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A B S T R A C T   

The Water Quality Index (WQI) is a primary metric used to evaluate and categorize surface water quality which 
plays a crucial role in the management of fresh water resources. Machine Learning (ML) modeling offers po-
tential insights into water quality index prediction. This study employed advanced ML models to get potential 
insights into the prediction of water quality index for the Aik-Stream, an industrially polluted natural water 
resource in Pakistan with 19 input water quality variables aligning them with surrounding land use and 
anthropogenic activities. Six machine learning algorithms, i.e. Adaptive Boosting (AdaBoost), K-Nearest 
Neighbors (K-NN), Gradient Boosting (GB), Random Forests (RF), Support Vector Regression (SVR), and Bayesian 
Regression (BR) were employed as benchmark models to predict the Water Quality Index (WQI) values of the 
polluted stream to achieve our objectives. For model calibration, 80% of the dataset was reserved for training, 
while 20% was set aside for testing. In our comparative analyses of predictive models for water quality index, the 
Gradient Boost (GB) model stood out the fittest for its precision, utilizing a combination of just seven parameters 
(chemical oxygen demand, total organic carbon, oil & grease, Ammonia- nitrogen, arsenic, nickel and zinc), 
surpassing other models by achieving better results in both training (R2 = 0.88, RMSE = 7.24) and testing (R2 =

0.85, RMSE = 8.67). Analyzing feature importance showed that all the selected variables, except for NO3 N, TDS 
and temperature had an impact on the accuracy of the models predictions. It is concluded that the application of 
machine learning to assess water quality in polluted environments enhances accuracy and facilitates real-time 
tracking, enabling proactive risk mitigations.   

1. Introduction 

Water pollution from industries is one of the major global problems, 
especially in rapidly developing countries, where numerous factories 
often release their effluents directly into the nearby water tributaries 
(Zhang et al., 2021). Industrial waste products contaminate water with 
highly toxic metals and organic pollutants (Teo et al., 2022; Whitehead 
et al., 2018). The rate of global industrial wastewater release is projected 
to be doubled by 2025 (Hutton and Shafahi, 2019; Water, 2017), an 

escalation which could pose a major threat to the freshwater resources. 
The Lancet Commission on Pollution and Health identified water 
pollution as the leading cause of premature deaths worldwide (Land-
rigan et al., 2017). The UN Sustainable Development Goals (SDGs) also 
aim to improve water quality by minimizing the emission of hazardous 
chemicals and enhancing recycling and safe reuse by the end of 2030 
(Weiland et al., 2021). Pakistan is ranked 17th in the world in terms of 
acute water scarcity, with 79% of its water unsafe for drinking (Jabeen 
et al., 2015). Only 1% of industrial wastewater is treated before being 
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discharged directly into rivers and drains (Fida et al., 2022). Wastewater 
produced by industries here is often discharged into nearby water bodies 
without treatment (Bhagat et al., 2023). Streams and rivers have been 
turned into open sewers due to the discharge from heavily industrial-
ized, densely populated areas (Issakhov et al., 2021; Wang et al., 2022). 
The situation of the Aik-Stream, an important India-Pakistan Trans-
boundary tributary of the Chenab River, crossing through the industrial 
area of Sialkot, Pakistan is the focus in this study. Over the past decade, 
Sialkot city has undergone rapid industrialization and urbanization 
making it highly susceptible to environmental pollution (Khalid et al., 
2021). The city is renowned globally for its production of leather goods, 
sports equipments, especially quality foot balls, processed food items, 
ceramics and surgical instruments (Qadir et al., 2008). It houses 
approximately 92 tanneries, 244 units for leather garment and product 
manufacturing, more than 900 factories that manufacture sports goods 
along, with 57 units dedicated to husking rice and 14 mills that produce 
flour (Qadir and Malik, 2009). Unfortunately, there is inadequate 
disposal of municipal and industrial waste in the region, leading to the 
unregulated discharge of solid waste and effluents from industries 
directly into the stream. Over time, these pollutants haave increasingly 
damaged the ecological integrity of the stream, primarily due to un-
treated waste from leather industries (Naeem et al., 2021). Waste 
discharge from the leather industries includes organic and inorganic 
substances, toxic materials, i.e., heavy metals, chemically synthesized 

tannins, oils, resins, bio-toxins, and disinfectants (Garai, 2014; Maqbool 
et al., 2018; Rabelo et al., 2018; Tariq et al., 2010). 

Continuous monitoring is essential for regulating surface water 
quality, effectively and it is crucial for ecosystem protection, human 
health, sustainable water resource management, pollution control, and 
policy development (Brack et al., 2017; Geissen et al., 2015). Monitoring 
and assessing water quality can enable the identification of potential 
risks, the mitigation of health risks, the preservation of natural envi-
ronments, and the assurance of the availability of clean water for present 
and future generations (Mokarram et al., 2020). However, relying solely 
on conventional monitoring methods is inadequate. Instead, it is often 
essential to employ mechanisms or models to predict potential risks in 
less time to prevent negative impacts on water quality (Islam et al., 
2021). Based on these insights, one can take several measures including 
initiating treatments to counteract contaminants, diversifying or 
switching water sources, issuing timely public advisories for community 
safety, adjusting and enhancing water treatment infrastructure, and 
implementing emergency response protocols tailored to specific threats 
(Berglund et al., 2020; Sun and Scanlon, 2019). 

The prediction of water quality is of paramount importance for 
various socio-economic sectors that heavily depend on access to clean 
and safe water resources. More recently, artificial intelligence (AI) has 
become a viable field to work in when it comes to creating advanced 
algorithms and prediction methods that can be used to estimate the state 

Fig. 1. Proposed working model diagram.  
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of water quality by analyzing complex data (Ahmed et al., 2024). This 
work intends to give a general overview of the major approaches used in 
AI-based water quality prediction, emphasizing six machine learning 
algorithms in particular: Adaptive Boosting (AdaBoost), Random Forests 
(RF), Gradient Boosting (GB), Support Vector Regression (SVR), and 
Bayesian Regression (BR). The aim is to improve the accuracy of water 
quality predictions while accounting for the complexity of the polluted 
stream dataset (Bhagat et al., 2023). These models may effectively 
predict water quality by using various monitoring techniques, managing 
complex relationships, supporting various types of data, and quantifying 
imprecision in forecasts associated with water resource management 
(Xu et al., 2022). Ensemble techniques such as Random Forest, Gradient 
Boosting, and Adaptive Boosting are widely recognized for their ability 
to understand complex data correlations by combining predictions from 
several models (Huan and Liu, 2024). This enhances performance, 
especially in scenarios involving intricate, non-linear patterns. (Mienye 
and Sun, 2022). In contrast, K-Nearest Neighbors (K-NN) stands out as a 
versatile algorithm capable of adapting to various data types, making it 
an adaptable choice for diverse datasets (Modaresi and Araghinejad, 
2014). SVR recognized by constructing hyperplanes in high-dimensional 
spaces, enabling precise representation of intricate patterns (Liu et al., 
2013). Simultaneously, Bayesian Regression offers a unique approach by 
incorporating prior knowledge and leveraging probabilistic modeling 
techniques, not only providing insights into the data but also quantifying 
prediction uncertainty, which proves valuable for nuanced 
decision-making (Sharma and Goyal, 2017). Considering recent 
research findings, it has been observed that the Support Vector Machine 
(SVM), random forest, KNN, and XGBoost algorithms have proven to be 
efficient in predicting water quality (Danades et al., 2016; Khan et al., 
2022). Similarly, Bayesian Regression (BR) has also demonstrated 
effectiveness in water quality prediction, as indicated by previous 
studies (Li et al., 2021). The best suited model can be assessed or 
identified for predicting water quality. 

This study compared six different machine learning methods, 
including AdaBoost, K-Nearest Neighbors, Gradient Boosting, Random 

Forests, Support Vector Regression, and Bayesian Regression, to predict 
the water quality index (WQI) based on the water quality parameters of 
Aik-Stream, Sialkot, Pakistan. Our research objectives include: (1) 
Assessing the surface Water Quality Index (WQI) and its spatial variation 
along the Aik-Stream, (2) Constructing predictive AI models and con-
ducting comparative analyses among them, and (3) Identifying the most 
effective models for predicting surface WQI. 

