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A B S T R A C T   

The predictions of stomatal conductance (gsw) by the unified stomata optimization (USO) series models in 
tropical rainforest trees exhibited pronounced biases. However, little attention has been devoted to the structural 
issues within the USO series models themselves. This study introduced a novel approach by integrating the 
Farquhar photosynthesis model with the random forest (RF) algorithm to investigate diurnal variations in leaf 
stomatal responses among six tropical tree species in South China. The results revealed that the USO model and 
its derivative significantly overestimated gsw when vapor pressure deficit (VPD) and irradiance were low. The 
overestimation was primarily attributed to the assumption of a linear relationship between gsw and net assim-
ilation rate (An) and the issue of unbounded gsw when VPD was low. The relationship between gsw and An was 
indeed non-linear due to a negative correlation between the intercellular: atmospheric CO2 concentration ratio 
(Ci/Ca) and irradiance. The relationship between Ci/Ca and irradiance indicated that Ci/Ca was higher at low 
irradiance, declined and tended to gradually stabilize at high irradiance. An empirical coefficient was determined 
by using the monthly mean of daytime minimum VPD to represent gsw as finite values at low VPD. The revision 
achieved a substantial improvement in predictive accuracy of gsw at low VPD while preserving gsw responsiveness 
under high VPD.   

1. Background 

Historically, land surface models (LSMs) have primarily employed 
empirical models of stomatal conductance, such as the 
Ball–Woodrow–Berry (BWB) model (Ball et al., 1987), and the 
Ball–Berry–Leuning (BBL) model (Leuning, 1995). However, these 
models have been increasingly replaced by the unified stomata optimi-
zation (USO) model (Medlyn et al., 2011) in LSMs (Bonan et al., 2014; 
De Kauwe et al., 2015; Rogers et al., 2017; Li et al., 2022). In the BBL 
model, leaf stomatal conductance to water vapor (gsw) varies linearly 
with the net assimilation rate (An) divided by the CO2 concentration at 
the leaf surface (Cs) and the atmospheric vapor pressure deficit (VPD). 
The significance of the BBL model lies in its expression of the VPD 
response function, which accounts for the observed hyperbolic variation 

of gsw in relation to VPD across different species. The USO model was 
derived mathematically under the assumption of optimal stomatal 
behavior (Cowan and Farquhar, 1977), wherein stomata control the 
exchange of water and carbon by aiming to maximize carbon uptake 
considering a carbon cost to water loss. The USO model shares a similar 
form with the BBL model, as both models assume a hyperbolic rela-
tionship between gsw and VPD and a linear relationship between gsw and 
An under specific environmental conditions. Furthermore, the effects of 
leaf temperature (Tleaf) and photosynthetically active radiation (PAR) on 
gsw were incorporated into An through its dependence on them. How-
ever, several studies have shown that these stomatal conductance 
models had limited predictive capability when it comes to capturing 
temporal changes in leaf gsw for tropical rainforest trees (Wu et al., 2020; 
Xue et al., 2022; Davidson et al., 2023). These models tend to have 
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significant predictive errors (e.g., root mean square error, RMSE) that 
are considerably large in comparison to the mean of field observations. 

In relation to the unsatisfactory performances of existing stomatal 
conductance models in tropical rainforest trees, sensitivity evaluations 
have suggested that model predictability is characterized in regards to 
the relationships between gsw and environmental factors, which are 
essential for model parameterization. These factors, primarily con-
cerned soil water potential and leaf traits, exhibit significant variation 
across multiple organizational scales, including biomes, plant functional 
types, and species (Egea et al., 2011; Powell et al., 2013; Lin et al., 2015; 
Miner et al., 2016; Franks et al., 2018; Wu et al., 2020; Vidale et al., 
2021; Li et al., 2022). Furthermore, the oversimplification of the model 
structure poses a challenge as it fails to adequately express the complex 
response surface of environmental controls on gsw (Ogle and Reynolds, 
2002; Lamour et al., 2022; Davidson et al., 2023). Decades of research 
have shown that stomatal sensitivity to climatic stimuli, such as VPD, 
can vary among different species (Cunningham, 2004; Oren et al., 1999; 
Grossiord et al., 2020). Consequently, using a hyperbolic function of 
VPD to model the stomatal response of distinct species could be an issue 
(Li et al., 2011). Specifically, Domingues et al. (2014) suggested that the 
use of a hyperbolic function of VPD may not be appropriate for tropical 
species that frequently experience low VPD. In fact, when VPD is close to 
zero, which often occurs in moist rainforests as a result of high relative 
humidity in air (Graham et al., 2003; Cao et al., 2006; dos Santos et al., 
2018), the USO model predicts a conductance value that tends to 
approach infinity (Medlyn et al., 2011; Li et al., 2022). The USO model 
significantly overestimated gsw in Panama tropical trees subject to low 
irradiance, however primarily due to the insensitive responses of gsw to 
low irradiance (Lamour et al., 2022). The challenge for quantitatively 
characterizing low VPD impacts on stomatal behavior is that the low 
VPD condition is usually accompanied by low irradiance. Empirical VPD 
response functions are based on observed stomatal behavior in response 
to a normal operating range of the explanatory variable while other 
variables held constant (Ball et al., 1987; Leuning, 1995; Medlyn et al., 
2011), and they serve as a phenomenological representation. The 
response approach assumes that gsw remains constant at a steady state 
during measurement settings. However, this approach may not be suit-
able for examining leaf response under field environmental conditions, 
as it fails to capture the nonlinear characteristics of diurnal changes in 
gsw, as frequently encountered (Han et al., 2022; Davidson et al., 2023). 
It is crucial to address the research gap in understanding the complex 
relationships between diurnal gsw and explanatory variables. By iden-
tifying the limiting factors within these predictor-response relationships, 
targeted measures can be developed to compensate for potential draw-
backs of phenomenological stomatal conductance models. 

Non-parametric regression algorithms, such as machine-learning 
algorithms (MLs) which are statistically ensemble algorithms (Brei-
man, 1996; 2001; Lary et al., 2016), serve as a convenient interface 
linking the efficiency of standard statistical techniques with the 
complexity of physical models (Reichstein et al., 2019). MLs offer an 
all-purpose non-linear function-fitting capability superior at unraveling 
complex associations (e.g., non-linear relationships) between a target 
property and a potentially unlimited number of explanatory predictor 
variables without requiring explicit knowledge of underlying processes 
by “letting the data speak for itself” (McCabe et al., 2017; Cao et al., 
2020; Zhi et al., 2022). The predictive modelling of MLs is influenced by 
the type of data and the sample size used for model training (Liu et al., 
2021). For instance, the predictive accuracy of the random forest (RF) 
algorithm for physiological traits in crops is not only related to the 
number of vegetation indices but also to the size of observed samples 
throughout crop growing seasons (Jiang et al., 2022). The selection of 
predictor variables plays a critical role in improving the predictive 
power of MLs. Recent reviews have identified over 30 alternative models 
for stomatal conductance (Buckley, 2017; Damour et al., 2010). How-
ever, only a small number of these studies have investigated the use of 
MLs in uncovering the intricate relationships between gsw and 

explanatory variables (Saunders et al., 2021). Exploring the combina-
tion of MLs with the Farquhar-von Caemmerer-Berry photosynthesis 
model (Farquhar et al., 1980) may inspire ideas for better utilizing field 
observations to decode and reproduce physiologically based cause-effect 
relationships. 

