evaluation scores for AUC and TSS values greater than 0.902,
indicating that the MaxEnt model was very effective in forecasting
the potential distribution for the Xerophyta species (Table 1). Jack-
knife results indicated that when used in isolation, precipitation of
warmest quarter (Bio18) influenced the distribution of X. dasylir-
oides and X. pectinata most, indicating that this variable contains
considerable information absent in other variables (Fig. 2). The
impact of bioclimatic conditions on species distribution was
assessed using the percent contribution (Table 2). The minimum
Table 1
Model performance evaluation for six Xerophyta species using Area Under the Curve
(AUC) and True Skill Statistics (TSS) analyzed in MaxEnt.

Species AUC (SD) TSS

Xerophyta dasylirioides 0.991 (0.002) 0.902
X. elegans 0.992 (0.004) 0.911
X. humilis 0.954 (0.010) 0.910
X. pectinata 0.988 (0.006) 0.916
X. viscosa 0.978 (0.006) 0.920
X. villosa 0.970 (0.006) 0.906

Note: SD, Standard deviation.
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temperature of the coldest quarter (Bio9) and precipitation of the
warmest quarter (Bio18) were the principal bioclimatic variables
impacting the potential distribution of the majority of the species.
For all the studied species, the precipitation of the coldest quarter
(Bio19) and the precipitation of the warmest quarter (Bio8) had a
low contribution. This implies that the minimum temperature and
precipitation of the warmest quarter are the most critical factors
influencing the Xerophyta species’ potential distribution. On the
other hand, jackknife analyses showed that when used in isolation,
isothermality (Bio3), precipitation of warmest quarter (Bio18), and
mean temperature of driest quarter (Bio9) had the most gains for
different species (Fig. 2).

3.2. Predicted potential distribution of Xerophyta

The potential distribution of Xerophyta in the past (LGM and
MH), present, and future (RCP 4.5 and RCP 8.5), are shown in Fig. 3.
Suitability regions were classified into high, medium (moderate),
low and no species suitability regions. Environmental conditions
during the LGM were less suitable for Xerophyta species than were
those of the MH. However, environmental conditions between
these two past periods did not significantly differ for X. pectinata,
X. humilis and X. villosa. This allowed the geographic expansion,
reduction and even the stable regions for the different Xerophyta
species under current climatic conditions.

Baseline current models revealed that the moderate and high-
suitability zones for Xerophyta are mostly found in tropical Africa
and correspond to the recorded occurrence localities. X. humilis, X.
villosa, and X. viscosa were projected to have a continuous high-
suitability distribution, whereas that of X. pectinata was frag-
mented. The potential distribution for these taxa varied across the
region. For instance, X. villosa was projected to have potential dis-
tribution areas in Zambia, Zimbabwe and South Africa, whereas
X. humilis was projected to have potential distributions in Angola,
Botswana, Ethiopia, Mozambique, Namibia, Northern Provinces,
Sudan, Swaziland, Zambia, and Zimbabwe (Fig. 3). The species’
potential current suitable habitats for Xerophyta ranged from
166.05 � 103 km2 (X. elegans) to 1915.75 � 103 km2 (X. humilis)
(Table S5).

3.3. Patterns of change in habitat suitability

To clarify how geographic distribution patterns of Xerophyta
species may change and identify predicted migration paths, we
calculated the change in suitability compared to current suitability
for each grid cell and scenario. These useful changes are shown in
Fig. 3, which showareaswhere contraction (decrease in fitness over
time) and expansion (increase in fitness over time) occur. The range
possibilities for suitability changes cover four different situations:
large expansions from low suitability, large contraction from high
suitability, constant high suitability, and constant low suitability.
Range change differed between past and the two future scenarios
depending on each species’ response. For most species, range loss
was predicted to be larger than range gain, irrespective of the
scenario (Fig. 4), however, the greatest losses were predicted under
the RCP 8.5 scenario (Table S5). Specifically, under RCP 8.5,
X. pectinata (35.40%), was predicted to lose the largest portions of
its suitable ranges, whereas X. dasylirioides (129.1%) was predicted
to have the highest gains in suitability.