The selection of suitable model inputs was based on criteria that 
prioritized the lowest root mean square error (RMSE) and the highest 
coefficient of determination (R2). This research methodology shares 
similar objectives with the studies conducted by (Gazzaz et al., 2012; 
Hameed et al., 2017). However, it introduces a novel approach involving 
the use of standardized regression coefficients to evaluate the most 
influential independent parameters across all six predictive models. This 
approach enhances our understanding of the key variables that signifi-
cantly impact the Water Quality Index (WQI) in the industrially 
disturbed Aik-Stream of Pakistan. This innovative method not only helps 
fill gaps in existing research but also uses machine learning models to 
study water quality in polluted areas, thereby presenting novel insights 
pertinent to the domains of pollution management and sustainability. 

2. Materials & methods 

The overall approach used in the reported study included data 
collection, data interpretation and application of various ML models, 
integrated in a coordinated workflow (Fig. 1). 

2.1. Study area 

The Aik-Stream, a significant tributary of the Chenab River flowing 
through the city of Sialkot, Pakistan. Sialkot city is situated within a 
humid subtropical climatic zone with an average annual precipitation 
rate of 957.9 mm or 37.7 inches (Ali et al., 2020). The stream starts from 
the Pir Punjal Range in the Lesser Himalayan region of the Jammu and 
Kashmir, at an elevation of 530 m at sea level (Malik et al., 2010) 

Fig. 2. The study area including the Aik stream adjacent to the industrialized city of Sialkot in Pakistan (Source: Arc map 10.5).  
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(Fig. 2). It spans a total distance of 131.6 km, with a 315 Cs annual flow 
rate and a catchment area covering approximately 1062 km2. Typically, 
the stream receives its lowest discharge during the early summer, while 
the utmost occurs during the monsoon season (Mahmood et al., 2014). 
As the stream flows through the city, it receives a substantial influx of 
wastewater, including toxic chemicals and heavy metals from municipal 
waste and industries, which drain down into the Chenab River without 
treatment. This stream receives a total of 52 million liters of wastewater 
per day, with an additional 1.1 million units of waste from 
leather-producing factories (Daily, 2006; Pakistan, 2007; Qadir and 
Malik, 2009). The waste generated during the production of leather 
contains a range of pollutants, including inorganic substances. These 
pollutants consist of metals, created tannins, different types of oils and 
resins as well, as biological toxins and disinfectants (Garai, 2014; 
Maqbool et al., 2018; Rabelo et al., 2018; Tariq et al., 2010). Researchers 
have reported high levels of heavy metals such as chromium, lead, 
cadmium, mercury, copper, zinc and nickel from the Sialkot Industrial 
Zone (Jadoon and Malik, 2019; Khalid et al., 2021; Lokhande et al., 
2011; Malik et al., 2010; Qadir and Malik, 2009; Qadir et al., 2008). 

2.2. Dataset for analyses 

The water samples were collected at 150 sampling sites in three 
replicates (150 × 3 samples) from the Aik-Stream at regular intervals 
with 1-km spacing, spanning a total of 131.6 km and ensuring 
comprehensive coverage of stream flow from its source to the endpoint. 
The samples were collected in April and at the end of September, cor-
responding to the hydrologically high and low flow period, respectively. 
Water samples were collected 30 cm below the surface within a 100-m 
radius of each site. Three sub-samples per site were combined into 
composite samples and stored in nitric acid-cleaned plastic bottles. 
These were sealed tightly and transported to the lab in ice boxes, 
following prescribed standard method (Rodier et al., 2009). One mL of 
high-quality nitric acid was added to each sample (to make sure its pH 
remained below 2) and preserve the water samples for further analysis of 
metals ion concentrations. The collected samples were stored at a tem-
perature of 4 ◦C to prevent any degradation prior to conducting the 
chemical analysis, followed the guidelines set by (Association, 1926). 
The samples were examined to determine various important character-
istics related to physicochemical and biochemical parameters. The 
dataset includes 19 significant explanatory variables, namely: pH, 
Temperature (T, oC), Electrical Conductivity (EC, μS cm− 1), Total Dis-
solved Solids (TDS, mg/L), Total Suspended Solids (TSS, mg/L), Bio-
logical Oxygen Demand (BOD, mg/L), Chemical Oxygen Demand (COD, 
mg/L), Ammonia Nitrogen (NH3–N, mg/L), Total Organic Carbon (TOC, 
mg/L), Chloride (Cl− , mg/L), Nitrate Nitrogen (NO3–N, mg/L) and Oil 
and Grease (O&G, mg/L) zinc (Zn), nickel (Ni), copper (Cu), chromium 
(Cr), lead (Pb), arsenic (As), and mercury (Hg) (Table 1). Details of 
various analyses undertaken are mentioned in (Supplementary data, 
Table 1). 

For the heavy metal analysis the water samples were digested on a 
plate using a combination of nitric and perchloric acids following the 
guidelines provided by (Chen and Ma, 1998). The Varian FS 240AA Fast 
Sequential Atomic Absorption Spectrometer were used to analyze trace 
metals. Metal standards were verified against Fluka’s standard reference 
material, showing minimal deviation. For each test, the average of three 

replicates was recorded. The precision of these methods was demon-
strated by a deviation ranging between 5% and 10%. 

2.3. The Water Quality Index (WQI) 

The Water Quality Index (WQI) is a key method in water quality 
assessment. It simplifies the assessment procedure by condensing a large 
amount of data on water quality into a single numerical index score 
(Parween et al., 2022). This study employed the WQI, which was created 
in 2001 by the Canadian Council of Ministers of the Environment 
(CCME) (CCME, 2001). It falls under the category of an open index since 
its computation is not predefined with respect to the variables included 
or standards of quality. Instead, the index requires the collection of a set 
of factors relevant to the water body under consideration and the 
evaluation’s intended goals. Due to its adaptability, this index can be 
tailored to fit the needs of different water quality monitoring programs. 
However, it’s crucial to remember that constant application of the same 
parameters and criteria is necessary for meaningful comparisons of 
outcomes. 

Utilizing the three numerical components of scope (F1), frequency 
(F2), and amplitude (F3), the CCME-WQI is computed. Equation (1) 
represents the scope factor, from which the fraction of parameters that 
at least once exceed the quality norms is derived. The frequency factor 
(shown by equation (2)) expresses the percentage of analytical results 
that, when all parameters are considered, exceeds the requirements. The 
amplitude factor, denoted by Equation (3), calculates the discrepancy 
between the analytical results that fall short of the required re-
quirements and the quality criteria. These qualities, when taken allow 
the WQI to offer a thorough evaluation of water quality. 

Scope : F1 =

(
Number of failed variables
Total number of variables

)

× 100 (1)  

Frequency : F2 =

(
Number of failed tests
Total number of tests

)

× 100 (2)  

Amplitude : F3=
nse

0.01nse + 0.01
(3) 

The calculation of Factor 3 (amplitude) involves a three-step process, 
which is used to determine the difference between the desired value and 
each concentration. These steps are represented by equations (3.1), (3.2) 
and (3.3) in the amplitude formulation. 

Excursioni =

(
Failed test value i

Objective j

)

− 1 (3.1) 

The test value should not be less than the target value in the 
following circumstances: 

Excursioni =

(
Objective j

Failed test value i

)

− 1 (3.2) 

The total deviation coefficients of all individual results, no matter 
whether they meet the predetermined objectives, must be added up and 
divided by the sum of the number of individual results to determine the 
overall extent of non-compliance; this value is represented by the 
normalized total of all the deviation coefficients (NSE), which is written 
as: 

NSE=

⎛

⎜
⎜
⎝

∑n

i=1
Excursioni

Number of tests

⎞

⎟
⎟
⎠ (3.3) 

NSE from the targets is then mapped using an asymptotic function, 
assigning values in the range of 0–100 to calculate term F3 (Eq. (3)). 

After determining these factors, the actual WQI can be computed by 
these three terms as vectors and incorporating them together. The sum 

Table 1 
Classification of CCME-WQI and corresponding water status.  

Water Quality Class Index Range Water Status 

Excellent 95–100 Very good quality water 
Good 80–94 Good quality water 
Fair 65–79 Acceptable quality water 
Marginal 45–64 Poor quality water 
Poor 0–44 Very poor-quality water  
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of each factor’s squares equals the index’s square (Eq. (4)). The WQI is 
conceptualized in this approach as a three-dimensional space, with each 
axis representing one of the three factors. According to the CCME’s 
definition, the index is directly related to these factors. 

WQI=

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

F2
1 + F2

2 + F2
3

√

1.732

⎤

⎦ (4) 

The calculated values are normalized using the divisor 1.732, so the 
Water Quality Index (WQI) result is from 0 to 100. On this scale, the 
water quality is evaluated from 0 to 100, with 100 representing the 
highest quality. The WQI was calculated using the CCME Calculator 
Software Version 1.0 given by Canadian Council of Ministers of the 
Environment. The CCME has established five categories based on water 
quality can be seen in Table 1. 