We recognized that an approach in the community for evaluation of 
stomatal conductance models is to directly examine the gsw response (Li 
et al., 2011; Wu et al., 2020; Davidson et al., 2023); namely, stomatal 
conductance models are not coupled with the Farquhar photosynthesis 
model (hereinafter, the uncoupled stomatal conductance models). The 
reason they did not usually couple these models is to reduce the model 
complexity in the application, e.g. in LSMs. To comprehend the 
predictor-response relationships in a changing climate, coupling sto-
matal conductance models with the Farquhar photosynthesis model is 
crucial (Tuzet et al., 2003; Rogers et al., 2017; Dewar et al., 2018; Li 
et al., 2022). This is due to the fact that the assimilation rate serves as a 
critical input in stomatal conductance models (Ball, 1988), and the 
significance of coupled stomatal conductance models in understanding 
the physiological mechanisms responsible for diurnal stomatal conduc-
tance responses to environmental changes (Tuzet et al., 2003). In this 
study, we developed a new coupled interface for the Farquhar photo-
synthesis model and the stomatal conductance model. Instead of using 
BBL, USO and its derivative, we employed a data-driven RF algorithm 
trained with extensive diurnal gas exchange and micrometeorological 
data. This photosynthesis-RF inference tool combines the biochemical 
photosynthesis model with the strong statistical functions of the RF al-
gorithm, allowing us to explore the complex predictor-response re-
lationships between gsw and predictor variables. Uncertainties in the 
Farquhar photosynthesis model and temperature response of photo-
synthetic parameters can influence gsw predictions, complicating the 
interpretation of diurnal gsw variations (Zhang et al., 2017; Xue et al., 
2022). To compare the predictive performance of the coupled stomatal 
conductance models and the uncoupled models, we conducted experi-
ments on sunlit leaves of six tropical tree species at the Xishuangbanna 
Tropical Botany Garden of South China (XTBG) during the dry seasons of 
2021 and 2023. In this study, we addressed three specific research 
questions and evaluated one hypothesis as follows:  

(1) How well does the VPD formulation used in BBL and USO series 
stomatal conductance models perform when predicting the 
diurnal gsw?  

(2) To what extent do variations in the VPD-response relationship 
among those stomatal conductance models affect the predictive 
accuracy of diurnal gsw?  

(3) How does the temperature response of An impact the VPD 
response when the gsw model is combined with the An model? 

(4) In tropical trees subject to low VPD and irradiance, the un-
bounded gsw of stomatal conductance models is an unignorable 
issue, which may cause significant biases in gsw predictions. 

2. Materials and methods 

2.1. Descriptions of the Farquhar photosynthesis model 

For a given set of environmental conditions, including PAR, Tleaf, and 
atmospheric CO2 concentration (Ca), An in the photosynthesis model is 
determined by either the Rubisco carboxylation capacity (under low 
CO2 concentration) or the rate of regeneration of ribulose-1,5- 
bisphosphate (RuBP) in relation to the electron transport rate depen-
dent on PAR. The limitation of photosynthesis by a deficiency of inor-
ganic phosphate for photophosphorylation is not typically a limiting 
factor in tropical forests and has been disregarded (Rogers et al. 2021). 
The photosynthesis model requires the estimation of three key photo-
synthetic parameters: the maximum carboxylation rate (Vcmax), the 
maximum electron transport rate (Jmax), and the mesophyll conductance 
(gm). These parameters are usually estimated from the response curve of 
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An to intercellular CO2 concentration (An/Ci) and chlorophyll fluores-
cence data. Vcmax, Jmax, and gm are influenced by temperature, and 
various equations describing this relationship can be found in the 
literature, such as the one provided by Xue et al. (2022) (see also note 
S1). 

The left-hand panel of Fig. 1 illustrates the analytical solution of the 
Farquhar photosynthesis model. To predict the initial An value, micro-
meteorological variables (PAR, Ca, Tleaf, and VPD) and an initial guess of 
CO2 concentration inside chloroplasts (Cc) are taken into consideration. 
The first gsw prediction is generated by a stomatal conductance model 
that incorporates the first An prediction and micrometeorological vari-
ables. The first Cc is calculated using Fick’s law [Cc = Cs - An(1.56/gsw +

1/gm)] and is adjusted if the difference from the initial Cc guess exceeds 
0.01 ppm. The iterative process is terminated when the difference be-
tween the predicted Cc and the previous prediction is less than 0.01 ppm. 
The predictions of An and gsw at the last step of the iterative processes 
serve as the model outputs. For more information regarding the model 
descriptions and execution of the code script please refer to Xue et al. 
(2022). 

2.2. Descriptions of leaf stomatal conductance models 

In this study, we examined four stomatal conductance models and 
presented these models in a chronological order. The first two models, 
namely the BBL (Eq. (1)) and USO (Eq. (2)) models, are extensively 

employed in most LSMs. The equations are as follows: 

gsw = g0 + a1
An

(Cs − Γ)(1.0 + VPD/D0)
(1)  

where a1 is the slope parameter (unitless), g0 is the residual gsw when An 
is zero, Cs is the leaf surface CO2 concentration, Γ is the leaf CO2 
compensation point, and D0 is the empirical coefficient (kPa) (Leuning, 
1995). When using gas exchange systems (Xue et al., 2022; Davidson 
et al., 2023), Cs is substituted with ambient CO2 concentration (Ca). 

gsw = g0 + 1.6
(

1.0+
a1
̅̅̅̅̅̅̅̅̅̅
VPD

√

)
An

Cs
(2)  

where 1.6 accounts for the ratio of diffusivities for water vapor and CO2 
in air, a1 is proportional to the combination of the marginal water cost of 
carbon (λ) and the CO2 compensation point (Γ). The relationship be-
tween the a1 parameter and the marginal water cost of carbon gain was 
established in the study of Medlyn et al. (2011). In a recent study by 
Lamour et al. (2022), the USO model was reformulated to include a 
squared gross photosynthetic rate (referred to as the USO2022 model). 
Additionally, the integer 1 was removed from the second term on the 
right-hand side of the equation in this reformulation, as follows: 

gsw = g0 + 1.6
a1
̅̅̅̅̅̅̅̅̅̅
VPD

√
A2

g

Cs
(3) 

Fig. 1. Analytical roadmaps of the Farquhar photosynthesis model (the left-hand panel) and the leaf photosynthesis-RF inference tool (the right-hand panel). 
Stomatal conductance models evaluated in this study included the unified stomata optimization model (USO), the Ball–Berry–Leuning model (BBL), the reformed 
version of the USO model (USO2002) by Lamour et al. (2022), and a reformed version of the USO series models in this study (USO2024). The photosynthesis-RF 
inference tool is a useful measure to probe complex predictor-response relationships between gsw and predictor variables, which help to develop targeted mea-
sures to compensate for potential drawbacks of the phenomenological stomatal conductance models. RF: the random forest algorithm; VPD: leaf-to-air vapor pressure 
deficit; RH: relative humidity; PAR: photosynthetically active radiation; Ca: ambient CO2 concentration; Tleaf: leaf temperature; Rday: dark respiration in the light; An: 
net assimilation rate; gsw: stomatal conductance to water vapor; Cc: CO2 concentration inside chloroplasts; Vcmax: the maximum carboxylation rate; Jmax: the 
maximum electron transport rate. 
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where Ag is the gross photosynthetic rate, expressed by Ag = An + Rday 
wherein Rday is the leaf dark respiration rate in the light. The USO2022 
model was designed to address the non-linear gsw-An relationship at low 
light. 