3.4. Niche comparison

According to Schoener’s D metrics, the niches of Xerophyta
species overlap considerably (Table 3). The highest niche overlap
was predicted in X. pectinata and X. dasylirioides (0.635). Other



Fig. 2. Jackknife results for Xerophyta spp. distribution using MaxEnt models.

Table 2
Variable contribution to the final MaxEnt models of Xerophyta species.

Species Bio2 Bio3 Bio8 Bio9 Bio13 Bio14 Bio18 Bio19

Xerophyta
dasylirioides

0.4 7.5 0.9 20.3 0.3 9.2 56.7 4.9

X. elegans 8.7 0.6 0.8 39.9 6.4 20 16.1 7.6
X. humilis 12.3 8.9 0.2 48.0 16.3 5.5 2.4 6.5
X. pectinata 1.6 12.1 0.1 21.9 1.8 11.3 50.5 0.7
X. viscosa 0.7 3.3 0.3 72.1 3.9 3.8 14.8 1.1
X. villosa 0.3 12.1 0.2 49.2 9.0 4.2 14.5 10.4

Note: Bold values show the three most important variables for each species.
Bio2¼mean diurnal range (�C), Bio3¼ isothermality (�C), Bio8¼mean temperature
of the wettest quarter (�C), Bio9 ¼ mean temperature of the driest quarter (�C),
Bio13 ¼ precipitation of the wettest month (mm), Bio14 ¼ driest month precipi-
tation (mm), Bio18 ¼ precipitation of warmest quarter (mm), Bio19 ¼ precipitation
of coldest quarter (mm).
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species, such as X. humilis and X. pectinata, however, are projected
to occupy different ecological niches.

3.5. Multivariate environmental similarity surface analysis of
Xerophyta potential distribution areas under different climate
scenarios

The region where the climate anomaly (S < 0) could potentially
occur was small in reference to the potential distribution area of all
Xerophyta species, as shown in Fig. 5, under the past and future
climate scenarios. Notably, compared to all other climate scenarios
for all the Xerophyta species, the RCP 8.5 was observed to have the
95
largest degree of extrapolation (Fig. 4), indicating that this scenario
had the highest degree of anomaly.

4. Discussion

Niche modeling is a useful tool for predicting the potential
impacts of climate change on the distribution of species as well
as their responses (Ngarega et al., 2022b). This is the first study
to use a niche modeling approach to model the distribution of
Xerophyta in Africa. The resulting outputs of our study may
provide valuable information for conservation, management and
research of the genus. Here, we specifically utilized the MaxEnt
modeling approach to project areas that have suitable climates
for six Xerophyta species under the current baseline period and
evaluated the impacts of climate change on their past and future
potential habitat distribution. The MaxEnt models had very high
predictive capacities (AUC and TSS values above 0.902; Table 1),
which is comparable to various studies done in the region using
MaxEnt modeling approach (Nzei et al., 2021; Wan et al., 2021),
as well as other studies beyond the African region (Yan et al.,
2021).

4.1. Significant variables affecting Xerophyta distribution

The potential distribution of plant species is generally affected
by climate variables, which contribute significantly to their
growth and abundance (Beamount et al., 2005). We evaluated the
key bioclimatic variables determining the variance in Xerophyta



Fig. 3. Xerophyta spp. prediction maps for the Last Glacial Maximum (LGM), Mid-Holocene (Mid-Hol), current climatic conditions, future, RCPs 4.5 and 8.5. Species distribution in
their habitats are color coded differently to show high, medium and low suitability areas. Red indicates high suitability, brown indicates medium suitability, white indicates low
suitability and blue indicates no species distributed in the area. Habitat suitability ranges from 0 (blue, low suitability) to 1 (red, high suitability).