2.4. Machine-Learning Models 

Six machine-learning models (AdB, K-NN, GB, RF, SVR and BR) were 
chosen to be trained on the water quality dataset. In making this choice, 
their performance indicators were considered, and an assessment was 
conducted regarding how these models are aligned with specific re-
quirements (Hillel et al., 2021). AdB model was selected due to its 
expertise in handling complex datasets and excellent accuracy. A strong 
learner is created using the ensemble method by combining an array of 
weak learners. The overall predictive power is increased by the boosting 
method used in AdB (Bourel and Segura, 2018; Tanha et al., 2020). 
However, parameter tuning may be necessary to improve performance 
because it can be sensitive to noisy data and outliers. K-NN performs 
well when the underlying data distribution is locally homogeneous and 
displays nonlinear patterns because it captures complex relationships in 
the data because of its adaptability and simplicity (Chen et al., 2020). 
However, K-NN requires careful consideration when choosing the 
number of neighbors (K) and an appropriate distance metric, especially 
for large datasets (Ahmed et al., 2019). Gradient Boost was a good op-
tion because it can effectively capture intricate interactions in the data 
(Zhou et al., 2020). It is an ensemble method that builds models one at a 
time, correcting the flaws of the previous model as it goes. GB is skilled 
at handling heterogeneous data and generating highly accurate pre-
dictions (Polikar, 2012). However, if the learning rate is slow or the 
number of boosting iterations is excessive, it may be subject to over-
fitting. Hyperparameters need to be tuned carefully (Uddin et al., 2022). 
RF can manage interactions, outliers, and high-dimensional data. This 
collection of decision trees lessens overfitting via averaging predictions 
from various trees (Wang et al., 2021). The robustness, computational 

effectiveness, and provision of feature importance measures of RF are 
well known. In contrast to other ensemble methods, however, RF can be 
more challenging to interpret than a single decision tree and may have 
trouble capturing complex nonlinear relationships (Rigatti, 2017). SVR 
shows excellent potential when datasets have numerous dimensions, 
complex relationships, and nonlinear patterns (Ahmed et al., 2019). It is 
less likely to over fit and is better able to handle outliers. SVR offers a 
range of kernel functions to capture various data patterns. SVR can be 
computationally expensive for large datasets and requires careful pre-
processing and data scaling (Modaresi and Araghinejad, 2014). 
Choosing the appropriate kernel functions and tuning the hyper-
parameters can be challenging. The probabilistic framework of BR, 
along with its aptitude for handling uncertainty estimation and model 
choice, led to its selection. It is resistant to overfitting and capable of 
handling intricate data relationships (Tanha et al., 2020). However, BR 
might have trouble capturing intricate nonlinear patterns compared to 
other models. It presupposes a particular type of prior distribution, 
which might not always correspond to the underlying data distribution 
(Holmgren et al., 2014). 

2.5. Research methodology 

Our approach involved six ML models, including Adaptive Boosting, 
K-Nearest Neighbors, Gradient Boosting, Random Forests, Support 
Vector Regression, and Bayesian Regression to predict the Water Quality 
Index (WQI) of the Aik-Stream based on 150 samples and 19 parameters. 
We randomly split the dataset into training (80%) and testing (20%) 
subsets to address the issue of overfitting in the model. The training 
subset helped us in understanding the system’s behavior, while the 
testing subset was used for model validation (Nguyen et al., 2021). We 
also employed the feature elimination-linear algorithm RFE-L to select 
relevant features from nineteen possible input variable combinations. 
This process helped in streamlining the model by reducing the number 
of variables (Ebrahimi-Khusfi et al., 2021). Each model was trained with 
nineteen different input combinations, labeled 1 to 19 (as detailed in 
Table 2). 

Our methodology follows the "Wrapper" approach as described by 
(Kohavi and John, 1997) which involves a predetermined selection of 
input combinations for efficiency and robustness. Normalization of all 
input water quality parameters between 0.1 and 0.9 was performed to 
ensure uniformity in variable values, preventing bias towards specific 
ranges. A top-down sequential search algorithm was used for model 
evaluation, where a variable is removed at each step to see if the model’s 
precision is maintained. This process continues until no more variables 
can be eliminated without dropping below the acceptable precision 

Table 2 
Models developed from the different combinations of the water quality variables.  

Models Variables 

1 COD TOC OG NH3N As Ni Zn Cd Cr Cl BOD TDS TSS Pb pH T Hg NO3N Cu 
2 COD TOC OG NH3N As Ni Zn Cd Cr Cl BOD TDS TSS Pb pH T Hg NO3N  
3 COD TOC OG NH3N As Ni Zn Cd Cr Cl BOD TDS TSS Pb pH T Hg   
4 COD TOC OG NH3N As Ni Zn Cd Cr Cl BOD TDS TSS Pb pH T    
5 COD TOC OG NH3N As Ni Zn Cd Cr Cl BOD TDS TSS Pb pH     
6 COD TOC OG NH3N As Ni Zn Cd Cr Cl BOD TDS TSS Pb      
7 COD TOC OG NH3N As Ni Zn Cd Cr Cl BOD TDS TSS       
8 COD TOC OG NH3N As Ni Zn Cd Cr Cl BOD TDS        
9 COD TOC OG NH3N As Ni Zn Cd Cr Cl BOD         
10 COD TOC OG NH3N As Ni Zn Cd Cr Cl          
11 COD TOC OG NH3N As Ni Zn Cd Cr           
12 COD TOC OG NH3N As Ni Zn Cd            
13 COD TOC OG NH3N As Ni Zn             
14 COD TOC OG NH3N As Ni              
15 COD TOC OG NH3N As               
16 COD TOC OG NH3N                
17 COD TOC OG                 
18 COD TOC                  
19 COD                    
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level. This approach, include the feature selection method, aligns with 
prior research in the field (Mehdizadeh et al., 2020; Mokhtar et al., 
2021). 

2.6. Evaluation metrics 

We conducted a comparison between the observed WQI, and the 
values predicted by our studied models. The precision and accuracy of 
the models was quantified using different statistical metrics, namely 
Mean Absolute Error (MAE) (Eq. (5)), Root Relative Squared Error 
(RRSE) (Eq. (6)), Root Mean Square Error (RMSE) (Eq. (7)), and the 
coefficient of determination (R2) (Eq. (7)). These specific metrics were 
chosen based on the recommendations of previous studies (Malone 
et al., 2017). The parameters are defined as: "WQI actual" represents the 
observed or actual WQI value, while "WQI predicted" represents the 
simulated or predicted WQI value. 

MAE=

(
1
n

)

∗ Σ
⃒
⃒WQIpred − WQIactual

⃒
⃒ (5)  

RRSE=

(
1
n

)

∗ Σ(WQIᵢᴾ − WQIᵢᴬ)2 (6)  

RMSE= sqrt
((

1
n

)

∗ Σ
(
WQIpred − WQIactual

)2
)

(7)  

R2 = 1 −

(
Σ
(
WQIactual − WQIpred

)2

Σ(WQIactual − mean(WQIactual))
2

)

(8) 

A higher R-squared value indicates a more robust correlation or fit 
between the observed and actual values (Zamani et al., 2023). On the 
other hand, lower values of MAE, MSE, and RMSE indicate improved 
model performance (Chicco et al., 2021). These evaluation metrics were 
employed to evaluate how well the regression models predicted the 
WQI. 

2.7. Feature selection 

Feature selection is defined as a search process that seeks to extract a 
relevant subset of attributes from the original collection. There are other 
ways to choose features; in this work, we use the Recursive Feature 
Elimination-Linear (RFE-L) technique. Since RFE-L uses a backward 
selection method to find the best feature combination for predicting the 
target variable, it is a popular approach for finding the most relevant 
features in predictive modeling (Akhtar et al., 2020; Ebrahimi-Khusfi 

et al., 2021). Initially, the algorithm constructs a model using all 
available features and computes the importance of each feature within 
the model. Subsequently, it ranks these features and systematically 
eliminates the least significant ones based on the model’s evaluation 
metrics, such as RMSE and R2 (Bagherzadeh et al., 2021). The model is 
then retrained, and the importance of the independent variables is 
reassessed. This iterative process continues until a specific number of 
predictive subsets are identified, enabling the assessment or selection of 
the subset of predictor variables, which are the water quality parameters 
in this context. The size of the subset is determined to choose the most 
optimal predictor variables (Kuhn and Johnson, 2018). It’s important to 
note that in this algorithm, the ideal combination of features is achieved 
when the values of RMSE approach 0 and those of R2 approach 1. This 
signifies the best model fit for the given dataset. 