The BBL, USO, and USO2022 models share a common feature, 
namely the hyperbolic response of gsw to VPD. However, there are sig-
nificant differences in the expression of VPD in the denominator. The 
range of the denominator term “1.0+VPD/D0” in the BBL model is 
greater than or equal to 1.0, whereas the denominator terms in the USO 
and USO2022 models are > 0 kPa. As VPD approaches zero, the de-
nominator terms in the USO and USO2022 models become much 
smaller, resulting in infinite reciprocal values and causing the problem 
of unbounded gsw estimations at low VPD. The slow changes in gsw 
observed at low VPD in tropical rainforest trees (Domingues et al., 2014; 
this study) may be attributable to the inertia of stomatal movement. In 
order to account for this inertia, VPD is sometimes filtered through a first 
order delay before it affects stomatal conductance (Lohammar et al., 
1980; Leuning, 1995). In most experimental studies, plant gsw response 
characteristics are typically recorded within a normal operating range of 
VPD ≥ 1.0 kPa, and the hyperbolic response of gsw after the benchmark 
point of VPD = 1.0 kPa is used to distinguish plant response to increasing 
VPD among species (Oren et al., 1999; Grossiord et al., 2020). To ac-
count for the inertia of stomatal movement at low VPD and the indig-
enous pattern of gsw response at high VPD ≥ 1.0 kPa, the denominator 
terms of the USO series models (i.e., USO and USO2022) may be revised 
by adding a delay coefficient (D0) as follows: 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
VPD + D0

√
≥ 1.0 (4)  

D0 ≥ 1.0 − VPD (5)  

where D0 is employed to prevent the occurrence of infinitesimal de-
nominator terms, while endeavoring to capture as many variations in 
VPD across different plant growth habitats. To achieve this, we have 
defined the VPD of Eq. (5) as the lowest VPD during daytime (VPDmin, 

daytime) using the following approach: 

VPD ≈ VPDmin,daytime (6) 

Substitute Eq. (6) into Eq. (5), resulting in a novel formula that es-
tablishes the minimum value of D0 in Eq. (5) as stated below: 

D0 = 1.0 − VPDmin,daytime,D0 ≥ 0 (7)  

where the monthly mean value of daytime minimum VPD can be set as 
the VPDmin,daytime threshold. When VPDmin,daytime is greater than or 
equal to 1.0 kPa, the D0 is zero. According to the convention of the FAO, 
day length is the time duration of light intensity greater than approxi-
mately 30 W m− 2 (i.e., PAR = 60 μmol m− 2 s− 1). The VPDmin,daytime is 
the minimum VPD observed during the day length. 

Based on the inference results, we have proposed revised versions of 
the USO series models, namely the USOD0 model (Eq. (8)) and the 
USO2024 model (Eq. (9)). These updated models effectively address the 
unbounded gsw problem that arises at low VPD, considering variations in 
local VPDmin during daytime for accurate D0 determination. The revised 
models are described below: 

gsw = g0 + 1.6
(

1.0+
a1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
VPD + D0

√

)
An

Cs
(8)  

gsw = g0 + 1.6
a1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
VPD + D0

√
A2

g

Cs
(9)  

where Eqs. (8) and (2) are mathematically equivalent, and Eq. (9) is 
mathematically equivalent to Eq. (3) when D0 is zero. It should be noted 
that the D0 in Eq. (9) is distinct from the one used in the BBL model, 
which relies on the subjective experience of researchers (Medlyn et al., 
2005; Li et al., 2011). 

2.3. Descriptions of the leaf photosynthesis-RF inference tool 

Solving the unbounded gsw problem using Eqs. (8) and (9) may 
improve the predictive performance of the USO series models. However, 
there are still research gaps concerning the response trajectory of gsw to 
a full range of VPD. In this study, we developed a new photosynthesis- 
gsw coupled model, replacing the USO series models with a random 
forest algorithm known as the photosynthesis-RF inference tool (shown 
in the right-hand panel in Fig. 1). To simplify, we referred to the 
photosynthesis-RF inference tool as the coupled RF model. The coupled 
RF model has the advantage of being able to handle large datasets by 
utilizing a large number of decision trees and nonlinear regression 
trained on high-dimensional data. Another advantage is that there are 
no initial assumptions made about the relationships between gsw and 
VPD, as well as between gsw and PAR, during the training of the coupled 
RF model. The optimal configuration of the coupled RF model was 
achieved through the following four steps: (1) preparation of the 
training dataset, (2) determination of the number of decision trees 
(ntree) and the number of nodes (mtry) for optimal performance, (3) 
comparison of the RF predictive performance with other machine 
learning models, and (4) customization of predictor variables. Each step 
will be described in detail below.  

(1) The preparation of the training dataset: MLs require a training 
dataset to establish clear associations between a suit of predictor 
variables and the target variable. In this study, six predictor 
variables, namely An, Ca, VPD, Tleaf, relative humidity (RH), and 
PAR, that directly impact the variation in gsw were equally 
applied. The dataset was used without dividing it into training 
and testing datasets because a larger size of the dataset, the 
higher the predictive performance would be (Liu et al., 2021; 
Jiang et al., 2022).  

(2) The RF algorithm requires the configuration of two parameters: 
the number of decision trees (ntree) and the number of nodes 
(mtry). In the "randomForest" package of the R language, the 
default setting are ntree = 500 and mtry = the number of input 
variables divided by 3 (Houborg and McCabe, 2018; Hirigoyen 
et al., 2022).  

(3) The RF algorithm, using the six predictor variables, accounted for 
94.5 % of the variations observed in diurnal gsw. Furthermore, 
when compared to two commonly used MLs, namely the deep 
neural network (DNN) and the partial least squares regression 
(PLSR), the RF algorithm demonstrated superior predictive ac-
curacy (see note S2).  

(4) Customization of predictor variables: A higher generalization 
level is expected with an increasing number of observable con-
ditions being reflected in the training dataset (Jeong et al., 2016; 
Houborg and McCabe, 2018). Effective training data should 
encompass the gsw response across a diverse range of environ-
mental conditions, incorporating both present-day and projected 
climate scenarios, in order to achieve a more representative 
synthetic response of gsw to predictors. In diurnal gas exchange 
measurements, the available range of CO2 concentration is 
limited to 400–450 ppm, resulting in an absence of training data 
for CO2 enrichments exceeding 500 ppm. An can be empirically 
expressed as gsw times the concentration gradient of CO2 between 
ambient and intercellular airspaces, in accordance with Fick’s 
law: 

An =
gsw

1.6
(Ca − Ci) or, gsw =

1.6An

Ca(1 − Ci/Ca)
(10)   

The Eq. (10) presents a clear relationship between changes in Ca and 
their impact on gsw, expressed as the ratio of An to Ca (An/Ca). Consistent 
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with the USO and BBL models that utilize the An/Ca ratio as a means to 
characterize the combined effect of CO2 on gsw, the An and Ca variables 
in the training dataset were substituted with the An/Ca variable. 

2.4. Study site and plant material 

Field experiments were conducted in the tropical rainforest ecosys-
tems at the Xishuangbanna Tropical Botanical Garden of the Chinese 
Academy of Sciences (XTBG), situated at the northern edge of the Asian 
tropical zone (21◦41′N, 101◦25′E, 580 m a.s.l.). XTBG experiences a 
typical monsoon climate, with an average annual temperature of 21.8 
◦C, and annual maximum and minimum temperatures of 33◦C and 11◦C, 
respectively (Cao et al., 2006). The region exhibits distinct dry and wet 
seasons, with approximately 87 % of the annual rainfall occurring from 
May to October, and the remaining precipitation falling from November 
to April during the dry season. Heavy radiation fog is common during 
the morning hours of the dry season, with an average of 116 foggy days 
per year (Liu et al., 2004). The average monthly RH is 87 %. In the dry 
seasons, there is a daytime temperature difference of approximately 
15–20◦C (see note S3). 

In March 2021, we conducted measurements on the canopy tops of 
mature leaves from five dominant tree species at XTBG. We utilized a 
portable gas-exchange and chlorophyll fluorescence system (GFS-3000 
and PAM Fluorometer 3050-F, Heinz Walz GmbH, Effeltrich, Germany) 
to gather data (Table 1). Following that, in January 2023, we conducted 
measurements on four species, including one additional species not 
included in the 2021 experiment (Table 1). To ensure accessibility to the 
upper canopy leaves, all measurements were taken on young trees using 
a 2-meter tall tripod. Tree species from different families were deliber-
ately chosen to enhance the diversity of leaf material, considering their 
morphological and photosynthetic traits. Specifically, we focused solely 
on sunlit mature leaves in the upper canopy, aiming to minimize the 
influence of leaf phenology and canopy environments on variations in 
field-measured gsw. 