Fig. 4. Representation of the past and future distribution maps of Xerophyta species range change for Last Glacial Maximum (LGM), 20,000 ya, Mid-Holocene (Mid-Hol), 6000 ya,
RCP 4.5 and RCP 8.5. Stable areas are shown in purple, areas of loss are shown in red, areas of gain are shown in green, and unsuitable areas are shown in grey.
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species distribution based on the results of the jackknife test and
the contribution rates obtained by the MaxEnt model (Wiens
et al., 2009; Zhu et al., 2013). Our results indicate that the distri-
butions of Xerophyta species are mainly affected by the following
96
variables: (1) minimum temperature of the coldest quarter (Bio9),
and (2) precipitation of the warmest quarter (Bio18) (Table 2).
These results indicate that both temperature and precipitation
variables limit Xerophyta distribution. These findings are



Table 3
Comparisons of ecological niche overlap for Xerophyta species using the Schoener’s D statistics.

Species X. dasylirioides X. elegans X. humilis X. pectinata X. villosa X. viscosa

X. dasylirioides e 0.211 0.163 0.635 0.306 0.210
X. elegans X e 0.212 0.246 0.456 0.452
X. humilis X x e 0.112 0.456 0.534
X. pectinata X x x e 0.318 0.187
X. villosa X x x x e 0.538
X. viscosa X x x x x e

Fig. 5. The multivariate environmental similarity surface (MESS) map by data source (Xerophyta spp. localities) and considering the environmental variables as reference envi-
ronmental area for the African region for the past (LGM and Mid-Hol) and future distribution (RCPs 4.5 and 8.5).
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consistent with a previous study that showed freely drained sandy
or rocky soils, high temperatures and seasonal rain regimes favor
the establishment of resurrection and drought-resistant plants
(Alcantara, 2018).

Species of the genus Xerophyta are well-adapted to xeric en-
vironments and all tested species display vegetative desiccation
tolerance with most of the species being poikilochlorophyllous
and others homoichlorophyllous (Lyall et al., 2020). This may
explain the variations that occurs in the range change responses of
the species, with most species having a restriction to the in-
selbergs during extreme conditions hence forming terrestrial
islands for survival (Chen et al., 2019). Recent studies have shown
that most species of Xerophyta exhibit a series of changes in their
physiologies when exposed to high temperatures, including
chlorophyll degradation, cessation of growth, and senescence, an
expression of desiccation tolerance (Costa et al., 2017;
Radermacher et al., 2019). Moreover, some species have adapted
to these conditions, e.g., X. viscosawas shown to express the gene
XVSAP1 at both high and low temperatures, which conferred
higher adaptability to these hostile environments (Garwe et al.,
2003). Finally, the harsh chasmophytic habitat of most of its
species leads to frequent periods of severe water deficit, even
during the wet seasons (Farrant et al., 2015). Therefore, in high
temperature and high precipitation areas of Africa, the distribu-
tion patterns of the Xerophyta species are predicted to frequently
shift in the future.
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4.2. Ecological niche suitability projections for the Last Glacial
Maximum and Mid-Holocene

The habitat suitability projected for the LGM and MH scenarios
differed from those obtained for current climate conditions. The
habitat suitability projected for the LGM and MH scenarios varied
among the Xerophyta species with most species preferring LGM
environmental conditions for persistence. According to the LGM
projections, the species occurred in the tropical Africa, Southern
and Central Africa, and the Madagascar regions, however, they did
not differ much with the MH period, except for a reduction in range
size. These regions were considered suitable putative cryptic
refugia that persisted during the LGM. Refugia are areas in which a
population can survive through an extended period of unfavorable
conditions, and have hence facilitated the persistence of compo-
nents of biodiversity over long periods of time and through
changing climatic conditions (Keppel et al., 2011). Notably, when
environmental conditions turn out to be more suitable for the
species, they could potentially expand from within these refugia.
During the LGM, the climatewas cooler and drier, hence no rainfall;
thus, vegetation only occurred in high-elevation refugia regions
due to the formation of mist (Leal, 2004). However, during the MH
the temperature became warmer (Park et al., 2019), hence those
species that were widely adapted could spread. Additionally, the
difference between the two climate scenarios of the past could be a
result of desiccation tolerance speciation, evolution and adaptation
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for the Xerophyta species, which would explain the differences in
the species responses among the regions (Lyall et al., 2020).