2.8. Feature importance score 

Machine learning models evaluate input variables or features by 
assigning them importance scores or weights based on their internal 
computations (Siham et al., 2021). These scores represent the extent to 
which each input variable impacts the model’s predictions. When 
comparing various machine learning models, you can evaluate how they 
diverge in their allocation of importance scores. Some models may 
prioritize specific features, while others may emphasize different ones 
(Singh et al., 2022). This insight can inform your selection of the most 
appropriate model for a given task. Moreover, the choice of input fea-
tures plays a pivotal role in the stability and resilience of the prediction 
model. By thoughtfully examining and choosing relevant input vari-
ables, you can enhance the models’ stability, ensuring consistent and 
dependable predictions across different scenarios (Gültekin and Sakar, 
2018; Hameed et al., 2017; Singha et al., 2021; Wong et al., 2022). The 
relative importance score of each input feature is determined by the 
optimization algorithm used by the respective prediction models. 
Different models assign varying levels of importance score to the input 
variables when predicting the target variable (Gültekin and Sakar, 2018; 
Singha et al., 2021). 

3. Results 

3.1. Water Physicochemical Properties 

The results showed a slight difference in the pH of two consecutive 
sampling sites, ranging from 6.15 to 8.95 (Table 3). The temperature 
stayed constant around 28.0 ◦C. This can be attributed to the buffering 

Table 3 
Descriptive statistics of water quality parameters of the Aik-Stream, including sample size [N = 150 (3x)].  

Parameters Mean Standard deviation Kurtosis Skewness Permissible Limit 

LPZ HPZ MPZ LPZ HPZ MPZ LPZ HPZ MPZ LPZ HPZ MPZ WHO (mg/L) 

pH 7.49 6.18 7.94 0.78 0.767 1.295 − 0.09 − 1.21 − 0.002 − 0.32 − 0.31 − 1.09 6.5–7 
COD mg/L 6.054 62.39 43.15 6.05 16.972 15.62 − 0.62 0.65 1.30 1.52 0.02 1.46 250 
BOD mg/L 12.02 43.02 24.56 12.0 6.733 9.55 − 0.34 − 0.05 0.36 − 0.48 − 0.46 − 0.55 50 
TDS mg/L 6.24 7.00 6.87 0.42 0.000 0.33 1.28 0.00 − 2.34 0.36 0.00 3.63 300–600 
TSS mg/L 5.94 6.00 0.24 0.00 0.000 0.46 − 0.72 0.00 0.07 − 0.47 0.00 − 0.39 250 
NH3–N mg/L 5.96 22.73 4.424 2.56 3.447 4.42 0.07 − 0.64 − 0.83 − 1.53 − 0.50 − 1.36 50 
O&G mg/L 2.12 5.75 2.19 0.81 1.309 1.06 − 0.22 − 0.50 0.60 − 1.46 − 0.24 − 0.36 10 
TOC mg/L 13.6 110.9 40.33 4.55 17.512 28.12 − 0.54 − 0.28 0.65 0.91 − 0.96 − 1.31 15 
NO3–N mg/L 0.45 0.51 0.17 0.50 0.505 0.37 0.20 − 0.04 1.84 − 2.04 − 2.08 1.47 15 
Cl¡ mg/L 157.4 221.2 151.6 44.2 28.915 45.15 − 0.12 − 0.30 0.46 − 0.72 − 0.48 − 0.69 200 
Cu mg/L 0.47 0.50 0.58 0.50 0.140 0.49 0.121 − 7.14 − 0.34 − 2.06 51.0 − 1.96 1 
Zn mg/L − 0.14 1.00 0.23 0.34 0.316 0.42 − 2.173 − 0.46 1.33 2.83 8.02 − 0.24 3 
Cr mg/L 0.20 1.94 1.27 0.40 0.947 0.64 1.578 0.70 2.68 0.50 − 0.41 7.39 0.05 
Pb mg/L 0.76 2.12 1.44 0.42 0.739 0.58 − 1.286 0.11 0.93 − 0.36 − 0.41 − 0.06 0.05 
Cd mg/L 0.00 0.98 0.40 0.00 0.510 0.494 0.00 − 0.03 0.44 0.00 1.14 − 1.88 0.05 
Ni mg/L 0.00 0.90 0.54 0.00 0.300 0.50 0.00 − 2.78 − 0.17 0.00 5.99 − 2.05 0.1 
As mg/L 0.00 1.53 0.83 0.00 0.504 0.72 0.00 − 0.12 0.26 0.00 − 2.06 − 1.01 0.05 
Hg mg/L 0.00 0.20 0.06 0.00 0.401 0.24 0.00 1.57 3.73 0.00 0.50 12.44 0.02  
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capacity of water playing a role in maintaining pH levels and the thermal 
inertia of the water body helps to slow down temperature fluctuations. 
The amount of TDS, excessive values from 439 mg/L to 1340 mg/L were 
observed, and in TSS, from 201 to 334 mg/L. The various forms of ni-
trogen content closely aligned the patterns observed in BOD and COD, 
indicating that elevated nitrate-nitrogen (NO3–N) and ammonia nitro-
gen (NH3–N) concentrations are associated with increased pollutant 
loads. The total organic carbon content oscillated from 0 to 90 mg/L. 
The minimum value of chloride recorded was 74.22 mg/L. Noticeable 
differences in the measurements of heavy metals were observed if 
moved from the upstream region to the midstream areas. This variation 
has divided the stream into three distinct zones. These zones were 
named based upon the special differences in water quality as Less 
Polluted Zone (LPZ) for the upstream area based on its fair and 
reasonable water quality. In contrast, the midstream area with poor 
water quality and high pollution load is represented as a Highly Polluted 
Zone (HPZ), and the area of a downstream area with somewhat less 
reduced water quality is defined as a Moderately Polluted Zone (MPZ). 
The High Polluted Zone (HPZ) represents areas with significant water 
contamination due to point sources like tanneries, industrial effluents, 
and municipal sewage from Sialkot City, leading to highly degraded 
water quality. In contrast, Moderate Polluted Zone (MPZ) includes sites 
further downstream, affected by non-point sources and domestic sewage 
from nearby smaller towns. As the water travels, sedimentation occurs, 
which aids in reducing the pollution levels. Furthermore, when this 
water merges with the Palkhu stream at various confluence points 
downstream, its quality improves due to dilution. This natural dilution 
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Table 5 
Evaluation measures for the GB algorithm in WQI prediction for the aik-stream 
(training and testing datasets).  

Model R2 RMSE MAE RAE (%) RRSE (%) 

Training 
1 0.93 6.45 9.35 82.23 21.57 
2 0.79 7.32 5.37 99.45 53.22 
3 0.75 4.38 10.81 109.11 62.82 
4 0.94 6.33 4.62 38.21 39.71 
5 0.82 6.47 11.12 70.55 58.67 
6 0.75 7.37 6.25 91.32 50.09 
7 0.75 4.46 7.35 53.25 87.91 
8 0.73 7.56 11.45 44.45 51.81 
9 0.83 9.56 13.21 35.65 89.22 
10 0.81 8.26 12.23 62.12 91.45 
11 0.80 8.67 12.56 110.23 83.21 
12 0.77 6.61 7.41 37.23 72.36 
13 0.88 7.24 10.15 16.34 73.56 
14 0.72 5.23 5.85 99.23 83.56 
15 0.83 4.45 7.57 98.45 64.34 
16 0.87 4.2 12.32 71.67 104.67 
17 0.71 7.34 4.23 98.89 96.67 
18 0.78 8.35 7.23 76.34 67.34 
19 0.85 7.36 4.23 101.23 101.56 
Testing 
1 0.91 7.05 9.15 87.21 27.01 
2 0.84 11.34 13.63 83.23 118.56 
3 0.77 10.76 8.53 48.54 85.32 
4 0.90 6.54 8.65 59.32 55.32 
5 0.79 11.43 7.54 50.23 77.32 
6 0.66 10.32 13.76 37.31 86.32 
7 0.74 8.31 12.98 38.41 65.32 
8 0.70 8.54 11.76 90.12 60.34 
9 0.81 7.43 12.32 48.23 86.12 
10 0.77 10.25 13.32 57.67 53.23 
11 0.79 10.21 7.31 59.34 52.45 
12 0.72 11.24 12.41 38.65 72.67 
13 0.85 8.67 11.31 19.31 8.32 
14 0.84 7.54 8.31 42.45 110.56 
15 0.85 10.25 8.21 118.12 113.78 
16 0.64 12.43 7.41 119.23 112.54 
17 0.72 8.67 9.32 81.21 85.23 
18 0.75 6.78 9.31 58.12 57.3 
19 0.73 8.67 11.31 41.12 109.23  
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process plays a crucial role in gradually changing water quality in the 
region. 