2.5. Measurements of leaf CO2 response curve and diurnal gas exchange 

The photosynthesis-CO2 response curves (An/Ci, where Ci represents 
the intercellular CO2 concentration) were collected under high irradi-
ance conditions (PAR = 1600 μmol m–2 s–1) and different leaf temper-
atures. Two to three leaves were placed into a leaf chamber without 
shading each other and acclimated for 30 minutes at a CO2 concentra-
tion of 400 ppm, high irradiance, and RH of approximately 60 %. The 
CO2 concentration inside the leaf chamber was then manipulated to 
create a declining gradient, ranging from 1600, 1200, 1000, 800, 600, 
400, 200, 100, to 50 ppm. Data were recorded once equilibration was 
reached at each CO2 concentration. Simultaneously, chlorophyll fluo-
rescence data were recorded alongside the An/Ci curve (Xue et al., 2016; 
2022). At least three replications of the An/Ci curve were obtained for 
each measuring leaf temperature, which ranged from 15 to 30/40 ◦C 
(Table 1). After completing the An/Ci curve, dark respiration rates were 
recorded at CO2 = 400 ppm and PAR = 0 μmol m–2 s–1. Unfortunately, 

measurements of leaf gas exchange across a range of VPD values could 
not be made due to alarms occurring during normal operation of the 
GFS-300 system caused by condensation inside the instrument. 

Diurnal gas exchange measurements were conducted on sunlit and 
fully-expanded leaves that were adjacent to the leaves used for An/Ci 
measurements. Measurements of diurnal gas exchange in the sampled 
leaves commenced on the day following the completion of An/Ci mea-
surements. A user-defined program was used to command the GFS-3000 
system to track ambient PAR and air conditions at one or three-minute 
intervals. Data recording took place from the early morning until the 
late afternoon. After enclosing the sampled leaves, a thin layer of 
vaseline was applied to seal the gasket periphery of the leaf chamber and 
prevent air leakage. The user-defined program executed automatic cal-
ibrations every 15 minutes, following the measurement protocols 
established in our previous studies on crops, temperate trees, and 
tropical trees (Xue et al., 2022). 

2.6. Parameter settings of the Farquhar photosynthesis model 

The Vcmax and Jmax values were estimated simultaneously from An/Ci 
curve data using a Bayesian inversion algorithm (Xue et al., 2022). The 
variable J method, developed by Harley and Tenhunen (1991), which 
assimilates chlorophyll fluorescence-gas exchange data, along with its 
derivative that estimates linear electron transport rate (Jp, Equations 
S8–S11 in note S1) (Xue et al., 2016), was utilized to estimate gm. The 
estimated parameters at each leaf temperature were fit by a peaked 
Arrhenius function (Equation S6 in note S1) to determine the activation 
energy (ΔHa) and entropy of inactivation (ΔS) values for the respective 
variable. The values of Vcmax, Jmax, and gm at a standard leaf temperature 
of 25◦C as well as their corresponding ΔHa and ΔS values in the sampled 
tree species can be found in Table S2. 

The diurnal courses of leaf gsw were predicted using two different 
models: the photosynthesis-gsw coupled model and the uncoupled sto-
matal conductance models. In the photosynthesis-gsw coupled model, 
the unknown An parameter was estimated based on the Vcmax, Jmax, and 
gm values of the tree species being predicted. On the other hand, the 
uncoupled stomatal conductance models used the measuring An 
accessed from the portable gas exchange system as the An parameter. 

2.7. Parameter settings of leaf stomatal conductance models 

A diurnal gas exchange survey recorded approximately 400 data 
points per day for each tree species. We gathered diurnal gas exchange 
data across all sampled tree species in 2021 and 2023 to estimate the 
slope parameter (a1) and the residue parameter (g0) of stomatal 
conductance models, as detailed in Table S3. This approach to param-
eter setting scheme was designated as the non-independent parameter-
ization scheme. Incorporating diurnal gsw values of the target species 
into parameter estimations of stomatal conductance models may lead to 
an overstated predictability in estimating diurnal gsw values specifically 
for that species. Consequently, we performed independent estimations 
of the a1 and g0 parameters by compiling diurnal gas exchange data from 

Table 1 
Monthly frequency of the An/Ci curve measurement at the XTBG 2021 and 2023 dry seasons. Entries in cells represent the number of duplicates in measurement of An/ 
Ci curve. Tleaf: leaf temperature; CTFS: Center for Tropical Forest Science; XTBG: Xishuangbanna Tropical Botany Garden. NA: not available.  

Year Tree species CTFS code Foliage Tleaf for An/Ci curve (◦C) January March 

XTBG 2021 Syzygium polypetaloideum Syzypo Evergreen 15–40 NA 6 
Ormosia henryi Ormohe Evergreen 15–40 NA 6 
Elaeocarpus hainanensis Elaeha Evergreen 15–40 NA 6 
Ficus tinctoria Ficuti Evergreen 15–40 NA 6 
Tabebuia heterophylla Tabehe Evergreen 15–40 NA 6 

2023 Elaeocarpus hainanensis Elaeha Evergreen 15–30 4 NA  
Senna siamea Sennsi Evergreen 15–30 4 NA  
Syzygium polypetaloideum Syzypo Evergreen 15–30 4 NA  
Ficus tinctoria Ficuti Evergreen 15–30 4 NA  
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all species, excluding the species being predicted, as detailed in 
Table S4. The parameter setting approach excluding the target species 
was designated as the independent parameterization scheme. 

2.8. Parameter settings of a two-leaf one-layer canopy photosynthesis 
model 

To assess the representation of the USO series models at the forest 
canopy level, it is necessary to upscale the leaf stomatal conductance 
models to predict canopy stomatal conductance (Gsw), transpiration rate 
(Trcanopy), and gross primary productivity (GPPcanopy), and compare 

them with field observations. Considering the similarity between the 
responses of Trcanopy and GPPcanopy to VPD in a one-layer canopy 
photosynthesis model (PIXCAN) (Xue et al., 2017) and a multi-layer 
canopy photosynthesis model (Wang and Leuning, 1998), the PIXCAN 
model was utilized in this study. The PIXCAN model consists of one layer 
with two types of leaves: sunlit leaves and shaded leaves. The leaf area 
index (LAI) is divided into sunlit leaf area and shaded leaf area based on 
an effective radiation transfer model evaluated by Xue et al. (2016). The 
PIXCAN model is an extension of previous studies by Harley and Ten-
hunen (1991), Wang and Leuning (1998), Wang et al. (2003), and Owen 
et al. (2007). For detailed information on the model structure, please 

Fig. 2. Comparisons in diurnal leaf stomatal conductance (gsw) of XTBG tropical trees between observations and predictions by the coupled random forest (RF), 
unified stomata optimization (USO), Ball–Berry–Leuning (BBL), and USO2022 stomatal conductance models (a-k). Parameter settings of stomatal conductance 
models (the slope parameter a1 and g0 values) were obtained using the non-independent parameterization scheme (Table S3). Input variables of the coupled stomatal 
conductance models were the estimated An by the Farquhar photosynthesis model, measuring VPD and atmospheric CO2 concentration accessed from the portable 
gas exchange system. The number appending tree species represents the year, month, and day when conducting diurnal gas exchange measurements. The dashed 
lines demarcated the time periods of the presence of the low VPD when the USO model overestimated gsw (P1). Obs.: observations; An: net assimilation rate (μmol 
m− 2 s− 1); VPD: leaf-to-air water vapor pressure deficit (kPa); PAR: photosynthetically active radiation (μmol m− 2 s− 1). XTBG: the Xishuangbanna Tropical Bot-
any Garden. 
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refer to those studies. A major improvement in the PIXCAN model is the 
explicit expression of mesophyll conductance in the Farquhar photo-
synthesis model (Xue et al., 2017; 2022). Leaf parameters required in the 
PIXCAN model were obtained from subsections 2.6 and 2.7. Major 
canopy parameters, such as LAI and leaf inclination angle, were ob-
tained from the study of Jin et al. (2022) and the dataset file deposited in 
the Asiaflux Database (http://asiaflux.net/), which provides eddy 
covariance measurements of latent heat flux in the XTBG site in 2003. 
The calculation procedures for canopy photosynthesis and transpiration 
as well as PIXCAN model validation are shown in note S4. 