4.3. Implications of future climate scenarios to species distribution
and conservation

Climate change affects species distribution, and future pro-
jections suggest that it will become more intense, leading to global
warming (Putten et al., 2010). In addition, the impacts of climate
change depend on various combinations of traits in plant species,
which determine their abundance, resistance to disturbance and
ability to respond to changes in environmental conditions. Our
results showed that the current suitable habitat for Xerophyta spp.
ranges from 166.05 � 103 km2 (X. elegans) to 1915.75 � 103 km2

(X. humilis) (Table S5). In addition, models showed that highly
suitable habitats are in the tropical regions, which are concurrent
with recorded species localities. The prediction models also indi-
cate that highly suitable habitat is currently available in Eastern,
Central and Southern Africa for most of the Xerophyta species.

Our models predicted that habitat loss, gain, and stability
would vary in the future for different Xerophyta species. For
instance, X. pectinata, and X. humilis were projected to lose the
largest portions of their suitable ranges, whereas X. dasylirioides
had the greatest range gains (Table S5; Fig. 4). The varying re-
sponses under the high concentration emission scenario, RCP 8.5,
could be due to the poikilochlorophyllous and homoio-
chlorophyllous nature of species in this genus . The results clearly
show that predicted future climatic changes will have a significant
impact on the geographic distribution of Xerophyta; the ability of
plants in this genus to adapt or move to new locations with more
favorable environmental conditions will be critical for the survival
of the genus in the future. As a result, desiccation tolerance
mechanisms may play important roles in the future distribution of
the species, thereby warranting further investigations. It is also
possible that Xerophyta will not adapt to new developments, and
the loss of their habitat range, as predicted in this study, may be a
representation of the disappearance of geographic loss. It is
important to note that climate change effects on the genus might
differ among individual species owing to differences in genetic
and physiological tolerance of the different species. Some Xero-
phyta species share similar habitats and niches since their ranges
overlap. Considering the significance of the mean temperature of
the driest quarter (Bio9) and precipitation of warmest quarter
(Bio18) in determining the habitat suitability of X. pictinata and
X. dasylirioides, it is reasonable to observe a high degree of overlap
in their niches as demonstrated in Table 3.

The current study evaluated the potential impacts of past and
future climate change on the distribution of six Xerophyta species in
Africa, thereby, providing basic information on this little-known
genus. The high level of agreement between the predicted distri-
butions and the botanical collections revealed that the climatic
variables studied are certainly crucial in determining Xerophyta
distribution patterns. However, the accuracy of our MaxEnt model
predictions may be limited by various factors, including the
methodology and data applied herein. For example, our data were
mostly gathered from GBIF and online databases, corresponding to
low occurrence points for several species, which may have resulted
in biases in the modeling approach. Secondly, MaxEnt modelling
may not account for other factors impacting local adaptation,
dispersal, and lack of precise knowledge about changes in land use
throughout the predicted range of Xerophyta spp. Due to the
paucity of research in these inselbergs where the Xerophyta species
occurs, we were unable to identify any of the additional variables
impacting distribution, adaptability, and evolution, which should
be considered in future research. As a result, while the results offer
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insights into the distribution of Xerophyta, the model outputs of our
study should be treated with caution.

5. Conclusion

In the present study, we modeled the past and current distri-
bution of suitable habitats for six Xerophyta spp. and evaluated how
climate change would affect their distribution in the future using
the Maxent algorithm. Our findings reveal that the habitats suit-
ability among the Xerophyta species are predicted to vary owing to
climate change. Nonetheless, with the changing climate, the suit-
able habitat of Xerophyta species may be compromised. In addition,
with the low records and poor sampling of Xerophya species in
Africa, aggressive species documentation and taxon sampling may
be required to enhance our knowledge of the occurrence extent and
area of occupancy for the genus. Finally, additional studies
combining ecology, phylogeography and behavior are required to
improve the understanding of the ecology and evolution of Xero-
phyta in Africa.
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