Pearson Correlation matrix highlights significant associations be-
tween physicochemical parameters and heavy metals and metalliods. 
There are noteworthy positive correlations between Chemical Oxygen 
Demand (COD) and Biological Oxygen Demand (BOD) with ammonia 
nitrogen (NH3–N). Similarly, the matrix reveals strong correlations 
among heavy metals themselves. For example, chromium and cadmium 
have a strong positive correlation (r = 0.85). Likewise, arsenic shows 
significant correlations with zinc (r = 0.87), cadmium (r = 0.81), and 
chromium (r = 0.84). (Table 4). 

3.2. Calculation of WQI 

Water samples from the Aik-Stream are categorized into three classes 
based on the water quality index (WQI) as fair, marginal, and poor. This 
classification provides insights into the varying water quality levels 
observed in the stream (Supplementary Table 2). The observed WQI 
demonstrated that the upstream portion with 51 monitoring sites was of 
good and fair quality (64 < WQI ≤ 94), while the midstream with 66 
monitoring sites mainly was classified as poor water quality (0 < WQI ≤
44). The downstream portion with 33 monitoring sites had marginal 
values (45 < WQI ≤ 64). The water quality in the upstream region is 
comparatively better and exhibits minimal contamination, primarily 
due to the absence of industrialization (NN & NN, pers. obs.). Never-
theless, once it traverses through the city, industrial and sewage waste 
pollutants gradually accumulate, resulting in a substantial build-up of 
various contaminants, including heavy metals. Thus, the water at the 
mid-stream undergoes excessive pollution, threatening its overall qual-
ity. Moving downstream, the water becomes moderately polluted due to 
a decline in industrial activity in that area. The deterioration of water 
quality from upstream to downstream of Aik-Stream is mainly linked to 
discharges of urban and industrial wastewater in that area. 

3.3. Evaluating ML models 

A set of statistical metrics, including R2, RMSE, MAE, RAE and RRSE, 
were employed to evaluate the predictive performace of the WQI during 
both the training and testing phases (Tables 5–10). 

The evaluation of the GB model’s predictive performance, both 
during training and testing phases, shown that among the various GB 
models investigated in this study, the GB-4th input combination (with 
training R2 = 0.94, training RMSE = 6.33, testing R2 = 0.90, testing 
RMSE = 6.54) demonstrated the most optimal performance (Table 5). It 

is important to note that predictive performance typically leans more 
favorably towards the training phase as compared to the testing phase, 
which is an expected outcome during the model training process aimed 
at minimizing predictive errors. The GB model is initially constructed 

Fig. 3. a–b.GB Algorithm’s Best Inputs (4th and 13th) for WQI Prediction (Training: Black, Testing: Red). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 6 
Evaluation measures for the RF algorithm in WQI prediction for the aik-stream 
(training and testing datasets).  

Model R2 RMSE MAE RAE (%) RRSE (%) 

Training 
1 0.89 7.45 10.34 89.45 99.76 
2 0.93 5.23 6.45 32.84 55.33 
3 0.78 8.45 11.56 75.54 64.32 
4 0.63 8.45 14.67 25.23 31.76 
5 0.71 8.45 14.56 52.43 72.23 
6 0.73 13.78 10.81 96.45 94.24 
7 0.87 6.9 10.89 70.56 60.62 
8 0.61 12.27 13.32 92.23 85.23 
9 0.78 8.67 13.76 108.34 103.98 
10 0.85 8.67 9.23 35.21 72.34 
11 0.75 12.67 6.57 56.56 75.12 
12 0.79 8.78 12.87 18.56 83.23 
13 0.88 9.34 14.52 86.56 80.34 
14 0.70 5.67 11.51 113.45 65.45 
15 0.77 6.98 12.65 86.78 116.23 
16 0.79 8.45 12.54 66.56 65.56 
17 0.67 13.67 8.67 74.32 79.12 
18 0.89 7.67 14.23 79.45 74.23 
19 0.87 7.98 12.26 88.12 60.09 
Testing 
1 0.75 10.92 7.12 96.41 81.21 
2 0.91 8.02 9.24 51.34 75.34 
3 0.74 7.23 10.91 97.21 51.45 
4 0.82 11.34 10.98 48.19 86.45 
5 0.77 12.61 8.56 80.81 78.87 
6 0.83 11.34 6.54 64.72 67.34 
7 0.84 9.45 12.45 98.63 64.32 
8 0.71 10.45 11.63 62.53 67.35 
9 0.75 10.45 12.45 93.49 74.45 
10 0.84 9.34 10.76 58.61 64.23 
11 0.73 9.45 8.47 85.54 85.45 
12 0.74 9.45 13.87 71.51 70.45 
13 0.76 8.87 12.65 78.34 81.56 
14 0.65 9.65 11.73 121.61 58.31 
15 0.75 10.65 6.63 81.61 83.75 
16 0.75 10.43 11.52 92.71 60.56 
17 0.64 5.89 12.61 84.87 88.23 
18 0.84 7.62 7.52 64.23 76.67 
19 0.67 6.71 10.76 48 85.23  

U. Ejaz et al.                                                                                                                                                                                                                                     



Journal of Cleaner Production 450 (2024) 141877

9

during the training stage and subsequently assessed during the testing 
phase. Furthermore, the GB–13th input combination also exhibited 
better predictive performance in both the training (R2 = 0.88, RMSE =
7.24) and testing (R2 = 0.85, RMSE = 8.67) stages when compared to 

other input combination models. Although the GB–4th input combina-
tion model, consisting of sixteen input parameters (predictors), offers 
the best predictive performance, the GB–13th input combination model, 
which incorporates only seven input parameters, namely COD, TOC, OG, 
NH3N, As, Ni, and Zn, also provides satisfactory performance (R2 train =
0.88, R2 test = 0.85). Therefore, the GB–13th input combination model 
is identified as the superior predictive model, requiring a more limited 
number of input physicochemical variables. Overall, the results 
demonstrate that the GB model delivers a high level of predictive ac-
curacy for water quality in both the training and testing stages (Table 5). 
The visual representation of the GB’s best input combinations can be 
seen in Fig. 3a–b as training (black) testing (red). 

The RF model’s predictive performance is notable. The RF-2nd input 
combination demonstrates exceptional predictive capabilities in both 
the training and testing phases (R2 = 0.93, RMSE = 6.33) and the testing 
phase (R2 = 0.85, RMSE = 8.02) (Table 6 and Fig. 4a–b). However, the 
10th input combination, despite utilizing a smaller number of variables, 
also delivers commendable results in both training (R2 = 0.85, RMSE =
8.67) and testing (R2 = 0.84, RMSE = 9.34). 

The performance of the BR predictive models, highlighting the su-
perior performance of the BR-6th and 13th input combinations. These 
combinations demonstrate remarkable proficiency, with the BR-6th 
combination achieving high scores in both the training phase (R2 =

0.93, RMSE = 5.65) and the testing phase (R2 = 0.89, RMSE = 8.45), 
while the BR-13th combination also exhibits robust results in training 
(R2 = 0.87, RMSE = 7.34) and testing (R2 = 0.84, RMSE = 10.47) 
(Table 7 and Fig. 5a–b). The Ada Boost model’s performance. The 7th 
and 10th input combination stands out as a top performer (training R2 =

0.90, training RMSE = 7.91, testing R2 = 0.89, testing RMSE = 8.41) and 
(training R2 = 0.89, training RMSE = 10.22, testing R2 = 0.87, testing 
RMSE = 10.45) respectively (Table 8 and Fig. 6a–b). 

KNN model shows that the 2nd input combination performed well in 
both training (R2 = 0.88, RMSE = 8.32) and testing (R2 = 0.83, RMSE =
11.34) (Table 9 and Fig. 7a–b). The 7th input combination also had good 
results with R2 values of 0.87 in training and 0.84 in testing. However, 
when assessing the predictive performance of the SVM model, it be-
comes evident that the SVM-6th input combination stands out as a 
robust performer, delivering superior results in both the training (R2 =

0.85, RMSE = 5.41) and the testing phase (R2 = 0.82, RMSE = 6.67) 
than other input combinations (Table 10 and Fig. 8a–b). 