2.9. Evaluation of predictive accuracy 

The goodness-of-fit of leaf gsw was assessed by comparing the RMSE, 
R2, and Nash-Sutcliffe efficiency coefficient (NSE) among BBL, USO, 
USO2022 and USO2024 models. The NSE values varied from negative 
infinity to 1. An NSE value closer to 1 indicates that the model is of good 
quality and high reliability, whereas an NSE value closer to 0 indicates 
that the simulation result is close to the average level of observations 
and that the model is credible but with numerous simulation errors. To 
separate influences of low VPD from irradiance on gsw, we chose the 
RMSE of the uncoupled USO2022 model as a reference point to measure 
the errors in gsw estimation resulting from the assumption of a linear 
relationship between gsw and An in the USO model. Similarly, we used 
the RMSE of the uncoupled USO2024 model as a benchmark to assess 
the errors in gsw estimation caused by the issue of unbounded gsw in the 
USO2022 model. 

3. Results 

3.1. Performance of the coupled stomatal conductance models in 
predictions of leaf gsw 

The diurnal gsw predictions generated by the coupled BBL, USO, 
USO2022 models, along with the a1 and g0 values, and the RF model 
determined by the non-independent parameterization scheme, are pre-
sented in Fig. 2. The diurnal gsw of the Tabehe in April 2021 was 
captured by the coupled RF model, except for the late afternoon period 
(Fig. 2a). In addition to the late afternoon period, the coupled USO and 
BBL models consistently overestimated gsw in the morning under con-
ditions of low VPD (< 0.6 kPa) and low irradiance (< 500 μmol m–2 s–1). 
The section on the left side of the dashed line represents the time period 
in which gsw was overestimated (referred to as P1), while the rest of the 
daytime is referred to as P2. The P1 time period accounted for the ma-
jority of the morning (Fig. 2a–k). The P1 symbols indicate that the 
coupled USO and BBL models consistently overestimated gsw in the 
morning across almost all sampled trees (Fig. 2a–g and i–k). However, 
an exception was observed in Ficuti on January 26, where no gsw 

overestimations by the USO and BBL models were detected in the 
morning when PAR was less than 200 μmol m–2 s–1) (Fig. 2h). 

The coupled USO2022 model resulted in a significant overestimation 
of gsw in the morning at three trees: Elaeha, Syzypo, and Sennsi (Fig. 2c, 
f, and g). The RMSE of the coupled RF model, based on the gsw values for 
the entire daytime (RMSEP1+P2), was 11.5 % lower than the other three 
coupled models with similar RMSEP1+P2 values (RMSEP1+P2 = 29.01 
mmol m–2 s–1) (Table 2). The coupled RF model improved the NSEP1+P2 
by 14.5 %. The RMSE of gsw values obtained from the P1 block (RMSEP1) 
was 16.92 mmol m–2 s–1 for the coupled RF model, which was 74.2 % 
higher than that of the coupled USO2022 model and 123.6 % higher 
than that of the coupled USO and BBL models. The coupled USO, BBL, 
and USO2022 models exhibited negative NSEP1 values below -1.0, while 
the coupled RF model had a positive NSEP1 value of 0.52. However, the 
RMSE of gsw values obtained from the P2 block (RMSEP2) and the cor-
responding NSEP2 values were similar among all four coupled models. 

Fig. S4 displays the diurnal predictions of gsw made by the coupled 
stomatal conductance models, which were parameterized utilizing the 
independent parameterization scheme. Consistent with the outcomes of 
the non-independent parameterization scheme, the coupled BBL, USO, 
and USO2022 models persistently overestimated gsw under conditions of 
low VPD and irradiance. The RMSEP1 values of the coupled USO, BBL, 
and USO2022 models displayed a noteworthy difference from the cor-
responding RMSEP2 values, as indicated in Table 2. Across all three 
models, NSEP1 exhibited a departure from zero towards increasingly 
negative levels. 

3.2. Performance of the uncoupled stomatal conductance models in 
predictions of leaf gsw 

Fig. 3 displays predictions of diurnal gsw by the uncoupled stomatal 
conductance models under the non-independent parameterization 
scheme. The uncoupled RF model captured changes in diurnal gsw in 
sampled trees with a high R2 = 0.96 (Table 3). Fig. 3a, d, and e show that 
the other three uncoupled models adequately captured changes in 
diurnal gsw in Tabehe, Syzypo, and Ormohe in 2021. Fig. 3b, c, f, g, j, and 
k indicate that the uncoupled USO model substantially overestimated 
gsw values in Elaeha in 2021, Syzypo, Sennsi, Ficuti, and Elaeha in 2023, 
in low VPD and irradiance conditions. In Elaeha, Syzypo, and Sennsi, gsw 
predictions by the uncoupled USO2022 model fell between the pre-
dictions of the uncoupled RF and USO models (Fig. 3c, f, g, j, and k). 
Figs. 3 and S5 demonstrate that the uncoupled USO and USO2022 
models, driven by the independent parameterization scheme, continued 
to excessively overestimate gsw in the morning under low VPD and 
irradiance conditions in the same trees. Table 3 confirms that the issue of 
gsw overestimations in the morning is supported by higher RMSEP1 and 
lower NSEP1 values compared to those of the P2 block. 

The average RMSEP1+P2 for the four uncoupled stomatal 

Table 2 
Comparisons in predictive accuracy of four coupled stomatal conductance models. D0 = 2.0 kPa was default setting in the BBL model. Input variables of the coupled 
stomatal conductance models were the estimated An by the Farquhar photosynthesis model, measuring VPD and atmospheric CO2 concentration accessed from 
portable gas exchange systems. The right-hand block demarcated by the dashed line in subplots of Fig. 2 was denoted as P1, and the other block denoted as P2. RF: 
random forest algorithm; USO: the unified stomata optimization stomatal conductance model; BBL: the Ball–Berry–Leuning stomatal conductance model; USO2022: a 
revised USO model proposed by Lamour et al. (2022); RMSE: root mean square error; NSE: Nash-Sutcliffe efficiency coefficient; R2: coefficient of determination.  

Stomatal conductance models R2 RMSE NSE Parameterization scheme 

P1+P2 P1 P2 P1+P2 P1 P2 P1+P2 P1 P2 

Coupled BBL 0.64 0.31 0.77 28.87 37.99 25.37 0.63 -1.40 0.75 The non-independent parameterization scheme (Table S3) 
Coupled USO 0.61 0.26 0.77 29.62 37.85 26.45 0.61 -1.39 0.73 
Coupled USO2022 0.64 0.27 0.73 28.56 29.48 27.82 0.64 -0.45 0.71 
Coupled RF 0.72 0.54 0.73 25.66 16.92 27.13 0.71 0.52 0.72  

Coupled BBL 0.61 0.19 0.75 30.65 32.51 30.18 0.58 -0.70 0.65 The independent parameterization scheme (Table S4) 
Coupled USO 0.54 0.23 0.71 32.05 39.67 29.92 0.54 -1.53 0.66 
Coupled USO2022 0.56 0.18 0.64 31.49 32.30 31.27 0.56 -0.68 0.63 
Coupled RF 0.38 0.07 0.42 37.66 27.67 39.67 0.37 -0.23 0.40  
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conductance models, which were subjected to the non-independent 
parameterization scheme, was 18.17 mmol m–2 s–1 (Table 3). This 
value was 35.5 % lower compared to the coupled stomatal conductance 
models. Similarly, the average RMSEP1+P2 for the uncoupled models, 
subject to the independent parameterization scheme, was reduced by 
23.6 %. These findings indicate that uncertainties in estimating photo-
synthesis in the Farquhar model, such as the temperature response of 
photosynthesis and parameter settings, have a significant impact on the 
predictive accuracy of stomatal conductance models. However, the 
overestimation of gsw observed in the USO series models under low VPD 
and irradiance conditions was not related to these uncertainties. 

3.3. Predictor-response relationships between leaf gsw and predictor 
variables 

Predictor-response curves provide crucial insight into the physio-
logical mechanisms underlying the issue of gsw overestimation at low 
VPD and irradiance levels. The gsw-PAR relationships derived from the 
coupled BBL and USO models exhibited a rapid increase in gsw with 
rising PAR from zero, reaching saturation at relatively low PAR values 
(approximately 300 μmol m–2 s–1, Fig. 4a). The predicted gsw values 
within the PAR range of 100–300 μmol m–2 s–1 were 11 % and 21 % 
lower in the coupled USO2022 model compared to the coupled BBL and 
USO models, respectively (Fig. 4a). The RF-predicted gsw values within 
the PAR ranges of 100–600 μmol m–2 s–1 were 19 % and 29 % lower 
compared to the coupled BBL and USO models, respectively. The gsw 

Fig. 3. Comparisons in diurnal leaf stomatal conductance (gsw) of XTBG tropical trees between observations and predictions by the uncoupled random forest (RF), 
unified stomata optimization (USO), Ball–Berry–Leuning (BBL), and USO2022 stomatal conductance models (a-k). Parameter settings of stomatal conductance 
models (the slope parameter a1 and g0 values) were obtained using the non-independent parameterization scheme (Table S3). Input variables of the uncoupled 
stomatal conductance models were measuring An, VPD, and CO2 concentration accessed from the portable gas exchange system. The number appending tree species 
represents the year, month, and day when conducting diurnal gas exchange measurements. The dashed lines demarcated time periods when the USO model 
overestimated gsw. Obs.: observations; VPD: leaf-to-air water vapor pressure deficit (kPa); PAR: photosynthetically active radiation (μmol m− 2 s− 1). XTBG: the 
Xishuangbanna Tropical Botany Garden; An: net assimilation rate (μmol m− 2 s− 1). 
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predictions at low PAR values made by the coupled USO2022 model fell 
between the predictions of the coupled USO and RF models. The gsw 
values at PAR = 0 μmol m–2 s–1 were similar in the coupled RF and 
USO2022 models (30 mmol m–2 s–1), whereas it approached zero in the 
coupled USO model. 

The responses of gsw to VPD were represented by hyperbolic decay 
models with varying rates within the coupled BBL and USO series 
models (Fig. 4b). The gsw values predicted by the coupled USO, 
USO2022, and BBL models at a VPD of 0.5 kPa were 178, 192, and 151 
mmol m–2 s–1, respectively, and decreased to 120 mmol m–2 s–1 as the 
VPD doubled. In contrast to the coupled USO series models, the gsw 
values predicted by the coupled RF model initially increased and 

reached a peak of 180 mmol m–2 s–1 at a VPD of 0.6 kPa, after which it 
rapidly declined (Fig. 4b). The relationship between gsw and VPD under 
a PAR of 300 μmol m–2 s–1 was consistent in the coupled RF model, while 
it still followed an exponential decay trajectory in the coupled USO se-
ries models (Fig. 4c). In Fig. 4c, the gsw values of the USO series models 
at a VPD of 0.5 kPa were approximately 130 mmol m–2 s–1, which were 
33 % higher than those of the coupled RF model. 

The response trajectory and absolute An values of the coupled BBL, 
USO, and USO2022 models (Fig. 4d) were highly analogous in terms of 
An-PAR relationships, exhibiting relatively higher An values at the range 
of 300–600 μmol m–2 s–1 by 8 % compared to the coupled RF model. The 
coupled RF model illustrated an An-VPD relationship that demonstrated 

Table 3 
Predictive accuracy of the uncoupled BBL, USO, USO2022, and RF stomatal conductance models. Input variables of the uncoupled stomatal conductance models were 
measuring An, VPD, and CO2 concentration accessed from portable gas exchange systems. The right-hand block demarcated by the dashed line in subplots of Fig. 3 was 
denoted as P1, and the other block denoted as P2. USO: unified stomata optimization stomatal conductance model; RF: random forest; USO2022: a revised USO model 
proposed by Lamour et al. (2022); USO2024: a derivative of the USO2022 model (Eq. (9)); XTBG: the Xishuangbanna Tropical Botany Garden; RMSE: root mean square 
error; NSE: Nash-Sutcliffe efficiency coefficient; R2: coefficient of determination.  

Stomatal conductance models R2 RMSE NSE Parameterization scheme 

P1+P2 P1 P2 P1+P2 P1 P2 P1+P2 P1 P2 

Uncoupled BBL 0.78 0.30 0.89 22.44 35.43 17.99 0.78 -1.02 0.87 The non-independent parameterization scheme (Table S3) 
Uncoupled USO 0.77 0.28 0.90 22.80 38.41 17.07 0.77 -1.37 0.88 
Uncoupled USO2022 0.82 0.30 0.89 20.46 28.86 17.87 0.81 -0.34 0.87 
Uncoupled RF 0.98 0.77 0.99 7.0 12.44 4.87 0.98 0.75 0.99  

Uncoupled BBL 0.76 0.29 0.88 23.12 35.68 18.92 0.76 -1.05 0.86 The independent parameterization scheme (Table S4) 
Uncoupled USO 0.72 0.26 0.85 25.43 35.23 22.46 0.71 -1.0 0.81 
Uncoupled USO2022 0.78 0.29 0.84 22.47 32.11 19.49 0.77 -0.66 0.85 
Uncoupled RF 0.69 0.2 0.74 26.82 26.53 26.87 0.68 -0.13 0.73 
Uncoupled USO2024 0.81 0.29 0.87 20.9 27.10 19.16 0.81 -0.18 0.86   

Fig. 4. Synthetic responses of leaf stomatal conductance (gsw, a,b,c) and net assimilation rate (An, d,e,f) of XTBG tropical trees to two predictor variables (photo-
synthetically active radiation-PAR and leaf-to-air vapor pressure deficit-VPD). Synthetic responses of gsw were generated using the coupled stomatal conductance 
models with the target predictor variable being changed and other predictor variables held constant. Parameters employed to drive the coupled models included PAR 
= 1600 and 300 μmol m–2 s–1, Tleaf = 25 ◦C, CO2 = 400 ppm, VPD = 0.5 kPa, Vcmax = 71.78 μmol m–2 s–1, Jmax = 92.15 μmol m–2 s–1, and gm = 0.08 mol m–2 s–1. 
Temperature response parameters (ΔHa and ΔS) for Vcmax, Jmax, gm please referred to Table S2. The slope parameter a1 and g0 values referred to Table S3. Vcmax: the 
maximum carboxylation rate; Jmax: the maximum electron transport rate; gm: mesophyll conductance; ΔHa: activation energy; ΔS: entropy of inactivation; XTBG: the 
Xishuangbanna Tropical Botany Garden. 
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an increase in An at low VPD levels, reaching a peak around 0.5 kPa, and 
subsequently decreasing (Fig. 4e). Conversely, the coupled USO series 
models portrayed an exponential decline in An values throughout the 
entire VPD axis domain. Under low irradiance conditions (PAR = 300 
μmol m–2 s–1), the coupled RF model displayed An values that were 30 % 
lower than the coupled USO series models at VPD < 0.5 kPa (Fig. 4f). 

The gsw-An relationships subject to low and high VPD conditions are 
depicted in Fig. 5. In the results obtained from the coupled BBL, USO, 
and USOD0 models, gsw showed a remarkable linear increase with An 
under both low and high VPD conditions (Fig. 5a and b). However, the 
gsw-An relationship became non-linear in the coupled RF model, exhib-
iting minimal changes in gsw at a PAR value of 200 μmol m–2 s–1 when 
VPD was set at 0.5 kPa (Fig. 5a), and approximately 120 μmol m–2 s–1 

when VPD was set at 2.0 kPa (Fig. 5b). The non-linear characteristic was 
evident in the coupled USO2022 and USO2024 models, which displayed 
similar values to the coupled RF model for PAR values greater than the 
transition point where nonlinearity appeared. Under both low and high 
VPD conditions, the residual gsw values of leaves in the dark approached 
zero in the coupled USO and USOD0 models, whereas it was approxi-
mately 20 mmol m–2 s–1 in the coupled USO2022 and USO2024 models. 