The additional scatter plots depicting all input combinations for 
comprehension in each model can be found in the supplementary data 
section for further reference (Supplementary Figures 1- 6). 

Fig. 4. a–b RF Algorithm’s Best Inputs (2nd and 10th) for WQI Prediction (Training: Black, Testing: Red). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 7 
Evaluation measures for the BR algorithm in WQI prediction for the aik-stream 
(training and testing datasets).  

Model R2 RMSE MAE RAE (%) RRSE (%) 

Training 
1 0.91 10.12 10.98 91 81.67 
2 0.92 6.34 10.76 94 99.76 
3 0.84 12.87 7.56 117 70.65 
4 0.79 11.87 12.54 117 79.65 
5 0.83 12.76 7.76 78 95.65 
6 0.93 5.65 6.65 120 83.54 
7 0.78 11.45 13.76 102 79.43 
8 0.76 7.65 9.34 117 131.43 
9 0.71 9.54 8.45 126 128.67 
10 0.76 6.78 13.56 80 118.98 
11 0.83 9.67 7.56 124 117.43 
12 0.73 11.65 10.68 87 89.34 
13 0.87 7.34 13.78 64 88.76 
14 0.85 10.34 12.45 76 135.87 
15 0.79 6.34 8.34 117 120.74 
16 0.73 12.67 12.21 80 107.43 
17 0.82 7.57 8.45 74 120.45 
18 0.73 7.67 10.56 130 88.76 
19 0.81 10.45 11.45 75 84.54 
Testing 
1 0.86 7.98 10.83 110.87 103.34 
2 0.85 13.23 9.72 92.23 83.23 
3 0.83 10.23 11.45 114.45 77.45 
4 0.68 9.56 10.72 104.67 74.34 
5 0.73 8.45 8.91 92.87 84.45 
6 0.89 8.45 14.56 116.34 91.65 
7 0.61 14.45 14.34 123.34 115.23 
8 0.68 14.67 11.67 136.34 121.87 
9 0.84 9.78 13.93 90.12 133.23 
10 0.75 10.54 14.73 118.14 106.12 
11 0.69 7.72 10.52 108.23 93.56 
12 0.87 11.34 10.95 103.56 137.89 
13 0.84 10.47 10.45 83.67 91.34 
14 0.87 7.12 9.67 109.75 100.12 
15 0.72 11.23 11.93 128.14 122.67 
16 0.73 14.62 14.34 116.56 94.34 
17 0.85 12.56 12.67 88.45 79.98 
18 0.73 11.56 12.34 128.76 88.45 
19 0.81 8.67 14.56 135.23 101.23  
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The overall comparison analyses of the ML models showed that the 
GB, RF, BR and AdB models demonstrated robust performance, whereas 
the SVR and K-NN models displayed average performances in accurately 

modeling the water quality index. In particular, the Gradient Boost 
model distinguished itself from other models with superior predictive 
abilities and its (GB–13th) input combination model is depicted to be the 
better predictive model, which needs a limited number of input physi-
cochemical variables. 

3.4. Identifying optimal input combinations 

We also carried out a best-subset regression analysis to identify the 
optimal input combinations for our Water Quality (WQ) model. To 
achieve this, we computed six statistical criteria, including Mean 
Squared Error (MSE), determination coefficients (R2), adjusted R2, 
Mallows’ Cp (Gilmour, 1996), Akaike’s AIC, and BIC. The results of 
these computations clearly indicate that Model 15 (comprising TDS, 
TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr, Cd, COD, TOC, NH3N, and Zn) 
emerges as the favored choice among the diverse models. It displayed 
the lowest Mean Squared Error (MSE) at 4.034, the lowest Akaike In-
formation Criterion (AIC) at 351.54, the lowest Bayesian Information 
Criterion (BIC) at 579.42, the lowest Mallows’ Cp value at 10.54, as well 
as the highest R2 value at 0.93 and adjusted R2 at 0.92. As a result, Model 
15 was identified as the most suitable input combination for predicting 
the WQI model (Table 11). 

Moreover, to assess the potential presence of multicollinearity 
among the water quality index parameters, we utilized the Variance 
Inflation Factor (VIF) and its reciprocal, 1/VIF, as presented in Table 12. 
A widely accepted criterion is that 1/VIF should be less than 0.1, and VIF 
should be less than 10 to indicate the absence of multicollinearity in 
relation to the target variable, WQI. The findings in Table 12 reveal that 
the majority of variables met the criteria with 1/VIF values below 0.1. 
However, during the VIF assessment, NH3N exhibited a value of 10.32, 
and As had a value of 11.43, both slightly surpassing the VIF threshold of 
10. Nevertheless, these results do not suggest the presence of 
multicollinearity. 

3.5. Feature importance and ML models 

The input features significantly influence the stability and robustness 
of the prediction model. Stability of the models can be improved, 
guaranteeing consistent and reliable predictions across various states by 
carefully considering and selecting the appropriate input variables 
(Gültekin and Sakar, 2018; Singha et al., 2021). The relative importance 
of input features is determined by the optimization algorithm used by 
the respective prediction models. Different algorithms may assign 

Fig. 5. a–b BR Algorithm’s Best Inputs (6th and 13th) for WQI Prediction (Training: Black, Testing: Red). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 8 
Evaluation measures for the AdB algorithm in WQI prediction for the aik-stream 
(training and testing datasets).  

Model R2 RMSE MAE RAE (%) RRSE (%) 

Training 
1 0.76 8.35 12.23 89.52 105.23 
2 0.78 9.65 8.24 115.21 123.54 
3 0.82 11.23 9.82 64.31 68.98 
4 0.72 5.98 10.61 113.34 75.63 
5 0.69 10.72 9.52 85.92 105.35 
6 0.54 5.34 9.73 116.87 115.23 
7 0.90 7.91 8.23 93.43 84.56 
8 0.88 5.99 7.34 61.34 101.98 
9 0.72 8.001 13.34 71.34 115.23 
10 0.89 10.22 13.62 72.56 89.34 
11 0.65 12.87 10.87 60.87 107.45 
12 0.64 5.92 9.65 125.43 83.72 
13 0.64 6.23 8.53 98.71 89.56 
14 0.53 8.54 11.62 126.23 113.98 
15 0.85 7.52 9.62 62.62 88.41 
16 0.79 11.23 8.9 125.45 67.34 
17 0.53 11.23 11.09 128.67 83.43 
18 0.84 5.23 11.52 90.23 109.34 
19 0.81 11.24 10.34 120.23 117.23 
Testing 
1 0.81 7.35 8.15 131.21 127.01 
2 0.80 11.44 10.63 116.23 128.56 
3 0.79 10.76 7.53 58.54 95.32 
4 0.69 6.84 5.65 69.32 75.32 
5 0.75 11.93 9.54 121.23 117.32 
6 0.42 10.72 10.76 38.31 126.32 
7 0.89 8.41 12.98 39.41 85.32 
8 0.77 8.64 10.76 101.12 111.34 
9 0.70 7.73 10.32 49.23 121.12 
10 0.87 10.45 11.32 87.67 93.23 
11 0.82 10.71 8.31 69.34 92.45 
12 0.75 11.94 13.41 48.65 73.67 
13 0.57 8.77 12.31 113.31 193.32 
14 0.88 7.74 9.31 45.45 110.56 
15 0.81 10.65 7.21 108.12 123.78 
16 0.63 12.73 9.41 109.23 112.54 
17 0.36 8.47 8.32 84.21 95.23 
18 0.77 6.58 6.31 55.12 97.3 
19 0.75 8.67 10.31 48.12 119.23  
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varying levels of importance to the input variables when predicting the 
target variable. 

The feature importance analysis revealed that Cd and Cr substan-
tially impacted WQI, achieving higher relative importance compared to 

other variables. (AdB = 0.16, K-NN = 0.38, GB = 0.14, RF = 0.22, SVR 
= 0.40, and BR = 0.11) and (AdB = 0.10, K-NN = 0.38, GB = 0.31, RF =
0.13, SVR = 0.31, and BR = 0.27) respectively in all prediction models. 
In the K-NN and SVR models, the Hg variable demonstrated higher 
relative importance, with values of 1.89 and 2.06, respectively. How-
ever, for AdB and RF models, the Hg variable showed moderate 
importance, with values of 0.11 each. It is worth mentioning that there 
was substantial variation in the relative importance of the COD variable. 