The ratio of intercellular and ambient CO2 concentrations (Ci/Ca) 
tends to be higher under low irradiance (< 300 μmol m–2 s–1), but it 
remains lower and constant under high irradiance conditions (Fig. 6a). 
On the other hand, the USO model predicts a constant value for Ci/Ca at 
different levels of irradiance (Fig. 6b). The RF, USO2022, and USO2024 
models exhibit similar nonlinear correlations between Ci/Ca and PAR, 
which align with the observations made in the field (Fig. 6b). 

The results from the independent parameterization scheme showed 
that the RMSEP1 values for the uncoupled USO model and the uncoupled 
USO2022 model were 35.23 mmol m–2 s–1 and 32.11 mmol m–2 s–1, 
respectively (Table 3). The USO model overestimated the amplitude of 
gsw by 9.7 % due to its assumption of a linear gsw-An relationship. 

3.4. Performance of the USO2024 model in predictions of leaf gsw and 
canopy Gsw 

The monthly VPDmin,daytime in January and March was estimated to 
be 0.4 kPa (Figs. 2 and S3c). Consequently, the D0 value was determined 
to be 0.6 kPa based on Eq. (7). The USO model has a strong mathe-
matical similarity with the BBL model and a solid theoretical back-
ground. In terms of the gsw-An relationship (Fig. 5), the USOD0 model did 
not differ significantly from the USO model. (Fig. 5). Therefore, the 
following paragraph presents evaluations exclusively for the USO2022 

and USO2024 models. 
The gsw tended to approach infinity at VPD values below 0.5 kPa in 

the coupled USO2022 model, while it was bounded in the coupled 
USO2024 model (Fig. 7a). It is important to note that the gsw values in 
the coupled USO2024 model were highly similar to those of the coupled 
USO2022 model for VPD values above 1.0 kPa, with a difference of less 
than 8 %. As evidenced by the diurnal gsw in Elaeha trees, the USO2024 
model outperformed the USO2022 model in predicting diurnal gsw at 
low VPD values below 0.5 kPa (Fig. 7b). In the results of the independent 
parameterization scheme (Table 3), the RMSEP1 of the uncoupled 
USO2024 model was found to be 27.10 mmol m–2 s–1. Additionally, the 
NSEP1 of the uncoupled USO2024 model showed improvement to a 
higher level of 0.81, surpassing the benchmark value of 0.77 in the 
uncoupled USO2022model. The RMSEP2 of the uncoupled USO2024 
model was highly similar to that of the uncoupled USO2022 model. It is 
evident that the USO2022 model overestimated gsw in the morning by 
18.5 % due to the issue of unbounded gsw. 

Results comparing Trcanopy observations and predictions indicated 
similar predictive accuracy among the coupled BBL, USO, USO2022, and 
USO2024 stomatal conductance models (see note S4). At the canopy 
level, the Gsw-PAR response curves of the coupled BBL and USO models 
exhibited steeper increments at low irradiance compared to the coupled 
USO2022 and USO2024 models (Fig. 8a). The residual Gsw was minimal 
and close to zero in the coupled BBL and USO models, while it was 
higher in the revised USO models. In contrast to the leaf gsw-VPD 
response curves, canopy Gsw increased with VPD and declined after 
reaching a peak at VPD levels of 1.0-1.5 kPa in all four stomatal 
conductance models (Fig. 8b). For high VPD, the USO2024-predicted 
Gsw was positioned between the predictions of the USO and USO2022 
models. A linear relationship between Trcanopy and VPD was observed in 
all four models, with similar Trcanopy values predicted at low VPD 
(Fig. 8c). At higher VPD levels, the USO2024-predicted Trcanopy ranged 
between the results of the USO2022 and USO models. The GPPcanopy- 
PAR curves were fully overlapped among the four models (Fig. 8d). As 
VPD intensity increased, GPPcanopy decreased almost linearly (Fig. 8e), 
with stronger sensitivity observed in the USO2022 models (Fig. 8f). 
GPPcanopy was not sensitive to low VPD levels in the BBL and USO2024 
models, but started to decline when VPD exceeded 1.0 kPa (Fig. 8f). 

4. Discussions 

In this research, the overall prediction accuracy (RMSE) of the 
USO2024, USO2022, and USO models was 20.9 mmol m–2 s–1, 22.47 

Fig. 5. Relationships between leaf stomatal conductance (gsw) and net assimilation rate (An) in trees subject to low and high VPD values (0.5 and 2.0 kPa, a and b). 
The arrows indicated values of PAR at which the nonlinearity of the gsw-An relationship was present. Parameters employed to drive the coupled models included a 
gradient level of PAR from 0 to 1600 μmol m–2 s–1, Tleaf = 25 ◦C, CO2 = 400 ppm, Vcmax = 71.78 μmol m–2 s–1, Jmax = 92.15 μmol m–2 s–1, gm = 0.08 mol m–2 s–1. 
Temperature response parameters (ΔHa and ΔS) for Vcmax, Jmax, gm please referred to Table S2. The slope parameter a1 and g0 values referred to Table S3. PAR: 
photosynthetically active radiation; RF: random forest; BBL: Ball–Berry–Leuning model; USO: unified stomata optimization stomatal conductance model; USO2022: a 
revised USO model proposed by Lamour et al. (2022); USOD0 and USO2024: revised versions of the USO series model (Eqs. (8) and (9)). 
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mmol m–2 s–1, and 25.43 mmol m–2 s–1, respectively (Table 3). The USO 
series models were ranked based on their RMSE values for diurnal gsw, 
with the order being USO2024 > USO2022 > USO. The USO2022 model 
performed better than the USO model due to its consideration of the 
non-linear relationship between gsw and An at low values of PAR. The 
performance of the USO2024 model was further improved by expressing 
the bounded gsw at low VPD. The physiological mechanisms underlying 
the performance of these models will be discussed in the following 
paragraphs. 

The USO model significantly overestimated gsw predictions at low 
levels of VPD and PAR throughout the morning (Fig. 2). Uncertainties 
stemming from temperature dependencies of photosynthetic parameters 
(Vcmax, Jmax, etc.) and gm can introduce errors in diurnal gsw predictions 
(Zhang et al., 2017; Xue et al., 2022). Significantly, our findings indi-
cated that the issue of gsw overestimation did not stem from un-
certainties in parameter estimations of the Farquhar photosynthesis 
model. Instead, it suggested that inherent flaws in the USO model led to 
exaggerated gsw values under low VPD and PAR conditions. Given the 
regressor and response factor in the USO model, it is necessary to 
examine the relationships between gsw-An and elucidate the response 
characteristics of these two variables to PAR and VPD. Our observations 
revealed a non-linear relationship between gsw and An at low irradiance, 
with gsw showing insensitivity to increases in An. The specific irradiance 

at which this nonlinearity emerged partly depended on VPD. Prior 
studies have documented a non-linear relationship between gsw and An 
under low irradiance conditions (Ball, 1988; Barnard and Bauerle, 
2013). An exhibited a linear increase with rising PAR, starting from zero 
and reaching saturation at a relatively low PAR of 300 μmol m–2 s–1. The 
assumption of a linear correlation between gsw and An in the USO model 
led to gsw increasing linearly with both An and PAR. Consequently, this 
resulted in substantial overestimations of diurnal gsw at low PAR values. 
According to Lamour et al. (2022), the nonlinearity may be attributed to 
either the suboptimal response of leaves with positive conductance in 
the absence of light or the shift in biochemical limitation on photosyn-
thesis from RuBP regeneration to Rubisco carboxylation. The structural 
elements of Eq. (10) suggest that the nonlinear relationship between 
gsw-An could be a result of significant fluctuations in Ci/Ca. Our findings 
confirmed that the inverse relationship between Ci/Ca and irradiance 
contributed to the non-linear nature of the gsw-An relationship. Plants 
subjected to low photon flux densities exhibited elevated Ci/Ca levels 
(Ehleringer et al., 1986; Lamour et al., 2023), while Ci/Ca remained 
consistently lower at high irradiance, aligning with previous studies on 
unstressed plants (Wong et al., 1978; Farquhar and Wong, 1984; Dewar 
et al., 2018) that above an irradiance of around 250 μmol m− 2 s− 1, Ci/Ca 
tended to be unaffected by changes in irradiance. 

There were similarities in the response patterns of Ci/Ca to PAR 

Fig. 6. Relationships between the ratio of leaf intercellular CO2 concentration to ambient CO2 concentration (Ci/Ca) and photosynthetically active radiation (PAR). 
Data applied in subplot (a) were obtained from diurnal measurements of the portable photosynthesis device with the mean value of VPD = 1.3 kPa. Ci/Ca values 
shown in subplot b were predictions by the coupled stomatal conductance models using Eq. (10). Parameters employed to drive the coupled stomatal conductance 
models included VPD = 0.5 kPa, Tleaf = 25 ◦C, CO2 = 400 ppm, Vcmax = 71.78 μmol m–2 s–1, Jmax = 92.15 μmol m–2 s–1, gm = 0.08 mol m–2 s–1. Temperature response 
parameters (ΔHa and ΔS) for Vcmax, Jmax, gm please referred to Table S2. The slope parameter a1 and g0 values referred to Table S3. RF: random forest; USO2022: a 
revised USO model proposed by Lamour et al. (2022); USO2024: a revised version of the USO2022 model (Eq. (9)). 

Fig. 7. Comparisons in the gsw-VPD relationship between the coupled USO2022 and USO2024 models (a), and gsw predictions by the two models in Elaeha leaves in 
2021 (b). USOD0 and USO2024: revised versions of the USO2022 model (Equations 8 and 9); gsw: stomatal conductance; VPD: vapor pressure deficit; Obs.: 
observations. 
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between the field observations and predictions of the RF, USO2022, and 
USO2024 models (Fig. 6b). Large differences in absolute values of Ci/Ca 
were observed at given PAR. Ball and Berry (1982) reported a negative 
correlation between gsw/An and VPD. According to Eq. (10) and the 
study of Dewar et al. (2018), a decline of gsw/An with VPD implies a 
lower Ci/Ca at high VPD. The lower Ci/Ca values observed in field 
measurements compared to the predictions of stomatal conductance 
models could be explained by the higher VPD in the field measurements 
compared to the parameter settings of the stomatal conductance models. 

According to Slot et al. (2016), gsw in sunlit leaves of three tropical 
tree species from Panama exhibited steep increases at VPD levels below 
0.6 kPa, followed by a rapid decline. The gsw-VPD relationship observed 
in this study using the coupled RF model showed a similar pattern to the 
findings of Slot et al. These findings suggest that leaf gsw in tropical trees 
is not infinite at low VPD levels. Initially, when considering transpira-
tion (E) ≈ gsw * VPD, if VPD approaches zero, E also approaches zero. 
Therefore, the unbounded gsw at low VPD levels was not recognized as a 
concern (Medlyn et al., 2011; Lamour et al., 2022). They did not realize 

Fig. 8. Response patterns of canopy conductance (Gsw, a and b), transpiration rate (Trcanopy, c), and gross primary productivity (GPPcanopy, d and e) to PAR and VPD. 
Subplot (f) exhibits sensitivity of GPPcanopy to increasing VPD wherein the GPPcanopy value at each VPD was standardized using GPPcanopy of VPD = 1.0 kPa (i.e., 
GPPcanopy,VPD/GPPcanopy,1.0). Response patterns of Gsw, Trcanopy, and GPPcanopy were generated by using a two-leaf one-layer canopy model with the target predictor 
variable being changed and other predictor variables held constant. Key parameters employed to drive the canopy model included VPD = 1.0 kPa, Tair = 25 ◦C, CO2 =

400 ppm, PAR = 1500 μmol m–2 s–1, Vcmax = 72.0 μmol m–2 s–1, Jmax = 92.0 μmol m–2 s–1, gm = 0.08 mol m–2 s–1, LAI = 6.2 m2 m–2, leaf inclination angle = 10◦, and 
leaf width = 5.0 cm. Temperature response parameters (ΔHa and ΔS) for Vcmax, Jmax, gm please refer to Table S2. The slope parameter a1 and g0 values refer to 
Table S3. Vcmax: the maximum carboxylation rate; Jmax: the maximum electron transport rate; gm: mesophyll conductance; ΔHa: activation energy; ΔS: entropy of 
inactivation; LAI: leaf area index. 
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the significant overestimation of diurnal gsw at relatively low VPD levels 
in tropical rainforest trees, which occurs throughout the morning. The 
quotient values of the a1̅̅̅̅̅̅̅

VPD
√ term in the USO series models exponentially 

increase at a higher rate as VPD decreases from 1.0 to 0.4 kPa, leading to 
the issue of unbounded gsw. Modifying the a1̅̅̅̅̅̅̅

VPD
√ term to eliminate the 

occurrence of low VPD values in the denominator proved effective in 
limiting the unbounded quotient values at low VPD levels. Specifically, 
the addition of an empirical coefficient (D0) in the denominator resulted 
in a new expression: a1̅̅̅̅̅̅̅̅̅̅̅̅̅̅

VPD+D0
√ . The quotient values and derivatives of the 

a1̅̅̅̅̅̅̅̅̅̅̅̅̅̅
VPD+D0

√ with respect to VPD exhibit gradual changes at low rates along 
the VPD axis (Fig. 7a). The value of D0 was determined based on the 
monthly mean of the daytime minimum VPD, which adequately 
accounted for variations in environmental VPD perceived by plants. 
Moreover, the USO2024 model showed no decrease in prediction ac-
curacy when estimating gsw in high VPD conditions (> 1.0 kPa). The 
USO2024 model demonstrated comparable accuracy to the USO2022 
model when estimating diurnal gsw at high VPD levels (> 2.0 kPa) in 
Elaeha species in 2021 (Fig. 7b). 

The improved USO2024 model demonstrated superior performance 
exclusively under conditions characterized by low irradiance and low 
VPD. The USO2024 model is mathematically equivalent to the USO2022 
model when D0 in Eq. (9) is zero. This implies that the USO2022 model is 
robust for modeling applications in most habitats where the daytime 
minimum VPD is greater than or equal to 1.0 kPa (Lamour et al., 2022). 
At the ecosystem level, the Trcanopy-VPD response curve simulated by the 
USO2024 model was positioned between the simulation results of the 
USO and USO2022 models (Fig. 8c). It appears that improving the sto-
matal conductance model at the leaf level could enhance the perfor-
mance of ecosystem transpiration. However, it should be noted that 
factors such as canopy structure (e.g., LAI) and climate changes, rather 
than leaf stomatal physiology, are the most influential determinants of 
ecosystem functions (Wang et al., 2003; Xue et al., 2017). The main 
findings from our improved stomatal conductance model could be 
crucial, depending on the research scales and questions being addressed. 

Note that the photosynthesis-RF inference tool had limited capability 
in providing specific biological parameters, such as the slope parameter 
of the USO series models. The inability to provide concrete biological 
parameters may not be a sufficient reason to abandon it. In our research, 
the photosynthesis-RF inference tool is proved to be useful for investi-
gating and replicating the intricate responses of gsw to environmental 
factors, including PAR, VPD, Tleaf, and CO2 elevation concentration (see 
note S5). 

5. Conclusions 

Collectively, the results indicate that the USO model significantly 
overestimated diurnal gsw at low VPD and irradiance conditions in all 
sampled tree species partially due to the assumption of a linear corre-
lation between gsw and An. Although the performance of the USO2022 
model was superior to the USO model, it still overestimated gsw at low 
VPD levels, mainly because gsw was not bounded. To improve the pre-
dictive accuracy of diurnal gsw, a constraint coefficient based on the 
monthly mean of daytime minimum VPD was added to the USO2022 
model, which contributes to substantial improvements in predictive 
accuracy while retaining gsw response patterns at high VPD. 
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