The analyses indicate that AdB, RF, and BR models displayed another 
comparable trend of superior relative importance for COD in predicting 
WQI. On the other hand, the K-NN model showed no significant 
importance for COD toward WQI prediction. A similar pattern can be 
observed for the NH3–N variable. In the GB and RF models, NH3–N 
demonstrated moderate relative importance, with values of 0.02 and 
0.03, respectively. However, in the case of SVR and BR models, NH3–N 
showed higher relative importance, with values of 1.32 and 1.03, 
respectively, indicating its significance in predicting the WQI. A notable 
finding is that, in most instances, the BOD variable showed a reduced 
relative importance compared to the other variables. The identification 
of the least significant variable by the models was that NO3–N attained 
zero importance in GB, AdB, and RF models, SVR and BR highlighted 
TDS as the non-significant whereas K-NN and GB highlighted many 
other non-significant variables in the prediction of WQI (Fig. 9a–f & 
Table 13). 

4. Discussion 

There has been a growing interest in using machine-learning models 
to assess water quality, especially, in the recent years (Mondal et al., 
2024). These models have the potential to detect changes quickly and 
effectively in water quality conditions (Huan and Liu, 2024). Our study 
aimed to enhance the field by assessing various machine learning 
models for the prediction of water quality. When comparing the pre-
dictive performance of the best models identified in our research, 
including Adaptive Boosting, K-Nearest Neighbors, Gradient Boosting, 
Random Forests, Support Vector Regression, and Bayesian Regression, 
the results indicate that the Gradient Boosting (GB) model, using sixteen 
input variables, outperforms other models in predicting the water 
quality index. While the remaining models produce similar results, they 
slightly lag the GB model in terms of predictive accuracy. Our findings 
are aligned with a study by (Khoi et al., 2022), found that 
boosting-based algorithms, especially Extreme Gradient Boosting 
(XGBoost), were highly accurate in predicting water quality for the La 

Fig. 6. a–b AdB Algorithm’s Best Inputs (7th and 10th) for WQI Prediction (Training: Black, Testing: Red). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 9 
Evaluation measures for the K-NN algorithm in WQI prediction for the aik- 
stream (training and testing datasets).  

Model R2 RMSE MAE RAE (%) RRSE (%) 

Training 
1 0.87 6.45 8.15 83.23 91.57 
2 0.88 8.32 10.63 99.45 53.22 
3 0.78 4.38 17.53 109.11 62.82 
4 0.63 8.73 5.65 108.21 39.71 
5 0.48 6.47 9.54 70.55 108.67 
6 0.43 7.37 10.76 91.32 50.09 
7 0.87 4.46 6.98 53.25 37.91 
8 0.81 8.56 10.76 44.45 51.81 
9 0.78 9.56 10.32 35.65 89.22 
10 0.84 8.26 11.32 63.12 91.45 
11 0.63 8.67 8.31 110.23 83.21 
12 0.53 6.61 13.41 37.23 72.36 
13 0.58 7.24 12.31 96.34 73.56 
14 0.82 8.23 19.31 99.23 83.56 
15 0.77 4.45 7.21 98.45 64.34 
16 0.50 8.2 9.41 71.67 104.67 
17 0.52 7.34 8.32 98.89 96.67 
18 0.79 8.35 6.31 76.34 67.34 
19 0.77 7.36 10.31 101.23 101.56 
Testing 
1 0.80 8.05 9.15 101.21 117.01 
2 0.83 11.34 13.63 116.23 128.56 
3 0.79 10.76 8.53 48.54 85.32 
4 0.65 6.54 8.65 59.32 55.32 
5 0.78 11.43 7.54 121.23 137.32 
6 0.46 10.32 13.76 37.31 116.32 
7 0.84 9.31 12.98 38.41 65.32 
8 0.35 8.54 11.76 101.12 130.34 
9 0.51 7.43 12.32 48.23 121.12 
10 0.46 10.25 13.32 57.67 83.23 
11 0.76 10.21 7.31 59.34 82.45 
12 0.72 11.24 12.41 38.65 72.67 
13 0.53 8.67 11.31 103.31 93.32 
14 0.74 8.54 8.31 42.45 110.56 
15 0.75 10.25 9.21 108.12 133.78 
16 0.64 12.43 7.41 109.23 152.54 
17 0.82 8.67 9.32 81.21 185.23 
18 0.45 6.78 9.31 59.12 97.3 
19 0.73 8.67 11.31 41.12 119.23  
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Buong River in Vietnam with high R2 value of 0.989 and RMSE of 0.107. 
In a related study researchers have developed prediction models, for 
Water Quality Index using both Random Forest (RF) and Gradient 
Boosting (GB) algorithms at Rawal Lake, Pakistan (Ahmed et al., 2019). 
They discovered that the XGBoost model performed better than the RF 

model showing lower error rates (MAE = 1.9642, MSE = 7.2011, and 
RMSE = 2.6835) as compared to RF model (MAE = 2.3053, MSE =
9.5669 and RMSE = 3.0930). Many researchers have used the 
CCME-WQI as a crucial variable in their machine-learning models for 
predicting water quality trends (Yilma et al., 2018; Yu et al., 2020). 
Other notable research, such as the work of (Asadollah et al., 2021), 
highlighted the superiority of the Extra Tree Regression (ETR) model in 
their study that ETR outperformed other models with a high R-squared 
value of 0.97, demonstrating its effectiveness in predicting water quality 
while considering only ten variables. 

Researchers in several countries have employed a variety of 
machine-learning models to predict water quality index, demonstrating 
high accuracy with R2 values exceeding 0.90. For instance studies con-
ducted by (Li et al., 2019) in Iraq focused on assessing water quality in 
the Euphrates River and in India (Nathan et al., 2017), evaluated 
groundwater quality using CCME-WQI in Lawspet, Puducherry and 
achieved an R2 value above 90%. Likewise (Gazzaz et al., 2012) in 
Malaysia and researchers from Iran, including (Kamyab-Talesh et al., 
2019) suggests that ML models are effective, at predicting and under-
standing water quality assessments. 

Our findings support (Sakaa et al., 2022) study, which preferred 
Random Forest over Support Vector Regression (SVR) for predicting the 
Water Quality Index of Algeria’s Wadi Saf-Saf river basin, achieving an 
R2 of 0.82 and RMSE of 5.17 with thirteen parameters. However, Sup-
port Vector Regression (SVR) performed better than Artificial Neural 
Networks (ANN) in the study conducted by (Hazarika et al., 2020) in 
Tawang Chu River, Arunachal Pradesh, India. In a comparative study 
conducted by (Singha et al., 2021) on predicting groundwater quality in 
Arang, Chhattisgarh, India, also ranked XGBoost as the top-performing 
model, with R2 = 0.962 in training and R2 = 0.927 in testing phase 
followed by Artificial Neural Networks (ANN) and Random Forest (RF). 
Similarly, (Wong et al., 2022) conducted an extensive comparison of five 
regression models, including Multilayer Perception (MLP), Random 
Forest (RF), Decision Tree Regression (DTR), AdaBoost, and Support 
Vector Regression (SVR). According to their study the Random Forest 
algorithm outperformed other models, with a R squared value of 0.974 
also aligns with our findings. 

Besides ensemble methods like Random Forest and XGBoost, alter-
native machine learning algorithms, such as Bayesian Regularization by 
(Sakizadeh, 2015) and Artificial Neural Networks (ANN) by (Gazzaz 
et al., 2012), have also shown strong correlations between predicted and 
observed water quality values in their research. Comparative analyses 
among other ML models, different from the ones we mentioned, 
generally favored the Decision Tree model over algorithms like Naive 

Fig. 7. a–b K-NN Algorithm’s Best Inputs (2nd and 7th) for WQI Prediction (Training: Black, Testing: Red). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Table 10 
Evaluation measures for the SVR algorithm in WQI prediction for the aik-stream 
(training and testing datasets).  

Model R2 RMSE MAE RAE (%) RRSE (%) 

Training 
1 0.74 4.75 5.3 61.71 106.35 
2 0.67 8.35 3.39 90.22 120.77 
3 0.73 6.34 3.91 71.13 57.34 
4 0.65 3.56 5.71 72.23 117.21 
5 0.45 6.67 3.99 71.11 77.31 
6 0.85 5.41 5.78 57.54 85.45 
7 0.43 9.72 3.76 74.23 84.34 
8 0.63 3.35 3.312 50.21 94.67 
9 0.25 3.23 3.51 47.25 81.57 
10 0.71 4.34 4.64 66.78 59.98 
11 0.63 9.23 3.32 90.23 76.32 
12 0.55 4.56 5.21 69.42 73.32 
13 0.43 4.38 4.56 44.55 86.12 
14 0.71 9.12 3.37 74.22 53.32 
15 0.55 4.14 4.78 41.22 85.24 
16 0.65 5.43 5.23 44.99 109.12 
17 0.54 4.57 4.34 71.34 68.21 
18 0.73 3.47 5.56 48.33 101.33 
19 0.54 7.34 4.77 34.23 94.44 
Testing 
1 0.80 6.71 7.55 55.65 108.98 
2 0.47 8.11 8.64 38.69 98.18 
3 0.56 11.61 8.43 70.09 88.44 
4 0.29 8.98 7.34 32.02 58.34 
5 0.21 8.08 9.32 65.11 79.43 
6 0.82 6.67 7.23 71.54 79.23 
7 0.51 8.21 7.65 51.54 104.34 
8 0.48 11.34 6.54 59.43 72.56 
9 0.3 10.12 9.76 77.45 72.65 
10 0.43 11.32 7.34 55.32 58.43 
11 0.21 7.45 5.67 37.32 74.34 
12 0.79 11.23 6.87 36.31 72.67 
13 0.52 11.12 7.87 37.76 69.76 
14 0.26 6.56 9.76 63.65 94.34 
15 0.6 9.34 6.65 78.87 78.23 
16 0.78 10.84 5.43 67.9 53.45 
17 0.45 8.65 8.87 49.03 89.56 
18 0.72 8.54 7.34 40.04 103.45 
19 0.27 11.54 5.87 79.19 64.54  
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Bayes (NB), k-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), 
and Logistic Regression (LogR) (M. Ahmed et al., 2021). Feature 
importance analysis by (Wong et al., 2022) showed that the proposed 
modified RF model, which included relatively important novel vari-
ables, is more proficient in water quality modeling. The predictive 
performance of the SVM model was observed to be reduced when 
irrelevant parameters were included in the input dataset (Leong et al., 
2021). Therefore, it is noteworthy to select carefully and include only 
the relevant parameters to maximize the benefits of ML models in pre-
diction tasks. Our research highlights that Gradient Boost and Random 
Forest models are the machine learning models with the strongest per-
formance in achieving accurate predictive results in water quality 
modelling surpassing other prediction models found in existing litera-
ture. These models have proven their usefulness in various geographic 
contexts, providing valuable insights for water quality management and 
monitoring (Asadollah et al., 2021; Hibjur Rahaman, Roshani, Masroor 
and Sajjad, 2023). Researchers are continuously investigating novel al-
gorithms and techniques to improve the accuracy and resilience of 
machine learning models (Ahmed et al., 2024; Khoi et al., 2022). 
Furthermore, they are actively developing approaches to transfer this 
new technique across various regions and water bodies, enabling the 

Fig. 8. a–b SVR Algorithm’s Best Inputs (6th and 10th) for WQI Prediction (Training: Black, Testing: Red). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 11 
Findings from a regression analysis aimed at discovering the most suitable input combinations for modeling Water Quality Index (WQI) in the contaminated Aik- 
Stream.  

No of parameters Name of parameters MSE R2 Adj R2 AIC BIC Malkow PC 

1 TDS 15.34 0.83 0.73 331.64 551.02 54.32 
2 TDS, TSS 13.67 0.88 0.77 334.45 555.11 24.98 
3 TDS, TSS, Pb 8.870 0.82 0.80 337.01 557.09 21.94 
4 TDS, TSS, Pb, pH 11.56 0.82 0.81 337.67 559.34 12.09 
5 TDS, TSS, Pb, pH, T 12.43 0.85 0.83 339.45 560.04 9.099 
6 TDS, TSS, Pb, pH, T, Hg 14.83 0.85 0.83 340.69 562.87 11.32 
7 TDS, TSS, Pb, pH, T, Hg, NO3N 7.450 0.82 0.80 342.81 563.82 15.98 
8 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD 7.321 0.87 0.88 344.91 564.82 23.12 
9 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl 7.221 0.84 0.83 345.21 567.45 22.87 
10 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr 6.898 0.84 0.83 346.41 568.32 21.54 
11 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr, Cd 6.854 0.88 0.87 347.23 569.22 32.54 
12 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr, Cd, COD 7.342 0.88 0.86 347.88 572.67 11.54 
13 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr, Cd, COD, TOC 6.342 0.89 0.88 348.11 574.44 12.45 
14 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr, Cd, COD, TOC, NH3N 6.811 0.89 0.87 349.03 574.81 11.32 
15 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr, Cd, COD, TOC, NH3N, Zn 4.034 0.93 0.92 351.54 579.42 10.54 
16 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr, Cd, COD, TOC, NH3N, Zn, As 6.231 0.90 0.87 352.22 576.43 18.87 
17 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr, Cd, COD, TOC, NH3N, Zn, As, Ni 7.432 0.89 0.87 353.87 580.42 17.97 
18 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr, Cd, COD, TOC, NH3N, Zn, As, Ni, Cu 5.213 0.88 0.84 353.81 581.33 15.74 
19 TDS, TSS, Pb, pH, T, Hg, NO3N, BOD, Cl, Cr, Cd, COD, TOC, NH3N, Zn, Ni, As, Cu, OG 5.321 0.90 0.83 354.31 583.99 11.53  

Table 12 
Detailed examinations of multicollinearity statistics for the parameters used in 
the calculation of Water Quality Index (WQI).  

Variable VIF 1/VIF 

COD 7.34 0.01239 
TOC 9.47 0.042611 
OG 9.15 0.06599 
NH3N 10.32 0.069834 
As 11.43 0.087453 
Ni 8.41 0.011895 
Zn 7.98 0.0125269 
Cd 6.47 0.0154488 
Cr 5.95 0.0168013 
Cl 4.97 0. 01308 
BOD 4.36 0.029166 
TDS 4.32 0.031383 
TSS 4.31 0.031921 
Pb 4.2 0.037852 
pH 3.22 0.010983 
T 3.2 0.012555 
Hg 2.26 0.043095 
NO3N 1.93 0.018168 
Cu 1.79 0.059737  
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utilization of these advanced techniques for better outcomes (Uddin 
et al., 2023). 

5. Conclusion 

This study evaluated the predictive performance of six distinct arti-
ficial intelligence (AI) models: AdaBoost, K-NN (K-Nearest Neighbors), 

Fig. 9. a–f Feature importance scores of the predictive models (a)AdaBoost, (b) K-NN, (c) Gradient Boost, (d) Random Forest, (e) SVR, and (f) Bayesian regression.  
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GB (Gradient Boosting), RF (Random Forests), SVR (Support Vector 
Regression), and BR (Bayesian Regression). The aimed was to forecast 
the water quality index of the Aik-Stream, utilizing data from 150 
sampling locations measuring surface water quality. The study explored 
nineteen different combinations of input parameters, ranging from 1 to 

19. The results indicated a notable decline in water quality, particularly 
in the midstream section of the Aik-Stream. The GB model demonstrated 
the highest accuracy achieving an R2 of 0.88 (training) and 0.85 
(testing) by utilizing only seven input variables. Although other models, 
like RF, BR, AdB KNN and SVR were less precise, they still offer 

Fig. 9. (continued). 

U. Ejaz et al.                                                                                                                                                                                                                                     



Journal of Cleaner Production 450 (2024) 141877

16

reasonably accurate predictions for the water quality index. All selected 
input variables significantly contributed to water quality index predic-
tion, except for Nitrate Nitrogen (NO3–N), Total Dissolved Substances 
(TDS), and temperature (T) in this study. 

Our findings suggest that the models examined in this research, 

particularly the GB model with the 13th input combination, have the 
potential to enable water managers and policymakers to efficiently 
calculate the water quality index for rivers and streams. This can be 
achieved with reduced computational time, lower costs, and less real- 
time monitoring at multiple polluted sites. Such an approach can 

Fig. 9. (continued). 
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enhance water resource management strategies and lead to more 
effective assessments of water quality, ultimately contributing to sus-
tainable river water management. However, it is important to 
acknowledge several limitations in this study, primarily related to the 
selection of physicochemical variables and the possibility of limited 
sampling sites. Future research should expand to include a larger 
number of sampling sites and incorporate a wider range of physico-
chemical variables to predict the river water quality index using an 
entropy weighted index approach. It is recommended to validate the 
proposed model in different rivers with varying hydro-climatic 
conditions. 
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